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ABSTRACT
Explaining the mechanisms behind model predictions is a common
strategy in AI-assisted decision-making to help users rely appropri-
ately on AI. However, recent research shows that the effectiveness
of explanations depends on numerous factors, leading to mixed
results, with many studies finding no effect or even an increase in
overreliance, while explanations do improve appropriate reliance in
other studies. We consider the factor of decision difficulty to better
understand when feature-based explanations can mitigate overre-
liance. To this end, we conducted an online experiment (𝑁 = 200)
with carefully selected task instances that cover a wide range of
difficulties. We found that explanations reduce overreliance for easy
decisions, but that this effect vanishes with increasing decision dif-
ficulty. For the most difficult decisions, explanations might even
increase overreliance. Our results imply that explanations of the
model’s inner workings are only helpful for a limited set of decision
tasks where users easily know the answer themselves.
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1 INTRODUCTION
As AI is increasingly used to support human decision-making [20],
concerns about the opaqueness of modern machine learning al-
gorithms and calls for making AI explainable have become com-
monplace [1, 10, 15]. A typical approach for using explanations in
AI-assisted decision-making is to explain to end users how the AI
produced its recommendation [26]. The hope is that this helps de-
cision makers to rely on AI appropriately [33], i.e., to adopt correct
or beneficial recommendations and to reject wrong or detrimental
ones. However, many studies have found that explanations do not
effectively improve appropriate reliance [3, 33, 38, 41] or even in-
crease overreliance on AI [2, 4, 17, 21, 34], i.e., people become more
likely to adopt detrimental AI recommendations. Recent evidence
suggests that the ineffectiveness of explanations is due to users’
lack of cognitive engagement with them [6, 14]. This has become
an influential perspective on the issue and suggests a fundamental
challenge to the approach of explaining AI recommendations to
decision makers. However, in other studies, explanations do help
users to rely on AI more appropriately [8, 37, 39], showing that
there are conditions under which explanations have the intended
effect, though it is often unclear what these conditions are.

In this paper, we aimed to systematically investigate how the
effect of feature-based explanations—one of the most popular ex-
planation styles [20, 36]—on overreliance depends on the difficulty
of a decision, as AI can be used to support decision tasks of varying
difficulties. Often, the goal is to improve human decision-making
in difficult high-stakes decisions, such as medical diagnosis [4, 17],
creditworthiness assessment [16], or recidivism prediction [24, 38],
where the call for explainability is particularly prominent and at
the same time, overreliance is especially undesired. We found that
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the effectiveness of feature-based explanations for reducing overre-
liance can strongly depend on decision difficulty. In our experiment,
explanations reduced overreliance for easy decisions, but not for
difficult ones. We discuss the implications of these results for the
use of explanations in AI-assisted decision-making.

2 RELATEDWORK
2.1 Explainable AI (XAI)
Various explanation methods have been proposed, most of them
being post-hoc, i.e., these methods explain already-trained mod-
els that are not inherently interpretable [36]. Post-hoc methods
are criticized for their lack of faithfulness to how the model ac-
tually works and for being not informative enough to support
decision-making [31], but are often used due to the difficulty of
building inherently interpretable models for complex tasks. Post-
hoc methods are commonly categorized by whether they are local
(explaining a specific model prediction) or global (explaining how
the model works as a whole), and by whether they are specific to
a certain model or can be applied agnostically to any model [36].
For empirical studies on AI-assisted decision-making, the more rel-
evant distinction is the result of the explanation, with feature-based
(showing how individual features contribute to a model output) and
example-based (showing representative examples from the training
set) explanations being the most popular [20]. In this work, we
focus on feature-based explanations, which are more common to
our chosen study task (see Section 3.1).

2.2 Task Difficulty and Reliance
Several studies have been conducted in recent years to understand
how human reliance on AI is influenced by task difficulty or related
constructs, often in the context of decision-making. Parkes [28]
found that rather than objective task complexity, it is subjective
task difficulty that leads to increased reliance on a decision aid.
Lu and Yin [25] studied how people’s heuristics for reliance on AI
depends on their observations of model performance on decisions
where they have high confidence, i.e., decisions that they perceived
as easier. In a study by Chiang and Yin [9], people relied more on
AI on out-of-distribution decision tasks, since they perceived their
own performance to be worse on these tasks, i.e., they perceived
these tasks as harder. Papenmeier et al. [27] found that perceived
AI accuracy is lower when the AI makes mistakes on easy decision
tasks and higher when mistakes happen on difficult ones. Cao and
Huang [7] observed that participants looked at AI recommendations
for a longer time on more difficult tasks, even though it did not
translate into higher agreement with the AI in their case. Taken
together, these results consistently suggest that people are more
likely to rely on AI in more difficult decisions.

However, not many studies investigate the role of explanations
in this relationship. Wang and Yin [38] studied the effect of different
explanations in two decision-making tasks, one where participants
had more domain knowledge in, and one where they had less.
They found that feature contribution explanations led to more
appropriate reliance in the high-domain-knowledge task, but not in
the low-domain-knowledge task. But while the amount of domain
knowledge is linked to task difficulty, the study gives no direct
evidence about the relationship between explanations, overreliance,

and task difficulty, as a task can be easier or harder independently
from the amount of domain knowledge.

A work where task difficulty was directly studied was conducted
by Vasconcelos et al. [37]. They found that explanations reduce
overreliance in more difficult tasks when they enable easy veri-
fication of the AI. However, their notion of task difficulty differs
from what we aimed to study in this work. To manipulate task
difficulty, Vasconcelos et al. varied the complexity of the mazes
that participants had to solve. More complex mazes required more
cognitive effort, but with enough effort, a single clear solution could
always be found. In contrast, we were interested in settings like
those studied by Lu and Yin [25] or Papenmeier et al. [27]. In these
task settings, the effort remains constant across task instances, and
difficulty differs in terms of how hard it is to decide between multi-
ple plausible options. This notion of difficulty more closely reflects
difficulty in many real-world tasks, e.g., when assessing medical
images, the image complexity does not change from case to case,
but in some cases, the diagnosis is less clear than in others. To
differentiate this notion of difficulty from complexity-based task
difficulty, we refer to it as decision difficulty.

We conclude that from related work, it remains unclear how
explanations affect overreliance under varying levels of decision
difficulty. We therefore pose the following research question:

RQ: How does the effect of explanations on overre-
liance depend on decision difficulty?

Given that previous work indicates increasing reliance with increas-
ing decision difficulty, we also expected that overreliance increases
with decision difficulty. As previous work has found that expla-
nations can induce blind trust in AI [2, 12], especially for difficult
tasks [21], we anticipated explanations to further increase overre-
liance in difficult decisions. For easy decisions, our intuition was
that AI should not have a big impact, as users can easily make the de-
cisions themselves. We therefore expected no effect of explanations
in easy decisions.

3 METHOD
We first describe the overall task on which we built the experiment
(Section 3.1), followed by how we measured decision difficulty (Sec-
tion 3.2) and how we selected the individual task instances for our
experiment (Section 3.3). Lastly, we describe the study procedure
(Section 3.4).

3.1 Study Task
As decision task, we chose profession classification based on a
dataset by De-Arteaga et al. [11] of short biographies scraped from
the internet. Each biography is labeled with one of 28 professions.
This task has been used in previous studies on AI-assisted decision-
making [8, 24, 29, 35]. We chose this task for two reasons: (1) It is
accessible to non-expert participants. (2) Decisions have an objec-
tive ground truth, making it easier to assess overreliance.

The participants’ task was to read a series of short biographies
and decide which profession the described person has. To make
the decision more manageable, we restricted the biographies to the
same five professions as Liu et al. [24]: teacher, professor, physician,
surgeon, psychologist. Participants were supported by an AI model
which gave its prediction above the biography (Figure 1). Depending
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(a) Without explanation. (b) With explanation.

Figure 1: Screenshots of the study interface.

on the study condition, participants in addition saw feature-based
explanations in the form of text highlights (Figure 1b), indicating
which words were most influential for the AI’s prediction, and
which words were speaking most against it. This interface mimics
the typical interface for text-based studies on AI-assisted decision-
making (e.g., [2, 21, 24, 34, 35]). We trained a logistic regression
model with bag-of-words features on the five classes to generate
the AI predictions and used LIME [30] to generate the feature-based
explanations. The model had a test set accuracy of 0.89.

3.2 Measurement of Decision Difficulty
Our initial idea was to obtain decision difficulties by directly asking
for participants’ subjective difficulty ratings after each decision.
However, while testing this setup, we found it to be unreliable,
as participants’ difficulty ratings could drift over the course of
the experiment1, and asking for the decision difficulty after each
decision highly distracted from the actual decision-making task.

Instead, we settled on using the agreement between participants
as measure for decision difficulty, similar to Papenmeier et al. [27].
The rationale was that high disagreement between participants
indicates more than a single plausible answer, making the decision
difficult. For our measure, we recorded how participants classified
a biography without AI support and noted 𝑎𝑇 , which is the share
of participants who chose the most frequently chosen answer for
task instance𝑇 . We linearly transformed 𝑎𝑇 such that the resulting
decision difficulty score 𝑑𝑇 for task instance𝑇 lies between 0 for the
easiest decisions, and 1 for decisions that are so hard that humans
can only guess randomly:

𝑑𝑇 = 1 − 𝑎𝑇 − 𝑎𝑚𝑖𝑛

1 − 𝑎𝑚𝑖𝑛
= 1 − 𝑎𝑇 − 0.2

0.8 . (1)

𝑎𝑚𝑖𝑛 is the theoretical minimum for 𝑎𝑇 and is required to map
𝑑𝑇 onto a range of [0, 1]. Since there are five possible answers,
1As an illustrative example, one might have rated the first three tasks with the lowest
difficulty of 1/5, but after three more tasks notice there are even easier ones, and would
in hindsight rate the previous tasks 2/5.

𝑎𝑚𝑖𝑛 = 0.2. Note that with this score, we did not consider the
difficulty of identifying the correct answer, but only the difficulty
of choosing between answers. If one answer stood out as the single
most obvious answer, we treated it as an easy decision, even if the
answer was wrong.

3.3 Selection of Task Instances
To measure overreliance, we sought tasks where the AI makes
predictions that are (1) wrong and (2) different from what partic-
ipants would independently decide without AI support. The first
requirement follows from the commonly used definition of over-
reliance2, which is that the human accepts a wrong AI recommen-
dation [37, 39]. The latter requirement was important to ensure
that when participants agreed with a wrong AI prediction, it was
indeed the result of overreliance rather than an instance where
participants’ own opinion simply matched the AI recommendation.
To answer our research question, we further had to ensure that the
task instances in our experiment covered a wide range of decision
difficulties. We carefully selected task instances according to these
requirements by conducting a pre-study with 12 volunteers (av-
erage age: 31.1 ± 13.2 years; 5 female, 7 male). Figure 2 shows an
overview of the entire procedure.

We first manually chose a set of 30 biographies out of those that
were wrongly classified by our logistic regression model. We se-
lected one biography for each combination of profession, gender3,
and decision difficulty, where decision difficulty in this first step
was subjectively classified by the authors as either easy, medium,
or hard. We then asked each of the 12 volunteers to label the pro-
fessions for all 30 biographies, without seeing any AI predictions.
The biographies were presented in random order to avoid ordering
effects. We first excluded eleven biographies where the volunteers’

2We acknowledge that—while popular and straightforward to operationalize—this
definition has its limitations, as argued by Fok and Weld [13].
3The dataset only covers male and female genders.
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Task instances with wrong AI predictions

30 task instances, one per combination of 

profession, gender, and author-assessed 

decision difficulty

19 task instances where 

majority disagrees with AI

14 task instances

covering a range of 

preliminary decision

difficulty scores

14 task instances with 

final decision difficulty 

scores from study 

participants

Pre-study

Main study

Manual selection

Labeling by volunteers

Preliminary decision difficulty scores

Final decision difficulty scores

Figure 2: Overview of steps to select a set of tasks with well-
distributed decision difficulty scores and wrong AI predic-
tions.

most frequent answer matched the AI prediction. Based on the vol-
unteers’ labels, we then calculated preliminary decision difficulty
scores for the remaining 19 task instances according to Equation 1.
Finally, given these preliminary scores, we selected 14 out of these
19 task instances (see Appendix A) for our experiment, aiming for
an even coverage of a wide range of preliminary decision difficulty
scores. We also tried to balance professions and gender in this
step. We kept only 14 task instances to keep the main study (see
Section 3.4) short, as excessively long studies may inadvertently
contribute to overreliance [42].

The decision difficulty scores in this step were preliminary since
our volunteers did not necessarily match the demographics of our
study participants. Note that this does not affect the validity of the
main study results: As described in Section 3.4, we recalculated the
final decision difficulty scores based on labels from our study par-
ticipants and only used these final scores for the statistical analysis
presented in Section 4. The preliminary scores were merely meant
to ensure as much as possible that we went into the actual study
with task instances covering a wide range of decision difficulties
and were not used for later analyses.

3.4 Study Procedure
We ran a between-subject online study on Prolific4 with two groups:
with and without explanations. We restricted participants to native
English speakers residing in the US, UK, or Canada, to ensure that
participants would be familiar with the academic system referred
to in the biographies. For the same reason, we required participants
to have completed at least an undergraduate degree. Lastly, we

4https://www.prolific.com/

required participants to have a minimum approval rate of 99% on
Prolific.

After giving informed consent and completing a demographic
survey, participants got instructions to the study task and interface.
The main part of the study consisted of two phases: a labeling phase
and a trial phase (Figure 3). In the labeling phase, participants made
ten decisionswithout any AI support, including one attention check.
In the trial phase, participants made another 20 decisions, again
including one attention check, this time with AI support according
to their study condition. The labeling phase had two purposes:
first, helping participants to familiarize with the task, and second,
obtaining labels from participants to calculate the final decision
difficulty scores according to Equation 1. To get as many labels as
possible, the labeling phase contained only task instances randomly
sampled from the set of 14 task instances described in Section 3.3
(plus the attention check). The remaining five of these 14 task
instances were included into the trial phase. The distribution of the
14 task instances of interest between labeling and trial phase was
randomly resampled for each new participant.

The trial phase in addition contained 14 task instances where
the AI made a correct prediction. Since overreliance can only be
measured on task instances with wrong AI recommendations, these
task instances with correct AI predictions were not of interest for
our analyses, but only used to ensure that participants experienced
a reasonable AI accuracy of 73.7% (excluding the attention check).
We did not disclose the AI accuracy to participants and also gave no
feedback whether they answered a task instance correctly or not.
The set of task instances with correct AI predictions remained the
same for all participants and where selected manually so that each
profession and gender was equally represented. We also selected
these task instances to cover a range of difficulties, as assessed
subjectively by the authors. The order of all task instances in both
phases was randomized between participants.

After the main part of the study, participants could choose to
answer an optional exit survey where they were presented with the
five task instances from the trial phase with wrong AI predictions
along with their own answers. For each task instance, participants
were asked how much they considered the AI in their decision
(“How much did you think about the AI prediction in this case?” ). For
task instances where participants’ answer was the same as the AI’s,
we additionally asked how much they considered to choose another
answer (“How much did you consider to choose a different answer
than the AI prediction?” ). For task instances where participants
decided differently than the AI, we asked howmuch they considered
switching to the AI prediction (“Howmuch did you consider choosing
the same answer as the AI prediction?” ). All questions were answered
on a five-point scale (1 = not at all, 5 = very strongly). The exit survey
was optional to ensure high-quality answers and to keep the study
short for participants who were not motivated to answer the exit
survey.

Participants were paid a base amount of £2.00 for completing
the study. As incentive for accurate answers, participants were
rewarded a bonus of £0.01 for each correct answer. Including the
bonus, participants received an average payment of £2.21 for an
average time of 16.46 minutes, resulting in an hourly rate of £8.06
(≈ US$10.24). The study was approved by the Ethics Committee
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Figure 3: Distribution of task instances over labeling and trial phase. Red crosses symbolize task instances where the AI makes
wrong predictions and which were of interest for our analyses. Green check marks symbolize task instances where the AI
makes correct predictions and which were not of interest for our analyses. Yellow question marks symbolize attention checks.

of the Faculty of Mathematics, Computer Science and Statistics at
LMU Munich.

4 RESULTS
A total of 237 participants completed the study in June 2023. We
discarded the data of 34 participants for failing at least one attention
check and filtered out three more participants who spent on aver-
age less than five seconds per task instance. Of the remaining 200
participants, 97 saw AI explanations and 103 saw no explanations.
Participants had an average age of 39.3±14.6 years. 100 participants
self-identified as female and the other 100 as male. Additional data
on participants’ demographics is given in Appendix B.

The final decision difficulty scores of our 14 task instances with
wrong AI predictions covered a range from 0.1 to 0.66, with a
concentration between 0.4 and 0.5 (Figure 4). Each score was based
on the answers of 128.6 ± 12.3 participants on average. In the trial
phase, each of the 14 task instances was answered by an average of
71.4 ± 12.3 participants in both conditions together.

0
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Decision difficulty
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Figure 4: Histogram of final decision difficulty scores.

We investigated overreliance by threemetrics: participants’ agree-
ment with wrong AI predictions (Section 4.1), their accuracy on
task instances with wrong AI predictions (Section 4.2), and their

subjective ratings of how much they considered the AI (Section 4.3).
Details of the models mentioned in the following sections are given
in Appendix C.

4.1 Agreement With Wrong AI
We considered the binary outcome for each task instance and partic-
ipant whether the participant agreed with the wrong AI prediction
(Figure 5). We fitted a mixed-effects logistic regression model with
random intercepts and slopes for individual participants to account
for repeated measures. As fixed effects, we added decision difficulty,
explanation condition, and the interaction of both. We further con-
trolled for participants’ gender, age, education, machine learning
knowledge, and AI attitude by adding those as fixed effects to the
model. Likelihood ratio tests revealed significant5 main effects for
both decision difficulty (𝑂𝑅 = 581.11, 95% CI [204.53, 2181.32],
𝜒2 (1) = 136.38, 𝑝 < .001) and explanation (𝑂𝑅 = 2.99, 95% CI [1.3,
6.83], 𝜒2 (1) = 4.73, 𝑝 = .03). The interaction between both was also
significant (𝑂𝑅 = 0.11, 95% CI [0.02, 0.64], 𝜒2 (1) = 4.25, 𝑝 = .039).
As shown in Figure 5a, for easy decisions, agreement with wrong AI
predictions was higher without explanations. Agreement increased
for both conditions with decision difficulty, but faster with expla-
nations, such that for the most difficult decisions, agreement was
higher with explanations. None of the fixed effects for participant
demographics were significant.

To further investigate the interaction effect, we divided the task
instances into three clusters of decision difficulty to reduce the noise
of individual task instances: easy (difficulty score < 0.25), medium
(0.25–0.5), and hard (> 0.5). For each cluster, we fitted a separate
mixed-effects logistic regression model with random intercepts for
individual participants. As fixed effect, we added the form of AI
support, including the two explanation conditions as well decisions
without AI during the labeling phase. Figure 5b shows the estimated
marginal means for these models, confirming that explanations led
to less agreement with wrong AI for easy decisions, but more for
hard decisions. However, both explanation conditions increased

5If not stated otherwise, we used a significance level of 𝑝 < .05 throughout this paper.
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predicted by the model for an average partici-
pant.
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(c) Odds ratios for agreement with wrong AI
compared to when participants saw no AI in
the labeling phase.

Figure 5: Agreement with wrong AI predictions. Error bands and bars represent 95% confidence intervals.

participants’ agreement with wrong AI compared to decisions with-
out AI for all decision difficulties. We ran linear hypothesis tests
to test whether this increase in agreement differed between condi-
tions within each decision difficulty cluster, but found no significant
differences (Figure 5c).

4.2 Accuracy on Task Instances With Wrong AI
Similar to agreement, we considered the binary outcome for each
task instance and participant whether the participant chose the
correct profession when given a wrong AI recommendation (Fig-
ure 6). We fitted a mixed-effects logistic regression model and ran
likelihood ratio tests akin to Section 4.1. Again, we found signifi-
cant main effects for decision difficulty (𝑂𝑅 = 7.1 × 10−4, 95% CI
[1.9 × 10−4, 1.9 × 10−3], 𝜒2 (1) = 151.86, 𝑝 < .001) and explana-
tion (𝑂𝑅 = 0.36, 95% CI [0.16, 0.75], 𝜒2 (1) = 4.02, 𝑝 = .045). An
interaction between both is visible in Figure 6a, as for easy deci-
sions, accuracy is higher with explanations, but the gap gradually
closes with increasing decision difficulty and disappears entirely
for the most difficult ones, although this interaction effect was not
statistically significant (𝑂𝑅 = 6.32, 95% CI [1.21, 33.1], 𝜒2 (1) = 2.44,
𝑝 = .118).

As with agreement, we also analyzed accuracy with separate
mixed-effects logistic regression models per decision difficulty clus-
ter. The estimated marginal means in Figure 6b confirm that accu-
racy was higher with explanations for easy decisions, but almost
the same for hard decisions. Similar to agreement, accuracy was
lower than without AI for all decision difficulties, regardless of
whether participants saw explanations. Linear hypothesis tests
again revealed no significant differences in the accuracy reductions
between the conditions (Figure 6c).

4.3 Self-Rated Consideration of AI
The optional exit survey was answered by 91 of the 200 participants.
We fitted mixed-effects linear regression models to analyze partici-
pants’ five-point scale answers, again with random intercepts and
slopes for individual participants and controlling for participant
demographics as fixed effects (Figure 7). As with the objective mea-
sures, we ran likelihood ratio tests to test for the main effects of
decision difficulty and explanation and their interaction.

When asked how much they thought about the AI recommenda-
tion in task instances with wrong AI predictions (Figure 7a), partici-
pants’ answers were not significantly affected by decision difficulty
(Coef. = 0.22, 95% CI [-0.26, 0.7], 𝜒2 (1) = 0.8, 𝑝 = .371) nor expla-
nation condition (Coef. = -0.22, 95% CI [-0.69, 0.23], 𝜒2 (1) = 0.9,
𝑝 = .342); the interaction of both was also not significant (Coef. =
0.77, 95% CI [-0.26, 1.84], 𝜒2 (1) = 2.43, 𝑝 = .119).

We asked participants who correctly rejected a wrong AI rec-
ommendation how much they considered agreeing with the AI
(Figure 7b). The main effect of decision difficulty on participants’
answers was not significant (Coef. = 0.58, 95% CI [-0.22, 1.38],
𝜒2 (1) = 2.07, 𝑝 = .15), while participants who saw explanations
considered agreeing with the AI slightly more. This main effect of
explanations was significant at the 𝑝 < 0.1 level (Coef. = -0.64, 95%
CI [-1.36, 0.04], 𝜒2 (1) = 3.55, 𝑝 = .06). The interaction between
decision difficulty and explanation was not significant (Coef. =
1.2, 95% CI [-0.29, 2.92], 𝜒2 (1) = 2.2, 𝑝 = .138), even though the
trend suggests that participants without explanations considered
agreeing with the AI less on easier decisions, while the answers of
participants with explanations remained constant for all decision
difficulties.

We also asked participants who agreed with a wrong AI recom-
mendation the complementary question of how much they consid-
ered disagreeing with the AI (Figure 7c). We found neither signifi-
cant main effects for decision difficulty (Coef. = 0.54, 95% CI [-0.64,
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Figure 6: Accuracy on task instances with wrong AI predictions. Error bands and bars represent 95% confidence intervals.
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(b)When participants chose a different answer
than theAI: “Howmuchdid you consider choos-
ing the same answer as the AI prediction?”
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(c) When participants chose the same answer
as theAI: “Howmuchdid you consider to choose
a different answer than the AI prediction?”

Figure 7: Participants’ self-reported consideration of AI predictions in their decisions. Dots represent the means of the
individual answers for each task instance. Lines represent model predictions for an average participant, error bands represent
95% confidence intervals.

1.87], 𝜒2 (1) = 0.71, 𝑝 = .399) and explanation condition (Coef. =
0.38, 95% CI [-0.87, 1.64], 𝜒2 (1) = 0.41, 𝑝 = .52), nor a significant
interaction effect (Coef. = -0.54, 95% CI [-2.99, 1.85], 𝜒2 (1) = 0.19,
𝑝 = .662).

4.4 Summary
We found that in line with previous work, overreliance increased
strongly with decision difficulty, with higher agreement with wrong
AI predictions and lower accuracy on more difficult decisions. To
our surprise, AI recommendations induced overreliance even for

the easiest decisions. Explanations reduced overreliance on these
easy decisions, but did not completely prevent overreliance. With
increasing decision difficulty, this positive effect of explanations
became smaller and disappeared entirely for the most difficult deci-
sions in our experiment.

All of this appears to happen unconsciously, as participants’ sub-
jective responses were mostly unaffected by both decision difficulty
and explanation condition. Only when participants chose the cor-
rect profession, explanations led them to consider the wrong AI
prediction slightly more, even though it did not lead to a stronger
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adoption. Apparently, the explanations were plausible, but at least
for easy decisions, still helped participants to reject wrong AI pre-
dictions.

5 DISCUSSION
Given the ineffectiveness of explanations in many studies, some
authors have lately called the entire premise of explaining AI rec-
ommendations into question [5, 18, 26]. Other works have shown
that explanations can effectively reduce overreliance under cer-
tain circumstances. Vasconcelos et al. [37] employed a cost-benefit
framework to show that explanations can be effective when they
reduce the cost of engaging with the task. On a theoretical level, Fok
and Weld [13] argue that explanations only improve appropriate
reliance when they enable verification of the AI’s correctness. Our
results also suggest that explanations can reduce overreliance in
some scenarios. But similar to previous work, these scenarios are
quite limited. Namely, explanations only seem to help for decisions
that people could easily make themselves. This is consistent with
Fok and Weld’s theory, as people are likely able to verify the AI on
such easy decisions. An application where this applies in practice
could be the automation of easy, but high-volume decisions, such as
unambiguous cases in content moderation [19], where explanations
could help human supervisors to spot false machine classifications.

However, what researchers usually envision are more ambitious
human-AI collaborations that augment human performance on
tough decisions. On this front, our results are more in line with the
voices that are skeptical about current approaches in AI explainabil-
ity, as explanations did not reduce overreliance for more difficult
decisions. Again, this is consistent with the theory of verifiability.
We assume that for difficult decisions where humans are uncertain
about the answer, they lack a reference against which they can
verify the AI. The trend in our results suggests that explanations
might even increase overreliance on even harder decisions than the
most difficult ones in our experiment, which would be consistent
with previous work on a similar setup, but where the task was very
hard for humans [21].

We caution against overgeneralizing our results, as we only ex-
plored a single task with a single explanation style, with a single
specific setup (e.g., showing AI recommendations before partici-
pants made an initial decision, not disclosing AI accuracy to partic-
ipants, not giving them immediate feedback for each task instance,
etc.). All of these factors can have an influence on people’s reliance
behavior, as shown by numerous empirical studies [6, 25, 32, 38].
Nevertheless, our results highlight that decision difficulty can be an
important factor for how effectively explanations can help calibrat-
ing decision makers’ reliance on AI. Our results further indicate
that to improve human decision-making in more challenging tasks,
different approaches than explaining how the AI came to its predic-
tion may be necessary. Instead of introducing the secondary task of
verifying the AI, which in difficult decisions may be hardly possible,
AI systems could focus more on supporting the primary decision
task. For instance, explanations could provide domain-specifc infor-
mation that aligns with users’ decision-making, instead of making
transparent the inner working of the AI model. In a clinical setting,
Yang et al. [40] explored supplementing AI recommendations with
references to medical literature, similar to how clinicians validate

suggestions from colleagues. Lim et al. [23] explained cardiac di-
agnosis predictions with murmur diagrams, which are a common
representation for changes in heart sound loudness. Alternatively,
Miller [26] proposed to circumvent the AI verification task by forgo-
ing AI recommendations entirely. Instead, AI could help to explore
and evaluate different hypotheses. In light of our results as well as
previous work, we see both approaches, domain-specific explana-
tions and alternatives to recommendation-centric AI, as promising
ways forward to augment human decisions with AI in challenging
domains.

6 CONCLUSION
We have conducted an online experiment in which we carefully
selected task instances with a wide range of difficulties. We found
that the effectiveness of feature-based explanations for reducing
overreliance on AI can strongly depend on decision difficulty. Our
results suggest that for easy decisions, explanations can reduce
overreliance, likely because users can easily make the decision
themselves and hence verify the AI using the explanations. For dif-
ficult decisions, explanations did not reduce overreliance, probably
since users were uncertain of the answer themselves and were thus
also not able to verify the AI. We therefore argue that explanations
can be useful when automating easy, but high-volume decisions un-
der human supervision. But to augment human decision-making in
more challenging domains like medical diagnoses, other approaches
than explaining the mechanisms behind AI recommendations may
be necessary.
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A DECISION TASK INSTANCES

Table 1: Decision task instances with wrong AI predictions, ordered by decision difficulty, from easy to difficult.

Biography Ground Truth AI Prediction Decision Difficulty
She received her Elementary education degree from
Clemson University in 2002 and began her teaching
career at West End Elementary School. She earned her
master’s degree from Southern Wesleyan University in
2006 and has been National Board Certified in literacy:
Reading/Language Arts since 2009. ___ enjoys volun-
teering her time at Crosswell on the PTA Leadership
Team and being the fundraising coordinator for March
of Dimes and The American Cancer Society.

Teacher Professor 0.055

He has taken that practical experience into his qual-
ity improvement work for population health and sys-
tems re-design across BC. He was the co-chair of the
first chronic disease management collaborative in BC,
the Congestive Heart Failure Collaborative. He is the
physician lead for chronic disease management with
Vancouver Coastal Health.

Physician Professor 0.103

He is rated 5.0 stars out of 5 by his patients. He has
indicated that his clinical interests include peripheral
neuropathy, reconstructive surgery, and functional neu-
rosurgery. Dr. ___ is affiliated with Massachusetts Gen-
eral Hospital. He is an in-network provider for Blue
Cross/Blue Shield, Coventry, Humana ChoiceCare Net-
work, and more. Dr. ___ has an open panel. He at-
tended medical school at Stanford University School
of Medicine. For his professional training, Dr. ___ com-
pleted a residency program at Massachusetts General
Hospital. Dr. ___ is conversant in Hebrew.

Surgeon Physician 0.167

His current research interests include the develop-
ment of metacognitive capacity through individual psy-
chotherapy for persons with schizophrenia. Related Sub-
jectsPersonality Disorders in AdultsSchizophrenia &
Other Psychotic Disorders in AdultsMood Disorders in
Adults - Depression, Mania, Bi-polar

Psychologist Professor 0.274

She enjoys developing relationships with her patients
and following them throughout their lives from adoles-
cence to adulthood. She strives to inform patients of
their medical and surgical options and helps them to
make decisions that best suit their needs.

Physician Surgeon 0.369

She specializes in eating and food related issues,
burnout, and stress reduction. Her comfortable office is
located close to the Syracuse University campus. She
also authors her monthly newsletter BreatheTasteSavor,
as well as contributes to other popular publications.

Psychologist Professor 0.375

Her teaching reflects this. She was trained at Harvard
as a cognitive scientist & studied insight and discovery
phenomena. She is currently Professor Emerita of Psy-
chology and Computer Sciences at Rutgers University.
She left Rutgers to teach dharma full-time.

Teacher Psychologist 0.428
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Biography Ground Truth AI Prediction Decision Difficulty
He developed an interprofessional education anatomy
course that brings together a variety of students in dif-
ferent Health Sciences professional programs, as well
as students from other faculties. Of particular note is
his effort in helping to design the Anatomy Learning
Commons — an appealing learning environment that
enhances the student experience by allowing them to
engage with and learn from each other. ___ is applauded
for his overall excellence in teaching, his national recog-
nition for innovative interprofessional teaching meth-
ods and his multiple innovations to serve the needs of
students.

Professor Teacher 0.441

During her fellowship, she participated in the care of
collegiate and professional athletes, and has experience
in transplantation techniques for cartilage disorders and
sports-related foot and ankle injuries. Dr. ___ has also
published several research articles and book chapters
on foot and ankle issues.

Surgeon Professor 0.462

She attended Harvard University and the Feinberg
School of Medicine at Northwestern University, and
completed her surgical training at Yale University, the
National Cancer Institute, and UCLA. She also served as
a faculty member at UCLA, and was named the UCLA
Outstanding Physician of the Year in 1999.

Surgeon Physician 0.474

Currently, he is a teaching researcher at the Teaching
Research Section of the Shanghai Municipal Education
Commission. His responsibility is guiding mathematics
teaching and mathematics teachers’ professional devel-
opment in the city. He is also a coauthor of a set of
school mathematics textbooks for middle schools in
Shanghai. His main research interests are school math-
ematics teaching and curriculum.

Teacher Professor 0.475

His current research interests include relationship for-
mation and maintenance through computer mediated
communication channels (e.g., smartphone apps, social
media, VoIP programs, and virtual reality) and artificial
intelligence and the self. He received a MA in Sociology
from the University of New Orleans and is currently a
PhD candidate at Louisiana State University.

Psychologist Professor 0.518

Her passion is to understand why people hold the views
they do, the relationship between their views and their
behavior, and how both can change over time. She
earned a B.A. in psychology summa cum laude from
Harvard College, and a Ph.D. in organizational behavior
fromHarvard Business School. ___ served as a professor
of public policy at Harvard for 10 years, where she was
awarded the Manuel Carballo Prize by the students. Her
research on teams, networks, and reward systems has
been published in such journals as Harvard Business Re-
view, Organization Science, Academy of Management
Executive, Small Group Research, and Social Justice
Research.

Psychologist Professor 0.554
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Biography Ground Truth AI Prediction Decision Difficulty
Through the centre that she founded, ___ has helped
children – and their parents – identify and overcome
their learning difficulties and challenges, using move-
ment as one of the approaches. Movement therapist ___
met up with ___ for yet another insightful conversation
on this.

Teacher Psychologist 0.611
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B PARTICIPANT DETAILS

Table 2: Participants’ education.

Highest
completed
degree

With exp.
(% in group)

No exp.
(% in group)

Total
(%)

Undergraduate 59 (60.82%) 70 (67.96%) 129 (64.5%)
Graduate 31 (31.96%) 30 (29.13%) 61 (30.5%)
PhD 5 (5.15%) 1 (0.97%) 6 (3%)
Other 2 (2.05%) 2 (1.94%) 4 (2%)

Table 3: Participants’ machine learning experience.

Self-rated
machine learning

experience

With exp.
(% in group)

No exp.
(% in group)

Total
(%)

None 71 (73.20%) 76 (73.79%) 147 (73.5%)
Basic 18 (18.56%) 17 (16.50%) 35 (17.5%)
Intermediate 7 (7.22%) 6 (5.83%) 13 (6.5%)
Advanced 1 (1.03%) 4 (3.88%) 5 (2.5%)
Expert 0 (0%) 0 (0%) 0 (0%)

Table 4: Participants’ attitude toward AI.

Self-rated
AI attitude

With exp.
(% in group)

No exp.
(% in group)

Total
(%)

Negative 1 (1.03%) 1 (0.97%) 2 (1%)
Rather negative 9 (9.28%) 10 (9.71%) 19 (9.5%)
Neutral 43 (44.33%) 58 (56.31%) 101 (50.5%)
Rather positive 36 (37.11%) 25 (24.27%) 61 (30.5%)
Positive 8 (8.25%) 9 (8.74%) 17 (8.5%)

C MODELS
To fit the models, we combined some sparsely populated categories
in participants’ demographic data:

• Education: We combined undergraduate with other, and grad-
uate with PhD.

• Machine learning knowledge: We combined intermediate
with advanced.

• AI attitude: We combined positive with rather positive and
negative with rather negative.

In another step, we further combined (rather) positive with neutral
AI attitude since those two categories were highly correlated. The
explanation condition was contrast-coded, with -0.5 for with expla-
nations and 0.5 for no explantions. All of the following tables were
created with texreg [22].
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Table 5: Mixed-effects logistic regression models in Figure 5a and Figure 6a.

Agreement Accuracy
(Intercept) −2.61 (0.55)∗∗∗ 2.83 (0.55)∗∗∗
study_condition_contrast 1.10 (0.51)∗ −1.03 (0.51)∗
decision_difficulty 6.36 (0.66)∗∗∗ −7.25 (0.68)∗∗∗
user_gendermale 0.17 (0.19) −0.25 (0.19)
user_age −0.01 (0.01) 0.01 (0.01)
user_educationundergraduate/other 0.23 (0.19) −0.24 (0.19)
user_ml_knowledgeintermediate/advanced −0.29 (0.37) −0.02 (0.37)
user_ml_knowledgenone −0.11 (0.26) 0.10 (0.25)
user_ai_attitudenon-negative 0.08 (0.30) −0.29 (0.30)
study_condition_contrast:task_difficulty −2.22 (1.11)∗ 1.84 (1.14)
AIC 1221.98 1176.65
BIC 1285.78 1240.45
Log Likelihood −597.99 −575.33
Num. obs. 1000 1000
Num. groups: user_ID 200 200
Var: user_ID (Intercept) 2.27 2.38
Var: user_ID task_difficulty 3.66 4.80
Cov: user_ID (Intercept) task_difficulty −2.88 −3.38
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 6: Mixed-effects logistic regression models in Figure 5b/Figure 5c and Figure 6b/Figure 6c.

Agreem.
easy

Agreem.
medium

Agreem.
hard

Acc.
easy

Acc.
medium

Acc.
hard

(Intercept) −3.19∗∗∗ −1.03∗∗∗ 0.06 2.65∗∗∗ 0.28∗∗∗ −0.67∗∗∗
(0.35) (0.07) (0.10) (0.28) (0.06) (0.11)

study_conditionno_explanations 1.86∗∗∗ 0.95∗∗∗ 0.97∗∗∗ −1.40∗∗∗ −0.57∗∗∗ −0.82∗∗
(0.35) (0.14) (0.24) (0.31) (0.14) (0.26)

study_conditionwith_explanations 1.29∗∗∗ 0.73∗∗∗ 1.14∗∗∗ −0.85∗ −0.32∗ −0.69∗∗
(0.39) (0.14) (0.25) (0.35) (0.14) (0.26)

AIC 410.74 1971.83 779.91 464.49 2199.84 710.04
BIC 428.32 1993.34 797.50 482.08 2221.35 727.62
Log Likelihood −201.37 −981.91 −385.96 −228.25 −1095.92 −351.02
Num. obs. 600 1600 600 600 1600 600
Num. groups: user_ID 200 200 200 200 200 200
Var: user_ID (Intercept) 0.96 0.00 0.00 0.73 0.01 0.00
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05
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Table 7: Mixed-effects linear regression models in Figure 7.

AI consideration Consideration to
switch to agree

with AI

Consideration to
switch to disagree

with AI
(Intercept) 2.38 (0.46)∗∗∗ 1.79 (0.66)∗∗ 2.49 (0.64)∗∗∗
study_condition_contrast −0.22 (0.23) −0.64 (0.34) 0.38 (0.60)
decision_difficulty 0.22 (0.25) 0.58 (0.40) 0.54 (0.63)
user_gendermale 0.15 (0.18) 0.60 (0.24)∗ −0.06 (0.22)
user_age −0.00 (0.01) −0.01 (0.01) −0.00 (0.01)
user_educationundergraduate/other −0.29 (0.17) 0.02 (0.23) −0.39 (0.22)
user_ml_knowledgeintermediate/advanced 0.87 (0.37)∗ 0.68 (0.55) −0.30 (0.48)
user_ml_knowledgenone 0.12 (0.22) 0.33 (0.30) −0.38 (0.28)
user_ai_attitudenon-negative 0.66 (0.26)∗∗ 0.56 (0.35) 0.06 (0.36)
study_condition_contrast:task_difficulty 0.77 (0.49) 1.20 (0.80) −0.54 (1.24)
AIC 970.51 629.34 505.00
BIC 1025.30 676.27 548.23
Log Likelihood −471.26 −300.67 −238.50
Num. obs. 370 211 162
Num. groups: user_ID 91 76 78
Var: user_ID (Intercept) 0.34 0.76 0.27
Var: user_ID task_difficulty 0.04 0.33 0.01
Cov: user_ID (Intercept) task_difficulty 0.12 −0.34 0.05
Var: Residual 0.53 0.65 0.86
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05
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