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ABSTRACT
Intelligent decision support tools (DSTs) hold the promise to im-
prove the quality of human decision-making in challenging situa-
tions like diversions in aviation. To achieve these improvements, a
common goal in DST design is to calibrate decision makers’ trust in
the system. However, this perspective is mostly informed by con-
trolled studies and might not fully reflect the real-world complexity
of diversions. In order to understand how DSTs can be beneficial in
the view of those who have the best understanding of the complex-
ity of diversions, we interviewed professional pilots. To facilitate
discussions, we built two low-fidelity prototypes, each representing
a different role a DST could assume: (a) actively suggesting and
ranking airports based on pilot-specified criteria, and (b) unobtru-
sively hinting at data points the pilot should be aware of. We find
that while pilots would not blindly trust a DST, they at the same
time reject deliberate trust calibration in the moment of the deci-
sion. We revisit appropriation as a lens to understand this seeming
contradiction as well as a range of means to enable appropriation.
Aside from the commonly considered need for transparency, these
include directability and continuous support throughout the entire
decision process. Based on our design exploration, we encourage
to expand the view on DST design beyond trust calibration at the
point of the actual decision.

CCS CONCEPTS
• Information systems→Decision support systems; •Human-
centered computing → Interaction paradigms.
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1 INTRODUCTION
As with most industries, the aviation industry is currently push-
ing for the adoption of artificial intelligence (AI) [16, 29]. A gen-
erally popular application for AI are intelligent decision support
tools (DSTs) [41], with the promise of improving the quality of hu-
man decision-making. Such improvements could be of great benefit
to commercial aviation as well, where faulty decision-making is
among the leading causes for accidents [52]. One particular type of
decision situations for pilots are diversions, where an emergency or
other abnormal event requires the crew to divert to another desti-
nation than the original one. While diversions are rare, they can be
very challenging. For instance, diversions can incur high cost on
airlines and strongly disrupt operations [42]; but minimizing these
costs can run counter to safety requirements. A well-known exam-
ple of such a goal conflict leading to a poor decision is Hapag-Lloyd
Flight 3378 from Crete, Greece to Hanover, Germany [47]: After
departure, the landing gear did not fully retract, causing increased
fuel consumption. Instead of landing at nearby Zagreb, the captain
tried to reach Vienna, likely because it was economically and oper-
ationally preferable. Unfortunately, the fuel did not last, resulting
in a crash landing before the runway at Vienna. Supporting pilots
to minimize the risk of such poor diversion decisions is a desirable
goal given their potentially grave consequences. But in contrast
to often simple controlled studies on DSTs, which treat decisions
as isolated selections between options [41], diversions are highly
complex, posing a challenge for the application of DSTs.

Currently existing AI applications in aviation are not safety-
critical [29]. To move into safety-critical applications like diversion
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assistance, the question is how to keep the very high safety stan-
dards of the industry with AI, or even improve on them. While the
introduction of flight deck automation has brought many benefits,
it has also led to a range of unanticipated issues like e.g. mode
confusion (user errors due to automation being in a different mode
than expected) or clumsy automation (automation that eases work-
load when it is already low, but further increases workload when
it is already high) [3, 22, 50]. The concern is that increased system
intelligence might aggravate problems like these [19].

Such problems can often be attributed to an insufficient consid-
eration of user requirements in the development of automation,
despite the popularity of the label “human-centered” [27, 50]. As
target applications for intelligent systems are often highly complex,
a deep understanding of user requirements becomes even more
important than with traditional automation. We therefore inter-
viewed professional pilots to learn about the context of diversion
decisions as well as opportunities and requirements for DSTs in
diversions. To facilitate discussions, we built two low-fidelity pro-
totypes, each representing a different role a DST could assume: (a)
actively suggesting and ranking airports based on criteria the pilot
has previously defined, and (b) unobtrusively hinting at data points
the pilot should be aware of.

We find that diversion decision-making goes beyond what is
usually captured in controlled studies. Most importantly, pilots do
not merely try to select a good option in reaction to an emergency,
but also aim to proactively shape the situation in their favor. We
also find that while pilots would not blindly trust a DST, they at
the same time reject deliberate trust calibration in the moment of
the decision. We revisit the concept of appropriation [14] to make
sense of this seeming contradiction. Together with the insights into
diversions, the lens of appropriation suggests a range of design
opportunities and challenges which in part go beyond the common
perspective on DSTs (i.e. recommending a decision and ensuring
trust calibration through transparency). Most notably, this includes
continuous support prior to and around the actual point of decision.
We view the contributions of our work as follows:

(1) We contribute to and demonstrate the value of the growing
efforts to investigate intelligent DSTs in complex real-world
applications, with aviation as a domain that is understudied
in the HCI community.

(2) We propose to design DSTs and intelligent systems more
generally with appropriation in mind, and discuss possible
means to facilitate appropriation of intelligent systems.

2 BACKGROUND
2.1 Human decision-making
Early research on human decision-making was dominated by ra-
tional choice theory, i.e. the assumption that humans would in gen-
eral make rational decisions given the available information [23].
Later evidence undermined this assumption, showing that humans
frequently deviate from “optimal” decisions predicted by formal
models [23, 24, 43]. As a result, rational choice theory has given way
to the dual process theory of decision-making [34]. According to this

model, humans employ either intuitive, fast decision-making (Sys-
tem 1), or deliberative, slow decision-making (System 2). The mecha-
nisms underlying the intuitive System 1 judgments and their interac-
tions with System 2 have been of great interest to decision-making
research, with at least two established perspectives: heuristics and
biases (HB) and naturalistic decision making (NDM) [35]. The HB ap-
proach focuses on systematic biases and errors in human intuition,
mostly investigated through controlled experiments [35, 56]. NDM
on the other hand focuses on how experts are able to make good
decisions intuitively, studying decision-making under real-world
conditions and complexities [39, 43]. NDM views decisions much
more broadly than only as the choice between options, with a focus
onmacrocognitive functions like sensemaking [49]. In fact, according
to NDM models like recognition-primed decision (RPD) [38], expert
decisions may not involve choosing between options at all. RPD—
“the prototypical NDM model” [43]—posits that experts generate
one option at a time that they recognize as appropriate to the cur-
rent situation and that they evaluate through mental simulation.
Only if an option is deemed to have shortcomings, the expert would
discard it and generate a new one.

2.2 Decision-making in aviation
Decision-making in emergency or abnormal situations is one of
the most challenging tasks for pilots, as a multitude of technical,
operational, and environmental factors need to be considered. For
instance, pilots may need to consider technical limitations of the air-
craft due to system failures, preferences of the airline, and current
weather conditions. Since goals can be conflicting, there is often
no objectively correct decision. Moreover, decisions in aviation are
often accompanied by time constraints and uncertainty, e.g. about
how weather conditions will develop. To make good decisions in
such complex and dynamic situations, it is crucial for pilots to form
and maintain situation awareness (SA). According to the commonly
adopted model of Endsley [18], SA consists of three levels: 1) per-
ception of elements in the current situation, 2) comprehension of the
current situation, and 3) projection of the future status.

Poor decisions like in the example of Hapag-Lloyd Flight 3378 are
strongly linked with low SA on the pilots’ side [18]. Often, this is a
result of unstructured decision-making based on faulty intuition. In
order to help pilots make structured decisions with a high level of
SA, airlines have introduced multiple prescriptive decision frame-
works [55]. While these frameworks differ in details, they have in
common that they structure decisions along several steps, such as
analysis of the situation or evaluation of options [55]. In Germany
and other European countries, one of the most widely used frame-
works is FOR-DEC [31, 55]. The acronym concisely captures the
six steps that pilots should follow in their decision-making process:
facts, options, risks and benefits, decision, execution, check. The
dash in the middle symbolizes a pause after the situation assessment
phase before going for a specific option.

In this work, we focus on diversions, where an emergency or
abnormal situation requires the crew to divert to an airport different
from the original destination. In such a case, pilots need to first
decide whether a diversion is necessary, and if so, which alternative
destination to divert to. Possible reasons for a diversion include



Resilience Through Appropriation IUI ’23, March 27–31, 2023, Sydney, NSW, Australia

e.g. bad weather at the destination, a technical failure, or a medical
emergency among the passengers.

2.3 Decision support tools
Along with the impressive advances in AI, interest in intelligent
decision support tools (DSTs) has surged in recent years, often in
high-stakes applications like medical diagnosis [5, 33, 48], cred-
itworthiness assessment [11, 25], university admission [9, 13], or
recidivism prediction [25, 44, 58]. Usually, these DSTs feature an
AI model that recommends a decision, often along with an explana-
tion [41]. As Cabitza et al. [7] call it, the AI functions as an “oracle”.

Reflecting the HB tradition of decision-making research, there
has recently been a quickly growing number of controlled studies
on intelligent DSTs, often through the lens of human cognitive
biases [6, 11, 46]. A frequent focus of these studies is trust calibration
via explanations of AI outputs [51, 58, 60, 63], i.e. whether and to
what extent explanations help decision makers to adopt correct
outputs and to reject incorrect ones. The reasoning is that well-
calibrated trust would lead to high joint human-AI performance [2].
Results show that trust is hard to calibrate, which potentially results
in overreliance [2, 5, 33] or underreliance [13].

While insightful, these studies may not fully reflect the usage
of DSTs in practice. Studies on trust calibration mostly frame the
human-DST interaction as what is essentially supervisory control:
Subjects have to detect when to trust the DST and when not to.
Chiou and Lee [10] argue that trust calibration is indeed crucial for
supervisory control, but not necessarily the goal for the often more
lateral interactions between humans and intelligent systems. These
lateral interactions are usually not captured by controlled studies.
Similarly, Lai et al. [41] point out that controlled studies usually
miss context, mostly treating decisions as isolated points, which
might be hard to translate into practice.

The HCI community has studied actual decision environments as
well, though, like clinical decisions [32, 36, 62], child maltreatment
screening [37], or nursing homes [26]. Challenges revealed in such
real-world studies include for instance a mismatch between model
prediction and decision makers’ thought process [37], or inaccurate
assumptions about how decision makers would involve DSTs into
their work [62]. Challenges like these show that how to best support
high-stakes decisions in practice remains an open question and can
likely not be fully addressed by controlled studies only. Within the
aviation context, past research on DSTs emphasizes the issue of
brittleness [12, 45, 54], i.e. how intelligent systems might fail under
complex conditions and how this impacts operators. Prior work also
points out that with regard to AI on flight decks, pilots themselves
are most concerned about how AI might fail when faced with
real-world complexities [64]. For instance, rules and procedures
help pilots to deal with most situations. However, unusual events
can require pilots to deviate from rules and procedures, a difficult
judgment for computers to make. With this research context in
mind, we posed the following research question for our design
exploration with pilots:

RQ: What are design opportunities and requirements
for intelligent systems to support pilots in making
diversion decisions, especially considering the high
complexity of diversions?

3 METHOD
To understand how to support pilots in diversions, we created two
low-fidelity prototypes of an intelligent diversion assistance system
and discussed them with professional pilots. Below, we present our
prototypes and the design rationale behind them, followed by a
description of the pilot interviews.

3.1 Scenario
The scenario presented to the pilots was a passenger having a heart
attack. In such an emergency, pilots should land the aircraft soon
to enable medical care. This most likely means diverting to another
airport in case the planned destination is not close enough. The
prototypes in theory should not only apply to diversions due to
medical emergencies, but also other abnormal situations, such as
technical failure. For this design exploration however, only the user
journey of a medical emergency was laid out in detail.

3.2 Prototypes
We built two click dummy prototypes for diversion assistance sys-
tems. They mainly differ in the role of the intelligent system and
how the pilot can interact with it. Note that both concepts are not
mutually exclusive but could easily be combined. We chose to draft
them as two separate concepts in order to emphasize during the
discussions with pilots the different roles a DST could assume.

3.2.1 Design process. We gained an initial understanding about
diversions through informal interviews with pilots and industry
experts as well as through an existing diversion assistance con-
cept from an industry partner [20]. Information gained from these
sources include common decision criteria, pilots’ general workflow
during diversions, as well as rough ideas about the difficulties of di-
versions, such as the inefficiency of collecting relevant information
for a decision.

Based on this initial understanding, we created the prototypes
using a diverge-and-converge process [21]. The first two authors
independently created several rough sketches of possible designs
(diverge) before presenting them to each other and discussing them
(converge). Prior work indicates that pilots are particularly con-
cerned that an intelligent system might be a burden rather than
a help in case it cannot adequately handle real-world complexi-
ties [64]. We therefore had a particular focus on how system intelli-
gence can be helpful to pilots, even when it is imperfect at times.
The major point of discussion that emerged from this diverge-and-
converge exploration was how to combine or trade off between
efficiency and control: The closer the DST output would be to a
ready-to-adopt decision, the more efficient the support would be if
the output was of high quality. At the same time, it would likely
be harder for pilots to steer the DST into a more productive direc-
tion if the output was of low quality. The ideas from the sketches
converged on two potential roles of a diversion DST, around which
we built the two click dummy prototypes. The prototypes matured
by reflecting on the design decisions taken and giving feedback to
each other.

3.2.2 Prototype A—Global Suggestions. Prototype A is conceptu-
ally closer to the aforementioned industry partner design [20]. It
follows the conventional approach for DSTs where the system gives
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> ILS CAT I

Approach type

< 10 kts

Tailwind component

< 15 kts

Crosswind component

Good

Braking action

Avoid

Risks on route

Your suggested airports for diversion

Facts Airports

Diversion Assistance

Valid diversion Probably valid diversion Non-recommended diversion

Raw Data

EDDF

EFOB 3,772 kg ILD 2264m FLD 2604 m LDA 3000 m

Weather

NOTAM

METAR EDDF 221120Z 03013KT 9999 FEW023 BKN031 07/02 Q1023 NOSIG

TAF EDDF 220500Z 2206/2312 01010KT 9999 SCT025 

EDDF ILS/DME RWY 25R (Z) IFNW:


LOC COVERAGE UP TO 17NM IN SECTOR 30DEG(L) - 30DEG(R) IN RELATION TO RCL, UP TO 25NM IN SECTOR 04DEG(L) - 
04DEG(R) IN RELATION TO RCL. MNM INTERCEPTION ALT IN THESE AREAS 3000FT MSL AT DIST OF LESS THAN


16.1NM FROM ANTENNA IT IS 2880FT MSL. 16 NOV 13:27 2021 UNTIL PERM. CREATED: 16 NOV 13:28 2021

 TEMPO 2206/2213 BKN025 

 BECMG 2222/2224 03005KT
ETAR

EDRY

EDTY

ETDU
EDDF

EDOG
EDFH

DINKU

DILUG

GULKO

Option 2 Option 3Recommended

Criteria EDDF EDFH ETAR EDOG EDTY

Time until landing

< 40 min 25 min 40 min 35 min 20 min 30 min

Fuel at destination

> 30 min 1:50 h 1:35 h 1:40 h 1:55 h 1:45 h

Wx at destination

> AOM RVR/VIS +200 m +1,500 m +1,000 m -100 m +2,000 m

Landing dist. margin

> 200 m 700 m 400 m 100 m 400 m 200 m

Avail. of HEMS Yes Yes Yes Yes No

Dist. airport - hospital

< 3 km 2.9 km 3 km 3.2 km 3.5 km 2.7 km

Approach type

> ILS CAT I CAT III CAT III CAT I CAT I NPA

Tailwind component

< 10 kts 8 kts 5 kts 9 kts 3 kts 6 kts

Crosswind component

< 15 kts 3 kts 10 kts 7 kts 20 kts 2 kts

Braking action

Good Good Good Good Medium Good

Risks on route - - - - -

Avail. of PAX handling Yes Yes Yes Yes Yes

Criterion 


certainly met

Criterion 


certainly not met

Uncertain

Global Suggestions - Step 1: »criteria definition« 

Global Suggestions - Step 2: »option suggestion« 

In the first step, the criteria according to which the system should suggest a 
diversion airport are entered and the ranges of acceptable values are defined. 
By ordering the criteria, pilots can define their importance (feature weight) 
within the option evaluation process.

For efficient entry of criteria, the system automatically suggests suitable 
criteria and ranges based on the emergency type and situation the pilot has 
entered.

Option 2 Option 3Recommended

Criteria EDDF EDFH ETAR

Time until landing


< 40 min
25 min 40 min 35 min

Fuel at destination


> 30 min
1:50 h 1:35 h 1:40 h

Wx at destination


> AOM RVR/VIS
+200 m +1,500 m +1,000 m

Landing dist. margin


> 200 m
700 m 400 m 100 m

Avail. of HEMS Yes Yes Yes

Dist. airport - hospital


< 3 km
2.9 km 3 km 3.2 km

Approach type


> ILS CAT I
CAT III CAT III CAT I

Tailwind component


< 10 kts
8 kts 5 kts 9 kts

Crosswind component


< 15 kts
3 kts 10 kts 7 kts

Braking action


Good
Good Good Good

Risks on route - - -

Avail. of PAX handling Yes Yes Yes

The color coding within 
the table indicates 
whether a criterion is 
certainly not met (red) or 
certainly met (green). White 
means being on the limit 
to an acceptable value. The 
gradient communicates 
the distance to that limit.

Criteria are displayed in the order of 
importance for the system suggestion. 
Below each criterion, the acceptable 
range of values is shown. 

Aiports are listed in the order of 
the system-calculated suitability 
as a diversion option. It is clearly 
communicated which decision the 
system recommends.

Option 2 Option 3Recommended

Criteria EDDF EDFH ETAR EDOG EDTY

Time until landing

< 40 min

25 min 40 min 35 min 20 min 30 min

Fuel at destination

> 30 min

1:50 h 1:35 h 1:40 h 1:55 h 1:45 h

Wx at destination

> AOM RVR/VIS

+200 m +1,500 m +1,000 m -100 m +2,000 m

Landing dist. margin

> 200 m

700 m 400 m 100 m 400 m 200 m

Avail. of HEMS Yes Yes Yes Yes No

Dist. airport - hospital

< 3 km

2.9 km 3 km 3.2 km 3.5 km 2.7 km

Approach type

> ILS CAT I

CAT III CAT III CAT I CAT I NPA

Tailwind component

< 10 kts

8 kts 5 kts 9 kts 3 kts 6 kts

Crosswind component

< 15 kts

3 kts 10 kts 7 kts 20 kts 2 kts

Braking action

Good

Good Good Good Medium Good

Risks on route - - - - -

Avail. of PAX handling Yes Yes Yes Yes Yes

Figure 1: Prototype A—Global Suggestions (Section 3.2.2). Following the conventional DST approach, the system suggests
airports by ranking them according to their suitability. Pilots have control over the ranking through the specification of
diversion criteria. The color coding provides transparency.

concrete decision suggestions. In this case, the system gives sug-
gestions by ranking the surrounding airports according to their
calculated suitability and highlighting the best ones (Figure 1). Be-
fore getting a suggestion, pilots need to specify diversion criteria for
the system to consider, such as flight time, runway length, weather,
or distance to the next hospital. Pilots can further define the impor-
tance of the individual criteria and specify an acceptable range of
values for them. Suitable criteria and values are suggested by the
system based on the selected emergency situation (i.e. medical emer-
gency, technical failure, etc.) in order to speed up the input process.
Letting pilots define and check the criteria first before displaying a
suggestion aims to provide more control over the system’s evalua-
tion. On the following screen, the ranked airports are presented in a
table, along with their calculated values for the specified criteria. A
color coding communicates how likely the corresponding criterion
will be met for the respective airport. The values for the criteria
together with the color coding are meant to provide transparency
about the system’s suggestions. Transparency together with control

over the criteria are the two means in this prototype to help pilots
work with possibly imperfect system suggestions.

3.2.3 Prototype B—Local Hints. In prototype B, the system assumes
a different role than in conventional DST designs. Instead of sug-
gesting diversion options, the system is designed to provide a better
basis for a decision by continuously evaluating and highlighting
relevant information (Figure 2). Similar to prototype A, this is done
by displaying the surrounding airports and their information re-
garding various diversion criteria in a table. However, unlike in the
other concept, prototype B does not rank the airports, and it does
not require pilots to specify diversion criteria. Instead, the values
for all criteria known to the system are shown at all times. For
values that require extra attention, the system displays warnings
and alerts called Local Hints. Clicking on a hint reveals an expla-
nation of its reason. Pilots can additionally select an airport to see
a summary box with a short communication of the main points
highlighted by the system for the selected airport.

In contrast to prototype A, which is designed to be used when
an emergency occurs, prototype B is meant to be used throughout
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EDOG EDDF EDTY ETDU EDRY ETAR EDFH

Flight time 20 min 25 min 30 min 30 min 30 min 35 min 40 min

Fuel at destination 40 min 35 min 30 min 30 min 30 min 25 min 20 min

Fuel at alternate 20 min 25 min Not possible 20 min 20 min 15 min 5 min

Runway length 2.6 km 3 km 3 km 2.1 km 2.8 km 3.3 km 2.6 km

Runway width 45 m 60 m 45 m 60 m 45 m 60 m 60 m

Braking action Good Good Medium Good to medium Null Good Medium

Approach type ILS CAT II Visual Visual NPA ILS CAT III ILS CAT I NPA

Tailwind component H 3 kts H 8 kts H 10 kts H 12 kts H 17 kts H 2 kts H 1 kts

Weather margin 0 km 23 km 100 km 240 km 4 km 5 km 0 km

Weather at destination Good Good Good Heavy wind Good Heavy rain Snow storm

Landing dist. margin 400 m 700 m 1000 m 100 m 500 m 1000 m 600 m

Crosswind component H 4 kts H 4 kts H 2 kts H 6 kts H 7 kts H 12 kts H 16 kts

Risks on route - - - Storm approaching Storm on route Storm arpproaching -

Technical maintenance Available Available Available Available Available Available Available

Average wait. time 15 min 35 min 14 min 22 min 20 min 16 min 24 min

Refueling possible Yes Yes No Yes No Yes Yes

PAX handling Available Available Not available Not available Partly Available Available Available

Special. hospital avail. not applicable not applicable not applicable not applicable not applicable not applicable not applicable

Dist. airport - hospital 22 km 3 km 3.2 km 3.5 km 2.7 km 2.9 km 4 km

HEMS avail. (2/10) (8/10) (3/10) (6/10) No (7/10) (8/10)

Perform. capab. ATC Good Good Good Medium Low Medium Good

Attributes

Airports Search airport

View details

Review calculation

Warning

There might be heavy rain at the time of arrival. Please review the weather condition continuously.

Add emergency

ETAR

EFOB 3,457 kg ILD 2239m FLD 2575 m LDA 3300 m

Weather

NOTAM

METAR ETAR 221121Z AUTO 04014KT 9999 BKN026 07/07 A3018 RMK AO2 SLP231

TAF ETAR 221000Z 2210/2316 05010G20KT 9999 SCT015 BKN025 620302 510004 QNH3015INS

RUNWAY 27 GLIDESLOPE UNSERVICEABLE. 11 NOV 18:09 2021 UNTIL 31 DEC 23:59 2021.

CREATED: 11 NOV 18:12 2021

 BECMG 2220/2221 05009KT 9999 FEW025 QNH3029INS 

 BECMG 2300/2301 VRB06KT 3200 BR BKN010 QNH3032INS 

 BECMG 2308/2309 06010G15KT 9999 NSW FEW015 QNH3033INS TX08/2215Z TNM02/2305ZETAR

EDRY

EDTY

ETDU

EDOG
EDFH

DINKU

DILUG

GULKO

Airport details

There is a storm on the 
route to EDRY and the 

braking action at the 

destination is Null. Please 
consider another airport.

There is high traffic 
expected at EDDF, this 

could prolong waiting 

times.

flight timeRanked by

Available Available

35 min 14 min

Yes No

Available Not available

not applicable not applicable

3 km 3.2 km

(8/10) (3/10)

There is high traffic 
expected at EDDF, this 
could prolong waiting 
times.

An “Add emergency” button enables 
configuration of the system for an 
emergency case (»emergency mode«).

Summary box: A summary of the hints 
and warnings is displayed for the 
selected airport.

Airports are selectable for further 
information and system evaluation.

Icons hint at warnings and alerts given  
by the system.

By clicking on the hinting 
icon, pilots can retrieve 
additional explanation 
for why the system is 
raising an alert or 
warning.

Information that has been 
reevaluated due to the 
emergency are highlighted in 
blue. An “info i” offers 
additional explanation for the 
reevaluation.

In an emergency situation, 
new information becomes 
relevant and worth hinting at. 
It is again marked and 
explained by the system.

5 min 0 kmEDFH

Local Hints »default mode«

Local Hints »emergency mode«

Good Good

700 m 1000 m

H 4 kts H 2 kts

- -

Available Available

35 min 14 min

Yes No

Due to your medical 
emergency the traffic 
situation was considered 
of less importance, since 

you can declare an 
emergency.

Dist. airport - hospital 22 km

HEMS avail. (2/10)

Perform. capab. ATC GoodHelicopter service often 

unreliable. Please check 
with ATC or consider 
another airport.

Figure 2: Prototype B—Local Hints (Section 3.2.3). Instead of suggesting airports, the system continuously alerts and warns
about data points that require extra attention, also in normal flight. In case of an emergency, the hints can be tailored to the
specific type of emergency. Text explanations provide transparency about the hints.

the flight, even when no emergency is imminent. It can be used in
two modes: default mode and emergency mode. In default mode,
the information is evaluated generally, with no particular reason
for diversion in mind. This mode aims to provide SA, by giving
pilots an overview of their surroundings and potential risks like
bad weather which are of general interest, independent of the spe-
cific situation. In case an emergency occurs, pilots can activate the
emergency mode and select a specific diversion reason, in this case
medical emergency. The system then reevaluates all the data and
gives hints tailored to the newly specified situation. For a medical
emergency, this means for example displaying a warning if the
helicopter service at an airport is predicted to be unavailable. In
case the evaluation has changed for a certain criterion due to the
emergency mode, the corresponding table cell is indicated visually.

In this prototype, we aimed to design around possibly imperfect
system intelligence by giving the system a more restrained role.
Our intention was to avoid biasing pilots toward possibly subop-
timal options and to engage pilots more deeply into the solution
generation. The idea is that since system intelligence is provided at

a more fine-grained level, pilots might be able to better incorporate
it into their decision-making, even when it is imperfect.

3.3 Expert interviews
We interviewed eight experienced pilots (sevenmale and one female,
average age: 43.5 years, average flying hours: 10,279 hours). One of
them has a background as a fighter pilot, but also regularly test-flies
passenger aircraft. The other participants are airline pilots who
have flown for various German airlines, five as captains, two as
first officers. The airline pilots were recruited over mailing lists and
received a compensation of 200 EUR each for their participation
in the about two-hour-long sessions, which is a typical amount
for pilots, given the difficulty of addressing this target group. The
fighter pilot participated without compensation as an employee of
a project partner. We conducted the interviews via Webex1 video
calls and recorded all sessions. Each session consisted of two parts,
as shown in Figure 3 and as described below.

1https://www.webex.com
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Figure 3: Overview of the interview sessions. Each session consisted of two parts: A short, half-hour interview about diversions
according to the Critical Decision Method (Section 3.3.1), and a feedback discussion about our two prototypes (Section 3.3.2).

3.3.1 Critical Decision Method interview. We started each session
with a half-hour semi-structured interview according to a pared-
down version of the Critical Decision Method (CDM) [40], a method
that is widely used especially in NDM research to elicit expert
knowledge about complex decision-making tasks. We asked partic-
ipants to think about one particularly challenging diversion from
their own experience. If a pilot had no personal diversion expe-
rience, we asked them to think of a relevant simulator training
instead. We then asked for a brief description of the incident, from
the moment the pilot noticed the problem, until the completion of
the diversion. While participants gave their account, we simultane-
ously took note in the form of a rough visual timeline. After they
had finished their account, we showed this timeline to participants
via screen sharing for them to clarify details or add missing pieces
of information. Lastly, based on this account, we probed for more
decision-making details using probing questions taken from [40].

This CDM-based interview served two purposes: For one, we
wanted to gain a deeper understanding of the operational com-
plexities of diversions. Additionally, their own specific experience
served as a concrete example that participants could refer to and
elaborate on during the second part of the session.

3.3.2 Feedback discussion. In the second part of the sessions, we
discussed our two prototypes with participants, again in the form of
semi-structured interviews. By confronting pilots with two different
forms of decision support, we aimed to get feedback on the pros
and cons of each, learn more about potential design opportunities
and challenges, and about diversion decisions in general. We first
discussed both prototypes separately before asking about them
in comparison. Between participants, we switched the order of
the prototypes to mitigate order effects. For each prototype, we
first demonstrated it to participants through screen sharing by
showcasing a typical user journey for our scenario. Afterward, we
asked participants for their feedback. Besides questions about first
impressions or useful features and potential risks, we also asked
about the influence of such a system on workload, decision quality,
and SA in situations of differing degrees of risk and urgency. One of

our particular concerns was that DSTs might produce inadequate
outputs, for instance due to events that the system is not designed to
account for. As a further probe, we therefore first asked participants
to describe how they would use the system for a diversion decision.
Following that, we asked how their usage would look like in a
situation where an important factor is not considered by the system.
For this, we let them assume that the destination appearing most
favorable based on the system outputs would be unavailable due
to a no-fly zone caused by political disturbances. After discussing
both variants in the described manner, we closed the interviews by
asking participants how they perceived the role of the system in
both, letting them compare the strengths and weaknesses of each,
and asking for suggested changes to the prototypes.

4 RESULTS
We transcribed the recordings and analyzed the data through affin-
ity diagramming [30], as our goal was to understand pilots’ views on
diversion assistance in a bottom-up manner. The first two authors
split the recordings among them and independently transcribed one
set of recordings each. While transcribing, both authors collected
statements of interest as sticky notes on a Miro2 board. The sticky
notes were annotated with participant numbers and time stamps so
that statements could be traced back to their source. During multi-
ple affinity diagramming sessions, the first two authors clustered
the sticky notes into low-level themes, initially grouping the themes
under the CDM part, prototype A and B, and the comparison be-
tween both, according to the structure of the interviews described
in Section 3.3. In a second step, we detached these low-level themes
from the interview structure and clustered them further into higher-
level themes that span across individual interview parts. Clustering
decisions were made under constant discussion between the first
two authors, until consensus was reached. The results are summa-
rized in Figure 4. We ended up organizing them by pilots’ goals and
actions, their challenges, and means to support diversion decisions.

2https://miro.com
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Figure 4: Overview of the interview results. Participants discussed their goals and actions (Section 4.1), challenges they face
during diversions (Section 4.2), as well as possible means to support goals and actions and to alleviate challenges (Section 4.3).

4.1 Goals and actions
When an emergency or abnormal situation arises, pilots need to
select an appropriate course of action in reaction to the situation.
However, they do not only act reactively, but also aim to proactively
shape the situation in their favor. This reflects the procedural nature
of decision-making as emphasized by NDM (Section 2.1). Note that
proactive and reactive goals and actions are not consecutive, but
can (and often do) occur in parallel, as shown in Figure 5.

Time

Emergency begins to unfold

Proactive goals and actions

Reactive goals and actions

Execution of decision

Figure 5: Temporal relationship between proactive and re-
active actions and goals. The blur around the vertical line
indicates that it is not always perfectly clear when an emer-
gency begins.

4.1.1 Reactive goals and actions. The time constraints of the situa-
tion are the determining factor for how pilots select an option: In
time-critical situations, they mostly only check if the first available
option is feasible, with safety being the top priority, which conforms
to the RPD model (Section 2.1). With more time, other factors like
operational considerations can be considered, and multiple options
can be compared in more detail.

Information gathering, or sensemaking in NDM terms, is an
active process, in which pilots try to reduce uncertainty, although
sometimes it is not possible to eliminate all uncertainty:

“Many views are unfortunately closed to us and we have
to open the view ourselves quite laboriously.” (P2)
“If I had assumed that everything would go smoothly
in Hanover and I would not expect long holding pro-
cedures3 etc. and could land, then I could have flown
there. But I didn’t have the guarantee.” (P8)

Information about airports can be gathered through on-board sys-
tems or documentations, pre-flight briefing, and experience. Pilots
are trained to avoid errors in their decision-making, e.g. by double-
checking information, challenging each other, or avoiding jumping

3A procedure to temporarily keep aircraft in the air which have arrived at the destina-
tion but cannot land immediately, in this case due to high traffic.
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to conclusions, as encouraged by frameworks like FOR-DEC (Sec-
tion 2.2). All participants mentioned FOR-DEC, without us asking
about it. Furthermore, decision-making is not done once an airport
is chosen. Instead, pilots check for the validity of their choice as
the situation evolves, represented as “C” in FOR-DEC.

4.1.2 Proactive goals and actions. As time is critical, pilots try
to maximize the time available as well as to minimize the time
needed for a good decision. This already starts before the flight. For
instance, if it was foreseeable that the weather at the destination
will be bad, they would carry extra fuel in order to have more
reserves should landing at the destination not be possible. Pilots
further always prepare an alternate to the destination as plan B,
which can be quickly executed when needed. During the flight,
they constantly have to make sure that their plan B is still valid
and that they maintain SA of their surroundings: “The challenge is
always to maintain situational awareness. If I know where I am, I can
be where I want.” (P3).

Strongly related to the time-related goals, pilots also aim to
ensure that they always have enough suitable options available
by anticipating possible developments (SA level 3). This means for
instance in case of uncertainty about how a situation will evolve,
pilots will choose a course of action where the risk of running out
of options is low. For example, one pilot explained why he landed
at an airport en route and not in Hanover, which was the originally
planned alternate to the destination Hamburg:

“If half of the Hamburg traffic additionally diverts to
Hanover, it can of course happen that some holding
procedures are assigned, which would then force me
into minimum fuel and to commit myself to staying in
Hanover, with no choice left in my options.” (P8)

Lastly, diversions involve multiple stakeholders, including the
two pilots, the cabin crew, air traffic control, and the airline. In order
to facilitate good decisions, pilots have to actively communicate
throughout the flight to align with all stakeholders.

4.2 Challenges
Good, structured decisions as prescribed by FOR-DEC take time.
Under time pressure, the process has to be shortened, which might
lead to worse decisions: “The less time I have [...], the less options I
have, and the worse the decisions get.” (P3). Time criticality is often
determined by the amount of fuel left. Other time-critical situations
include medical emergencies or technical failures.

Aggravating the issue of time pressure is the excessive workload
in an emergency. For one, diversions involve many tasks besides
the actual decision: “I have to make clear to the controller what I
am up to; I have to reselect an appropriate course; and so on!” (P1).
Moreover, cockpit systems are often cumbersome to use and not
well integrated:

“We have these individual pieces of information, we
have the slips of paper here that we then print out from
our little computer—they’re so tiny—for the weather
[...]. Then I have the information that I get from the
approach charts. [...] I have to call them up one by one,
etc. etc. etc. [...] That’s actually super time-consuming
and you forget or you simply overlook things.” (P4)

However, modern aircraft have gotten much better in this regard,
with information displays offering some degree of integration: “Over
the last ten years, there has been worlds of progress, worlds.” (P3).

Another challenge are the numerous criteria that might be impor-
tant for diversions, possibly creating complex constellations. Some
of the examples mentioned by participants include: weather (men-
tioned by all pilots) with multiple sub-criteria like wind or visibility;
distance (P2, P4, P5, P7); fuel limits (P1, P3, P8); political situation
(P3, P6); overland connection to original destination (P2, P8); num-
ber and size of runways (P1, P4, P6, P7); free parking spots (P1, P6,
P8); aircraft-specific equipment (P2, P3, P6); company-specific in-
frastructure (P2, P6, P8); and passenger handling (P2, P8). However,
the challenge is not only the number of criteria. Sometimes, these
criteria also require very detailed and specific information:

“For example, landing gear does not lower. I would need
a foam carpet. Can the fire department there do that?
Or do I have to get the airplane onto the tarmac with
the belly and the engines? [...] Does it even have a fire
department that is capable enough to evacuate and
extinguish an airplane with 180 people?” (P8)

This complexity of possibly relevant factors makes it difficult for an
intelligent system to cover every eventuality: “Such things, they all
have to be part of the decision-making process. [...] [The system] just
doesn’t cover everything. And I find it hard to believe that it can.” (P8).

4.3 Means
4.3.1 Effectiveness. Participants see ready availability of relevant
information as the greatest value a DST could provide for diver-
sion decisions (explicitly mentioned by 7/8 participants), “because
humans are simply not good at that. But humans are usually good
at making decisions based on this filtered information.” (P1). But
to be an effective help, the information has to be reliable and as
complete as possible. 7/8 participants emphasized that being able
to rely upon the system is a fundamental precondition for using
and accepting the system; they did not want to ponder over its
correctness in the moment of the decision. When we probed for
participants’ thoughts on the possibility that the system might not
be aware of some information, they reacted sceptically:

“Do I have to do that every single time? Or can I really
rely on the system to give me a good answer?” (P7)
“If I would use the system with this approach, I wouldn’t
use it at all. [...] Then it occupies me more than making
the decision myself.” (P1)

Interestingly, there seems to be a tension between this rejection
of deliberate trust calibration at decision time on the one side and
not blindly trusting the system on the other side. Pilots are well
aware of the risk of overreliance (explicitly mentioned by 5/8 partic-
ipants), and say they would use the system critically, e.g. by double
checking (6/8) or first making an own decision before consulting
the system (5/8): “I would use the system as a mirror and as posi-
tive confirmation for the things we have already thought about. [...]
Just like a co-pilot in the end, the possibility of: ‘ah, I didn’t think of
that!”’ (P6). We will discuss this tension further in Section 5.1.3.

While information has to be as complete as possible with respect
to the current situation, 6/8 participants stated that it also has to
be relevant. Some information like passenger handling need to be
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tailored to the airline, and other information is only relevant in
certain situations, e.g. distance to the next hospital.

4.3.2 Efficiency. Given the time pressure often present in diver-
sions, it is important that pilots can work efficiently with the DST-
provided information. Ranking the options like inGlobal Suggestions
can be a good way to accelerate pilots’ decisions. 7/8 participants
expressed positive views about the ranking: “I could see at a glance,
will this work, or will it not?” (P5). 2/8 pilots would go even further
and would like the system to filter out unfeasible options.

Local Hints represent another possible way to increase efficiency
by directing pilots’ attention to potential risks. 5/8 participants
explicitly expressed positive opinions about the hints: “A restrained
AI would definitely also have a chance, and not just ‘here, this is my
recommendation now’, or ‘do this now’, but in the sense of ‘here, these
are my concerns and here are my references.”’ (P2).

Apart from intelligent data processing, the user interface needs
to be efficient. All participants discussed how the UI could be unclut-
tered, especially for the Local Hints prototype. 3/8 participants also
remarked that the criteria definition step in the Global Suggestions
prototype has to be efficient. Lastly, 2/8 participants pointed out
that the DST has to be integrated into the entire workflow including
other cockpit systems.

4.3.3 Appropriability. As diversions can be highly complex, it is
virtually impossible for designers of DSTs to foresee every possi-
ble situation. Care needs to be taken so that pilots can still work
with the system, even when the situation falls outside of what de-
signers explicitly considered. This is what appropriation is about,
the adaptation and adoption of technology by users in ways not
expected by designers [14]. We present the following points under
the umbrella of appropriability since they are all about how pilots
can incorporate the DST into their task.

5/8 participants highlighted the importance of transparency,
where Local Hints was apparently perceived as more transparent;
5 pilots lauded the transparency in Local Hints, only 2 in Global
Suggestions. Pilots seemed to be more interested inwhat the reasons
are for system evaluations, while none of them asked about how the
system would work: “It is transparent and you can see what led to
the decision of the system to choose and to recommend this airport or
not.” (P3). Another transparency need that participants expressed
was to know how reliable the DST information is (Section 4.3.1).
For example, P5 would like to have indications about the recency
of information: “Is the data brand-new, or is it half a day old? This
also makes a difference.” (P5). P2 would like to have a link to the
raw data to understand where the information is coming from: “You
could get an input from the AI, ‘this is my thought because it says so
here and there,’ a link from the AI suggestion, where does it take it
from, where does it say so, how is the connection?” (P2)

Apart from transparency, pilots require directability, i.e. the pos-
sibility to steer the system according to their current needs. In our
concepts, directability was primarily given by the pilot-defined
criteria in Global Suggestions (positively commented on by 4/8 par-
ticipants) and to a lesser extent by the pilot-specified emergency
type in Local Hints (4/8 participants). 3/8 participants wanted to
have more control over the criteria shown in Local Hints, similar to
the controls in Global Suggestions, underscoring the importance of
directability. Pilots also suggested additional means of directability,

like options to hide undesired airports (5/8 participants) or to add
an airport that is not in direct vicinity (P6). However, controls must
not be overwhelming: 3/8 pilots criticized the complexity of the
criteria definition. Controls further have to be optional: 3/8 pilots
pointed out that the system should be able to provide value without
much configuration, but the controls need to be there so that pilots
can steer the system according to their needs.

“If you can simply [...] click on it, ‘bang, show me the
airports’, then I think it’s great, then it’s fast, because
anything that takes longer, you just don’t have time for
in an emergency. If it’s not time-critical, [...] you can
vary the infrastructure yourself, like runways, condi-
tions, etc., in order to be even more precise.” (P4)

With Local Hints, we further probed for a third type of appropri-
ability means. The hints offer continuous support, also in normal
flight, instead of a one-off interaction in reaction to an emergency.
This is meant to address pilots’ need to maintain SA and to plan
ahead (Section 4.1.2), which 5/8 pilots acknowledged explicitly:

“You can also at any time, without actually being in an
emergency, [...] constantly think about which airports
are reasonable [...]. You don’t have to wait. I don’t like to
wait with my planning until the emergency occurs.” (P5)

One pilot fittingly described it as follows:
“The [Local Hints] system as a supporting actor in the
background, it’s quite good. [...] It’s like another person
plotting along, who keeps saying ‘pay attention, con-
sider this maybe’, or a person who in the background
decodes all the information and plots along and then
makes it available.” (P2)

Through continuous support, pilots can also familiarize with the
system during normal flight, which is important for pilots to rely
on the system in an emergency (mentioned by 4/8 participants). As
diversions are rare, a system only designed for use in an emergency
would provide little opportunity for familiarization: “I think I have
roughly experienced four or five diversions in twelve years. And if I
only started using such a system once such a situation arises, I don’t
know if pilots would be open to it.” (P2). As one pilot pointed out,
continuous support might also help pilots to better incorporate the
information into their decision-making:

“When situational awareness is always ensured, like
with the [Local Hints] system for example, then all the
thoughts that I would think about with the [Global
Suggestions] system in the case of a diversion, I would
already have them in the back of my mind.” (P3)

Lastly, 4/8 participants brought up that pilots would be trained
extensively on the usage of such a system, which also helps to
properly incorporate it into their decisions.

4.4 Participants’ impressions and preferences
All participants had a positive impression of both prototypes, with
5 preferring Global Suggestions, and 2 preferring Local Hints. Yet,
5/8 pilots explicitly praised the possibility to plan ahead during
normal flight, which only Local Hints was designed to support. It
appears that most pilots did not recognize that Global Suggestions
was not designed to do that. 4/8 participants explicitly stated that
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they did not notice a big difference in functionality and saw the
main difference in the visual presentation. The overall preference for
Global Suggestions therefore mostly had to do with the less cluttered
presentation of that prototype and its ranking functionality, which
makes good optionsmore apparent. 5/8 participants said theywould
prefer a combination of both concepts.

5 DISCUSSION
5.1 Takeaways
5.1.1 Decisions are a process, not a point. The NDM approach
views decision-making as a process that is much broader than
merely the point at which an option is selected, as is the usual focus
of HB research and controlled studies on DSTs. In line with the
NDM view, pilots do not only have reactive, but also proactive goals
and actions. Even the reactive goals and actions are not limited to
just selecting an option, but also involve for example a continuous
check whether the chosen option is still valid. Neglecting the pro-
cess character of decision-making in the design of DSTs might lead
to systems that are not all that useful to decision makers, as found
by other real-world studies on DSTs [37, 62]. Acknowledging this
process character on the other hand can reveal support opportu-
nities that one would miss when treating decisions as a point. An
example for such an opportunity is to continuously support pilots
in maintaining SA and planning ahead, even during normal flight
when there is no diversion decision to be made.

5.1.2 DSTs can be more (or less?) than oracles. Writing about tech-
nology design in general, Alan Dix noted that “Instead of designing
a system to do the task you can instead design a system so that the
task can be done.” [14] Applied to DSTs, this suggests that there
might be more helpful uses for AI than being an “oracle”, as termed
by Cabitza et al. [7]. In line with this thought, P3 remarked that “I
am confident that I can make similarly good decisions [as the system]”
and sees the value of our concepts more in a reduced workload and
increased SA. Moreover, decision recommendations from an “ora-
cle” DST might be hard to incorporate into users’ decision-making
process, especially when the decision requires much more context
than the system considers [4, 37], as would likely be the case with
diversions. We explored an alternative to an “oracle” DST with the
Local Hints concept which continuously gives warnings and alerts
about individual data points. The aim of this more fine-grained
support compared to ready decision recommendations was to allow
pilots to more easily incorporate it into their decision-making, even
when the support might be imperfect at times. While more pilots
overall preferred Global Suggestions over Local Hints due to the
less cluttered presentation and ranking functionality of the former,
most pilots viewed the ideas behind Local Hints very favorably.

Given that the implicit goal of AI research is frequently to repli-
cate human capabilities [53], a more restrained design that seems
to do less can appear less ambitious than an “oracle” DST. Here
again, it is worth quoting Dix: “Designs that are closed are often
more apparently sophisticated, because they may do more for the
user, but ultimately do not allow the users to do more for them-
selves.” [14] We see our results as motivation for further inves-
tigations into more restrained DST designs like our Local Hints

concept. Examples from prior work include the concept of Unre-
markable AI by Yang et al. [61] or the interaction-as-commentary
paradigm described by van Berkel et al. [57].

5.1.3 Appropriation leads to resilience. Diversions are highly com-
plex, but intelligent systems currently often cannot deal with every
facet of this real-world complexity, and some would argue that
they never will [59]. The challenge is therefore to design the joint
human-machine system to be resilient, even though the intelligent
system on its own is brittle. With DSTs, the usual focus to this end
is on trust calibration, which was not well received by our partic-
ipants. We therefore propose to frame the challenge of resilient
human-machine systems around appropriation.

The lens of appropriation might help to resolve the tension that
we observed in our interviews between pilots’ rejection of deliberate
trust calibration on the one hand and not blindly trusting the system
on the other hand: Pilots are aware that a DST cannot cover every
eventuality, but they do not want their task to be primarily about
questioning the correctness of the system. Rather, they want the
system to complement their decision-making, i.e. they want to be
able to appropriate the DST. There have been similar findings for
instance for clinical decision-making, where clinicians would not
want to calibrate their trust in a DST for every decision [32].

In this view, transparency may not primarily be about trust cali-
bration. This is not to say that trust calibration should be dismissed;
whether users should adopt a system output or not is definitely im-
portant, but it might be a too simplistic perspective for real-world
usage. Rather, transparency can be seen as a means for appro-
priation. This includes considering how users might appropriate
explanations, as Ehsan et al. have found [17]. But it also goes fur-
ther, with the question being how transparency can help users to
appropriate the DST—or more generally, the intelligent system—as
a whole. For instance, applied to intelligent systems, two of Dix’s
well-known guidelines for appropriation [14], provide visibility and
expose intentions, immediately call transparency to mind. As a nega-
tive example in this regard, Blomberg et al. [4] provide a case study
from enterprise analytics, where a sales team was unable to appro-
priate a machine learning model due to the lack of interpretability.
The project was abandoned despite the good performance of the
model.

Our results further indicate that transparency is not the only
lever to design for appropriation in intelligent systems. Directability
is another means that is often given much less attention than trans-
parency, but might be just as important. If directability is discussed,
it is often in the context of interactive machine learning [1, 15].
However, directability is not only about directing what a model
learns, but also about steering the system according to the current
user intentions. Sometimes, the intention might be highly situation-
specific and not a general pattern that the model should learn. In
our concepts, directability was primarily given by the possibility for
pilots to specify diversion criteria inGlobal Suggestions. An example
from literature is the content-based medical image retrieval system
by Cai et al. [8], which included tools for pathologists to direct
the system output according to their intentions. Interestingly, the
authors found that pathologists appropriated these tools to under-
stand how the algorithm worked and whether surprising outputs
resulted from algorithm errors or their own oversights [8].
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An even less researched appropriation means is continuous sup-
port, as exemplified in our Local Hints concept. Participants’ re-
marks hinted at how continuous support might facilitate appro-
priation, e.g. through increased familiarity with the system, or by
already being mentally engaged with the system output should
an emergency occur. Further research should investigate whether
these conjectures can be confirmed empirically. Chiou and Lee at
least argue that the particular sequence of human-system interac-
tions has a big influence on the usage of intelligent systems [10].
Taken together, while trust calibration is important, the means to
allow humans to work effectively and resiliently with intelligent
systems are much broader through the lens of appropriation.

5.2 Limitations
Our results need to be interpreted in light of following limitations:
For one, given the difficulty of recruiting professional pilots for
extensive interviews, our sample size was still relatively small with
only eight pilots. Moreover, we only had participants from Ger-
man airlines. This might have an influence, as there are regional
differences in pilots’ working culture, e.g. in how stringently pilots
adhere to procedures or howwillingly first officers speak up against
their captain [28]. Furthermore, as the interviews were based on
demonstrations of click dummy prototypes, pilots were not able
to test our concepts. This led to contradictory opinions, e.g. about
which concept would be more efficient under time pressure. Our
work serves as an exploration of possible design opportunities and
requirements which have to be evaluated empirically in future
work.

6 SUMMARY AND OUTLOOK
We designed and confronted pilots with two low-fidelity proto-
types to explore how an intelligent system might support highly
complex diversion decisions. We found that there are more oppor-
tunities to support pilots than just suggesting diversion options,
e.g. supporting their need to always maintain situation awareness,
also during normal flight. As for design requirements, we suggest
that a useful lens is how pilots can appropriate the intelligent sys-
tem for their decision-making. Appropriation might not only be
enabled by transparency, but also through directability and contin-
uous support. We see our results as a call for future research on
intelligent decision support tools to expand the view beyond trust
calibration at the actual point of decision. This likely requires more
investigations of real-world decision environments to understand
how decision-making goes beyond an isolated selection between
options.
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