
HandSense - Discriminating Different Ways of Grasping
and Holding a Tangible User Interface

Raphael Wimmer
University of Munich

Amalienstr. 17
80333 Munich, Germany

raphael.wimmer@ifi.lmu.de

Sebastian Boring
University of Munich

Amalienstr. 17
80333 Munich, Germany

sebastian.boring@ifi.lmu.de

ABSTRACT
As mobile and tangible devices are getting smaller and smal-
ler it is desirable to extend the interaction area to their whole
surface area. The HandSense prototype employs capacitive
sensors for detecting when it is touched or held against a
body part. HandSense is also able to detect in which hand
the device is held, and how. The general properties of our
approach were confirmed by a user study. HandSense was
able to correctly classify over 80 percent of all touches, dis-
criminating six different ways of touching the device (hold
left/right, pick up left/right, pick up at top/bottom). This in-
formation can be used to implement or enhance implicit and
explicit interaction with mobile phones and other tangible
user interfaces. For example, graphical user interfaces can
be adjusted to the user’s handedness.

Author Keywords
touch, grasp, capacitive sensing, sensors, input devices, han-
dedness

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces

INTRODUCTION
As mobile and tangible devices are getting smaller and smal-
ler it is desirable to extend the interaction area to their whole
surface area. This can be done by making the surface touch
sensitive. However, the shape of most devices does not facili-
tate complex interaction like 2D pointing - PDAs and tablet
PCs being an exception. For small tangible user interfaces
(TUIs) and mobile devices, the usable surface area often is
required for holding the device, not allowing further inter-
action with it. However, the way of holding or grasping a
device can also be used to - implicitly or explicitly - convey
information. Taking into account the posture of the user’s
hand increases the expressiveness of interaction. The most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TEI 2009, February 16 - 18, 2009, Cambridge, UK.
Copyright 2009 ACM $5.00.

obvious parameter is the pressure with which the object is
held. The contact areas at which an object is touched and
the amount of fingers used for grasping an object can also
provide information. Another hint is whether the object is
held between fingers or in the palm. Finally, the information
which hand is holding the object - left or right - can be useful
for explicit or implicit interaction. All of these parameters
can be utilized in the design of touch-based user interfaces.

Figure 1. HandSense is able to determine whether a device is held in
the left or right hand by measuring the capacitance to each side. As
the ball of the thumb is thicker than the fingers, it causes higher sensor
readings.

Our HandSense prototype (Figure 1) employs capacitive
sensors for detecting when it is touched, squeezed, or held
against a body part. HandSense is also able to detect in which
hand the device is held, and how. As touching and squeezing
has already been discussed in prior work [2, 6], we descri-
be how capacitive sensors can be used for detecting a user’s
handedness and the way she is holding an object. We have
verified the feasibility of our approach with a user study. Ad-
ditionally, we provide examples of applications that can be
enhanced by grasp and handedness detection.

SENSING TOUCH AND PROXIMITY
Detecting touch and using it for interaction with mobile de-
vices has been researched for quite some time. Most related
work focuses on mobile devices with a display, like PDAs
or mobile phones. Harrison et al. [2] were able to detect
in which hand a user held a tablet computer by embedding
pressure sensors in its back cover. When holding the device
with her left hand the user triggered only sensors on the left

1

edge and vice versa. This approach only works for devices
that are held on different sides depending on which hand is
used. For palm-sized devices pressure sensors can only de-
tect squeezing, not handedness. Wigdor et al [5] double the
interaction area of a PDA by making its back touch sensi-
tive. The prototype uses a video camera behind the PDA to
simulate this. When holding the PDA with both hands, all
fingers except the thumbs are on the back of the PDA and
can be used for manipulating screen content. This effective-
ly reduces screen occlusion. Hinckley et al. [3] embedded
an infrared proximity sensor, a capacitive touch sensor, and
a tilt sensor into a PDA. These were used for several expli-
cit interactions like scrolling text on the screen Mäntyjärvi
et al. [4] measured impedance of the object touching a mo-
bile phone using two conductive pads embedded into one
side of the phone. They were able to distinguish a human
hand from wet cotton fabric touching the sensors. Impedance
measurements require electrical contact between sensor and
touching object. Butler et al. [1] use an array of miniature
infrared range finders embedded into the sides of a smart-
phone for tracking fingers in proximity. They mainly explo-
re multi-touch gestures which require the phone to be put
on a surface. However, such sensors could also detect grasp
patterns.

Capacitive sensors are very sensitive to human tissue or other
conductive objects. They are not particularily sensitive to
furniture, plastics, or fabric. The sensors can be embedded
inside casings as they do not need a line of sight or contact.
Capacitive sensors are capable of sensing proximity up to a
range of several inches, depending on antenna size. A major
challenge when using capacitive sensors is the ambiguous
data they provide. The same change in sensor readings can
be effected by an object moving closer, by an additional ob-
ject coming within sensor range, or by a shape change (like
making a fist). A unique feature of capacitive sensors is that
they can be used to estimate the thickness of an object in clo-
se proximity if distance, size, and electrical properties are
known. However, controlling those parameters is difficult.
But if two objects with identical electrical properties are at
the same distance to a sensor and cover the same amount
of the sensor area, the thickness of the objects can be com-
pared. The thicker object will cause higher sensor readings
than the thinner one. We utilize this effect for determining
whether a capacitive sensor is covered by fingers or the ball
of the thumb. As the ball of the thumb is distinctly thicker
than the fingers, it causes higher sensor readings than the-
se. Putting sensors on opposite sides of a palm-sized TUI
allows for determining which side of the object faces the fin-
gers, and which side faces the ball of the thumb. Putting the
sensors on opposite sides also ensures that the pressure ap-
plied towards the sensors is the same for both sensors if the
object is held in the palm. This is necessary to maintain the
same distance between tissue and sensor. As the position of
fingers and ball of the thumb are inverted between left and
right hand, the TUI can thus infer, in which hand it is held.

HANDSENSE PROTOTYPE

For our prototype implementation we used CapToolKit [6],
an open-source capacitive sensing toolkit1. The sensors - ba-
sed on 555 timer ICs - are connected to a CapBoard control-
ler. The CapBoard controls the sensors and filters their rea-
dings. CapToolKit has two advantages over most commer-
cial capacitive sensors: it outputs high-resolution proximity
data, and its sensors employ a guard electrode for actively
shielding the antenna. The HandSense prototype (Figure 1)
is a plastics box about the size of a mobile phone (100 x 50
x 25 mm). It contains four capacitive sensors. We installed
two sensors on each of the 100x25 mm sides. When holding
the device in one’s palm one pair of sensors faces thumb and
wrist, the other pair faces the four fingers. Each sensor has an
antenna measuring 30x15 mm, made of a tin sheet. Sensors
are actively shielded by guard electrodes wrapping the an-
tennas on three sides. This focuses the direction of the elec-
tric field, reducing noise and improving sensitivity. Due to
space limitations we omitted sensors for the top and bottom
sides, as well as for the small sides on the upper and lower
end of the box. The four sensors are connected to the external
CapBoard controller and sampled at 25 Hz. The CapBoard
is connected to a host PC via USB. A Python program on the
host PC analyzes and visualizes the sensor readings. It em-
ploys the CapToolKit Python API for communication with
the CapBoard and PyGame for displaying the recognized
state. We use the default settings for CapBoard, only disab-
ling “stuck channel detection”. This filter would reset sensor
readings for a channel if they stayed the same for several
seconds. As our participants should hold the prototype for
some seconds, the filter might interfere with our detection
algorithms. Additionally, we normalize all sensor readings
to [0.0;1.0]. This is necessary because the sensors have dif-
ferent sensitivity and therefore different maximum readings.
Calibration is done once when the system is turned on by
covering all sensors tightly, effecting maximum sensor rea-
dings for each channel. Different levels of normalized sensor
readings are mapped to different states as follows:
No Proximity (0.0 - 0.03) - sensor readings are very low. No
body part is within sensor range.
Near (0.03 - 0.2) - sensor is near a body part but not tou-
ching it.
On Hand (0.2 - 0.5) - sensor is very close to a body part but
not covered by it.
Gripped (0.5 - 0.85) - sensor is partially covered by a body
part.
Held (0.85 - 1.0) - sensor is completely covered by body
part.
Using these levels our prototype can distinguish 6 different
grasping states (Figure 2). Additionally, it can detect whe-
ther the device is in a pocket or lies on a table. The levels
and the following heuristics are based on initial assumptions
and tuned by trial and error.

On Table. If all sensor readings are below 0.03 no hand is in
proximity. It is assumed that the device is lying somewhere,
for example on a table.
In pocket. If all sensor readings are within the “Near” range
the device might be in a pocket.
On hand. If all readings are within the “On Hand” range,
1current version available at www.capsense.org

2

Figure 2. HandSense can distinguish six different ways of grasping a
device. From left to right: hold up, pull out, grasp right, grasp left,
hold left, hold right.

the device is probably lying on a hand or other body part.
Grasped with left/right hand. If all sensors but the sensor
in the lower right side are within the “Gripped” range, the
device is probably being grasped with the left hand. If only
the sensor in the lower left is not within this range, the devi-
ce is being grasped with the right hand.
Grasped at top/bottom. If only the readings of sensors at
the upper or lower side of the device are in the “Gripped”
range, the device is probably held with two fingers at the top
or bottom end. Sensor readings do not allow for reliable dis-
crimination of left and right hand.
Held in left/right hand. If all sensors readings are in the
“Held” range, the device is probably held tightly in a hand.
If the sensor reading at the lower left is greater than that on
the lower right, and if the sum of sensor readings on the left
side is greater than the sum of sensor readings on the right
side, then the device is probably held in the left hand. This
heuristic also applies for determining if the right hand is hol-
ding the device.

When picking up a device or moving it between hands, sen-
sor readings can change drastically. In order to avoid false
detection of grasp states the algorithm only outputs a guess
if the same state has been recognized five times in a row.
We observed a reaction time of about 600 - 700 ms for a
successful detection of grasping state. The detected grasping
state is shown by a simple on-screen illustration.

USER STUDY
We conducted a preliminary user study using a repeated
measures within-subject factorial design. We recruited six
volunteers (one of them was female) from our institution
ranging in age from 26 to 28 years (average age was 27.2).
None of them had any experience with the prototype befo-
rehand. Two of the participants were left-handed, the remai-
ning four were right-handed.

The goal of the study was to determine the error rate of our
detection algorithm as well as the detection speed. Additio-
nally, we wanted to find possible sources of erroneous de-
tection in order to improve the sensor layout and algorithms.
As we anticipate such interactions to be conducted regular-
ly with one’s own private phone or TUI we gave all users
a short introduction and training oppportunity. Users were
asked to perform certain grasping actions instead of letting
them choose one.

The task was to pick up the prototype from a table and grasp
or hold it in one of the six ways our algorithm discriminates.
Users had to perform each of the six actions ten times (in a

randomized order) leading to 60 data points per user and a
total number of 360 data points. Before the actual test each
participant passed a training session which included five oc-
curences for each grasping method. The way the user had to
grasp the prototype was indicated by an icon on the screen.
Participants were asked to switch from one way of grasping
the prototype to the next one without putting the device back
onto the table. This behavior mirrors real-world usage more
accurately. We assume that the error rate is not lower than
it would be if participants place the prototype on the table
before starting a subsequent task. If a grasping method was
recognized in a wrong way it has been counted as error. An
error was also logged if no grasping method was recogni-
zed within three seconds. This time was measured manually,
starting when the participant seemed to hold the prototype in
the specified way.

Figure 3. Average error rate for the six grasping methods with 95 per-
cent confidence intervals.

In our study we didn’t find any significant main effects for
the grasping methods indicating that all of them work with
a similar performance (see Figure 3). However, by contrast
analysis we identified that the two grasping methods pull out
and hold up had a significantly better performance (i.e. lower
error rate) than hold right and grasp left (F1,5=7.353, p=.42
and F1,5=6.809, p=.48 respectively). The other two methods
(i.e. hold left and grasp right) were close to have a signifi-
cant difference. This indicates that detecting two fingers at
a certain position denoting holding the tool up or pulling it
out of a pocket seems to be easily detectable by our hard-
and software. While the false detection rate for some users
was very low, other users generated over 50 per cent false
detections.

APPLICATIONS
Getting reliable hints on the way a user holds a device can
offer an additional channel for interacting with it. Grip in-
formation can also enhance implicit and explicit interaction.
In the following we provide some examples for both areas.
Especially in the research area of Tangible User Interfaces
many novel hardware designs are emerging, exploring al-
ternative ways of interacting with data. Thus, it is difficult
to suggest specific enhancements that could be made using
grasp-sensing surfaces. Therefore we focus our examples on
well-known tangible devices like mobile phones, PDAs, and
input devices. We see three main application areas of grasp

3

information: inferring meaning from different ways to hold
an object, adjusting the user interface to the user’s handed-
ness, and enhancing spatial information using the constraints
posed by grasp states and handedness.

Grasping States
The way a users hold a device can be utilized for implicit
or explicit interactions. An example for implicit interacti-
on would be a phone answering scenario. A mobile phone
equipped with grasp sensors would be aware of being in its
owner’s pocket instead of lying around somewhere. Accor-
dingly, an incoming call would first be signalled by vibrati-
on, only after some time by a ring tone. Once the user starts
pulling out the phone from his pocket, this signals that he is
aware of the incoming call. Ring tone volume is turned down
in order to not disturb nearby people. When the user holds
the phone in his hand the display lights up so he can see who
is calling him. If he decides not to answer the call he can put
the phone back into his pocket where it silences. In order to
answer the call he just holds the phone to his ear.

Implicit grasp information can also be used to change the
behavior of a TUI depending on way it is held. For example,
an interactive toy could detect whether an adult’s or a child-
ren’s hand touches it, presenting different tasks to them. A
user could also indicate if she wants to use an input device
for fine or coarse control by grasping it only with thumb and
index finger or with the whole hand.

Handedness
Detecting handedness of a user allows adjusting the user in-
terface accordingly. The most obvious enhancement would
be to arrange GUI widgets on a screen so that the user does
not cover important screen areas when interacting with it
using his hand or stylus [2]. Similarily, re-mapping hardware
buttons can enhance input devices. For example, an adapti-
ve mouse could automatically adjust its button mapping for
right and left hands. Input devices could also have different
functions depending on the hand they are used with. Some
devices might even mechanically adjust themselves to their
user’s hand.

Spatial Hints
Another way to exploit grasp and handedness information
is to infer spatial hints from them. Often this information
can be used to enhance other sensor data. For example, if
a mobile phone is held in the left hand and accelerometer
data shows that gravity is towards the phone’s left side, it
can be inferred that the user holds his phone up into the air.
Proximity sensors can also tell a device whether it is held
close to the body or not. When handedness and the way a
user holds a device are known, it is possible for a device
to determine its position relative to him. This makes certain
gestures like tilting toward/away from the user possible.

DISCUSSION
The user study showed that users hold the device in entirely
different ways. This makes it hard to distinguish grasp states
across different users. One way to counter this effect could
be to make affordances for holding a device - for example

designating possible grasping points by small depressions in
the surface. During the user study we saw a learning effect.
However, the study was too short to confirm it. Essentially
it is not desirable that users learn how to correctly hold a
grasp-sensitive device. The better solution is for the device
to correctly recognize implicit ways of grasping it. Howe-
ver, HandSense is a proof of the feasibility of that concept.
We plan to investigate the different ways users intuitively
hold a device in the future. The next steps from a technical
standpoint will be to decrease sensor size and embed mo-
re sensors into a tangible UI. Additionally, we will improve
heuristics and increase antenna size to cover more different
ways of grasping the device. This should als reduce error ra-
tes as many false detections seem to be caused by slightly
’wrong’ finger positions.

CONCLUSION
We have presented a technique for detecting how the user
holds a device. This information can be used to enhance exi-
sting user interfaces but also for designing new implicit and
explicit interactions. Our study suggests that handedness de-
tection generally works with four capacitive sensors. For re-
liably discriminating different grasping methods more sen-
sors are needed to cater for differences in finger position
between users. We are convinced that distinguishing diffe-
rent grasping methods is possible and useful.

REFERENCES
1. A. Butler, S. Izadi, and S. Hodges. Sidesight:

multi-touchı̈nteraction around small devices. In
Proceedings of UIST ’08, pages 201–204, New York,
NY, USA, 2008. ACM.

2. B. L. Harrison, K. P. Fishkin, A. Gujar, C. Mochon, and
R. Want. Squeeze me, hold me, tilt me! an exploration of
manipulative user interfaces. In Proceedings of CHI ’98,
pages 17–24, New York, NY, USA, 1998. ACM
Press/Addison-Wesley Publishing Co.

3. K. Hinckley, J. Pierce, M. Sinclair, and E. Horvitz.
Sensing techniques for mobile interaction. In
Proceedings of UIST ’00, pages 91–100. ACM New
York, NY, USA, 2000.

4. J. Mäntyjärvi, K. Nybergh, J. Himberg, and K. Hjelt.
Touch Detection System for Mobile Terminals. In
Proceedings of MobileHCI ’05. Springer, 2004.

5. D. Wigdor, C. Forlines, P. Baudisch, J. Barnwell, and
C. Shen. Lucid touch: a see-through mobile device. In
Proceedings of UIST ’07, pages 269–278, New York,
NY, USA, 2007. ACM.

6. R. Wimmer, M. Kranz, S. Boring, and A. Schmidt. A
Capacitive Sensing Toolkit for Pervasive Activity
Detection and Recognition. In PerCom ’07, Mar. 2007.

4

	Introduction
	Sensing Touch and Proximity
	HandSense Prototype
	User Study
	Applications
	Discussion
	Conclusion
	REFERENCES

