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Conductive Fiducial Tangibles for Everyone: A Data
Simulation-Based Toolkit Using Deep Learning

BENEDICT STEUERLEIN, University of Stuttgart, Germany

SVEN MAYER, LMU Munich, Germany

Fig. 1. AMinecraft-inspired Dungeons &Dragons game using our recognizer model to determine the character

placed on the screen. On the lower left, we show the corresponding capacitive image.

While tangibles enrich the interaction with touchscreens, with projected capacitive screens being mainstream,

the recognition possibilities of tangibles are nearly lost. Deep learning approaches to improve the recognition

of conductive triangles require collecting huge amounts of data and domain-specific knowledge for hyperpa-

rameter tuning. To overcome this drawback, we present a toolkit that allows everyone to train a deep learning

tangible recognizer based on simulated data. Our toolkit uses a pre-trained Generative Adversarial Network

to simulate the imprint of fiducial tangibles, which we then use to train a deployable recognizer based on our

pre-defined neuronal network architecture. Our evaluation shows that our approach can recognize fiducial

tangibles such as AprilTags with an average accuracy of 99.3% and an average rotation error of only 4.9◦.
Thus, our toolkit is a plug-and-play solution requiring no domain knowledge and no data collection but allows

designers to use deep learning approaches in their design process.
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1 INTRODUCTION
Tangibles have long been shown to enrich the interaction between humans and computers. On

the other hand, direct input using touchscreens is the dominant way for most people to interact

with their devices. Combining tangible interaction and touch input into a single interface is a

long-standing challenge. While first-generation tabletops were able to detect fingers and tangibles

using camera systems, they were bulky and, thus, have basically been fully replaced by projective-

capacitive touchscreens [7, 61]. Over the last years, capacitive sensors have evolved from tracking

only the fingertip to multi-purpose sensing devices, e.g., [13, 17, 29]. Hence, the software stack of

today’s touchscreens is fine-tuned to extract fingers touching a screen from the low-resolution

“capacitive image,” making them incapable of recognizing structural information needed to detect

tangibles placed on them. However, the sensor itself picks up on some of the structural information,

which must, therefore, be present in the capacitive image.

Bringing back conductive tangibles to capacitive touchscreens is an unsolved challenge [40, 47, 58].

The most promising approach to make use of the capacitive image is to use deep neural networks to

extract the information, e.g., [31, 39, 47]. Here, the capacitive image is passed into a model to extract

higher-level information from it. However, training supervised deep neural networks requires a lot

of application-specific training data, cf. [15, 18, 21, 26]. In the human-computer interaction (HCI)

domain, data collected in user studies are used to train a recognizer, which is time-consuming and

allows only to train one application-specific model, cf. [31, 47, 51]. Thus, today designers lack the

flexibility to design for their use-cases and are required to train deep neural networks.

The aim of our toolkit is to overcome the time-consuming data collection needed to train a deep

learning conductive fiducial recognizer and to allow machine learning (ML) novices to recognize

their newly designed fiducial markers on touchscreens. For great usability with a low entry barrier,

our toolkit uses the 2D imprint of fiducial markers as input to generate simulated imprints to

train a recognizer model. The final model can be directly deployed on a touch device. For this,

we use a simulator network to generate capacitive images from the 2D sketches. As a simulator
network, we use a conditional Generative Adversarial Network (cGAN) [41], a technique used

already for image generation, e.g., Tonolini et al. [53]. This allows generating images that represent

the hypothetical imprint of a conductive tangible and, therefore, replacing the data collection study

needed in prior work. While a data collection study becomes obsolete with the uses of the simulator
network, designers of fiducial tangibles would still need to train a domain-specific recognizer using

the generated data, e.g., Schmitz et al. [47]. To also overcome this issue, we present a second

deep learning network to finally also recognize fiducial tangibles using our general recognizer
architecture. For this, we used the simulator network as a pre-trained model to simulate data and

train the recognizers tailored to the designer’s needs. Thus, train a domain-specific recognizer

without data collation study and deep learning knowledge.

With this paper, we present a toolkit allowing everyone to train their own conductive fiducial

tangible recognizer. We make the first step toward a simulator network to simulate capacitive data.

We show that we can train a simulator network to generate the capacitive imprint of fiducial markers

(e.g., AprilTags) placed on projective-capacitive touchscreens. We show that our simulator network,
trained only on 10 different marker templates in 3 pitch sizes, is sufficient to generate an arbitrary

fiducial tangible imprint, giving designers full flexibility to shape their products. On our test dataset,

the simulator achieves a mean pixel error of 7.6. We further show that our recognizer architecture

can be used in various settings using AprilTags with an accuracy > 93% (M = 99.3%, SD = .9%) and

average rotation errors of only 4.9◦ (SD = 7.5◦) without additional hyperparameter tuning when a

fiducial recognizer. Our toolkit, comprising the pre-trained model and the recognizer architecture,

allows ML novices, e.g., designers, to effectively design, train, and deploy deep learning fiducial
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tangible recognizers on today’s touchscreens, which was previously not possible. Thus, we allow

designers to create various 2D fiducial imprints, and, in return, they will get a ready-to-deploy

model. Finally, we showcase the potential of our toolkit by presenting a set of applications.

2 RELATEDWORK
We review three important areas to enable everyone to build their own deep learning recognizer

for conductive fiducial markers. First, we review important work in the domain of tangible user

interfaces, highlighting the importance of object tracking on today’s capacitive screens. Second, we

review the work of capacitive sensing upon which we will build. Lastly, we review deep learning

approaches, especially GANs, enabling us to simulate capacitive data.

2.1 Tangible User Interfaces
Many of the early on-screen tangibles utilize the technologies used back in the 2000s in the tabletop

systems, which were infrared-based and even RGB camera-based. Both were not fine-tuned to

primarily track finger touches; additionally, they had high resolution, which is beneficial to track an

object’s imprint on the screen either through visual markers (e.g., Kaltenbrunner and Bencina [23])

or object contours (e.g., Wilson and Sarin [66]). This enabled a seamless integration of Tangible

User Interfaces (TUIs), e.g., [5, 6, 20, 43, 54–56]. Such approaches include using the Touch API of

the smartphone to detect markers, e.g., [9, 70]. However, these are all limited by low information

density per TUI; otherwise, the controller detects them as one single touch. On the other hand,

with projected capacitive screens being the dominant sending capability of touchscreens tracking,

TUIs are also feasible on mobile devices, e.g., [40, 47].

The main challenges with these systems were not the accuracy and performance but portability.

The camera projector setups were overall bulky and with the low-resolution capacitive touchscreen

becoming mainstream for finger tracking, tabletops also moved toward small capacitive sensing

technologies. However, this diminished the possibility of tracking the imprint of tangibles placed

on the screen accurately. Until today, researchers struggle to bring back the plentiful interaction

possibilities we have seen on the early tabletops. Over the last decade, a wide range of projects have

attempted to bring the tracking capabilities back. As the capacitive sensor is tuned toward finger

detection, detecting multiple pin-like markers can also be done at low cost for both the recognition

and tangible production, cf. [65, 67]. Other approaches have used low-density passive conductive

fiducials [3, 14, 25, 34, 48, 58, 59] and contour recognition [57, 68], both in close alignment with

the approaches for infrared and RGB tracking.

Today, we can manufacture conductive fiducial tangibles with a 3D printer using conductive

materials, e.g., [11, 12, 24]. However, their information density is mostly very low. In an effort to

improve recognition, Mayer et al. [40] proposed a geometric super-resolution approach to overcome

the limitations of the low-resolution capacitive sensor to detect fiducial markers by multi-stacking

multiple frames. Moreover, Schmitz et al. [47] proposed a deep learning model for use-case-specific

fiducial recognition. Both approaches help restore conductive fiducial tangibles to today’s capacitive

screens.

2.2 Extended Capacitive Touch Sensing
Capacitive sensing in HCI is generally nothing new, cf. Grosse-Puppendahl et al. [10]; however, in

recent years, we have seen an increase in performance, especially due to deep learning techniques

and the use of raw capacitive images. In the simplest case, the raw capacitive image is used to

improve the touch location [27, 51]. Various authors have investigated possibilities to extend the

input space for fingers and hands to be detected with more information than the simple x/y position

of the touch itself. The more prominent investigation is toward finger orientation [39, 42, 69],
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enabling a wide variety of interactions previously not possible. Other investigations track the finger

type [30], finger parts [49], or multi-finger gestures [29, 31].

Beyond improved finger identification, researchers have also envisioned detecting hand and

body parts. For instance, Le et al. [28] used the capacitive image to detect the palm of the hand.

Moreover, Holz et al. [17] pushed this idea to even recognize other body parts, such as the ear of

the user. Later, Guo et al. [13] used this idea to enable user identification. Recently, Choi et al. [4]

extended this idea to recover the full-hand posture using inverse kinematics based on the imprint

of the hand, enabling a wide range of interaction possibilities.

Lately, we have seen a trend toward restoring conductive tangibles to capacitive screens based

on the raw capacitive image, which contrasts tracking techniques used previously for TUIs as

described above. Here, Mayer et al. [40] presented a multi-frame super-resolution approach to

generate a higher resolution imprint of the tangible for improved recognition. Finally and most

aligned with this work, Schmitz et al. [47] presented a use-case-specific deep learning model to

recognize up to 30 tangible markers.

2.3 Networks for Sample Generation
In 2014, Goodfellow et al. [8] presented the idea of Generative Adversarial Networks (GANs) where

they showed the idea of two neural networks playing against each other in order to improve. Later,

Mirza and Osindero [41] introduced conditional Generative Adversarial Networks (cGAN), a special

type of GANs that allows controlling the output. In detail, with cGANs, developers can direct the

model to procure an output from a particular class based on the random vector itself. Influential for

the presented work is especially the Image-to-Image translation paper by Isola et al. [21]. They

presented a style transfer technique [63], turning one image into another while keeping the overall

structure the same but changing the visual appearance. Moreover, one promising application

domain for image-to-image translation GANs is synthesizing new, unseen data [2, 71], which is an

approach that we will focus on in the following.

In the HCI domain, Streli and Holz [51] implemented a Wasserstein GAN [1] to upsample low-

resolution capacitive images of finger touches to make adjacent touches more distinguishable.

Moreover, Murray-Smith et al. [42] used a Variational Autoencoder (VAE) for data generation

allowing them to forward model data, cf. Tonolini et al. [53]. However, to train their VAE, they

collect ground truth data using a data collection study to stabilize their models. This is in contrast

to the GAN approach by Streli and Holz [51], which, however, only works for fingers. Thus, we use

the variation of the GAN approach to achieve forward modeling. In detail, we use a cGAN [41] with

Encoder-Decoder structure, which allows us to be flexible and also to condition the data generation

toward a specific fiducial and, therefore, build a recognizer without any additional fiducial marker

collection study.

3 METHOD
Assuming a trained recognizer network (𝑅), we can simply deploy 𝑅 to a touch device and recognize

the element and even the rotation or size with which it is placed on the screen, see Figure 2c. We

propose training a simulator network to generate samples with the same data characteristics, see

Figure 2a. The simulator network can then be used to generate arbitrary fiducial tangible imprints.

This output can then be used to train a recognizer model, see Figure 2b. The trained recognizer can

then be deployed and used for inference in interactive scenarios on touchscreen devices, Figure 2c.

Such a framework has already been applied successfully in other domains such as human face

generation [53].

In detail, the goal is to simulate capacitive images based on the shape and form of the fiducial

marker (Template, see Figure 2) using a simulator network, and then train a recognizer network based
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Fig. 2. Architecture of our (a) simulator network, the training process of our recognizer network (b), and the

used recognizer 𝑅 in a deployed state (c).

on simulated data. As a simulator network, we propose using a conditional Generative Adversarial

Network (cGAN) [41] to condition the output to reflect the different classes of which the recognizer

𝑅 should later on classify. A cGAN itself consists of two components, a generator 𝐺 to generate

data and a discriminator 𝐷 , which judges if the quality of the simulated data is good. 𝐷 is only used

during the adversarial training of the two components. 𝐺 is well trained if 𝐷 cannot distinguish

between fake and real images, see Figure 2a. The generator𝐺 can then be used to simulate capacitive

data. If 𝐺 generalizes, then it can be used to train 𝑅 solely on simulated data; thus, not needing a

data collection study.

From a practical point of view, a designer or developer envisions a Marker Set (𝑀) consisting of

a number of templates 𝑥𝑡 for their fiducial tangible application. Then a developer needs 𝑅 to deploy

in a real application and give the marker class as well as the orientation on the screen. Thus, 𝑅 is a

mapping 𝑅(𝑥𝑠 ) → 𝑦𝑐 , 𝑦𝑎 . To train 𝑅, we used capacitive simulated data 𝑦𝑔 with various orientations

obtained from𝐺 . To train the initial simulator network (consisting of𝐺 and 𝐷), we need paired data

of templates 𝑥𝑡 and capacitive recordings of the template 𝑥𝑐 . Pair data {𝑥𝑡 , 𝑥𝑐 } need to be recorded

only once to train the models G and D. Based on this, we can train the simulator network to generate
a new sample 𝑦𝑔; thus, G is a mapping 𝐺 (𝑥𝑡 ) → 𝑦𝑔.

3.1 Simulator Network
A traditional Generative Adversarial Network (GAN) [8] does not allow us to condition the output

based on the Templates (𝑥𝑡 ) given by theMarker Set (𝑀). However, a cGAN [41] allows to condition

the output not on a random vector 𝑟 but based on a given input. Thus, this is a mapping:𝐺{𝑥, 𝑟 } →
𝑦𝑔, see Figure 2a. On the other hand, 𝐷 is trained to determine if the ground truth image 𝑥𝑐 or the

newly generated image 𝑦𝑔 is fake.

3.1.1 Simulator Network Objective Function. During our training process of the cGAN, the dis-

criminator 𝐷 tries to detect if an image is a fake image (simulated image) or a real image. On

the other hand, the generator 𝐺 wants to produce better quality images. Traditional GANs and

various cGANs use a noise vector 𝑧 to produce output that is not deterministic [63]. However,

often the model is able to learn to ignore the noise [21, 38]. One common approach to overcome

this issue is to embed Dropout layers [50] into the model structure during training to generate

non-deterministic output, which will allow the generation of a wider range of outputs [21], in

our case, simulated conductive markers 𝑥𝑔. As we do replace the typical noise vector 𝑧 with the

Dropout layer, our adversarial loss 𝐿𝑐𝐺𝐴𝑁 (𝐺, 𝐷) can be described as the following:

L𝑐𝐺𝐴𝑁 (𝐺, 𝐷) = E𝑥𝑡 ,𝑥𝑐 [log𝐷 (𝑥𝑡 , 𝑥𝑐 )] + E𝑥𝑡 [log(1 − 𝐷 (𝑥𝑡 ,𝐺 (𝑥𝑡 ))] . (1)

Moreover, prior work has shown that it is beneficial to not only rely on the discriminator loss but

also on the traditional loss [21], e.g., L1 loss. Thus, we add the L1 loss (pixel-wise loss) of𝐺 , defined
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as:

L𝐿1 (𝐺) = E𝑥𝑡 ,𝑥𝑐 [∥𝑥𝑐 −𝐺 (𝑥𝑡 )∥1] (2)

to the initial objective function with a weighting parameter 𝜆. This results in the final objective

function:

𝐺∗ = arg min

𝐺
max

𝐷
L𝑐𝐺𝐴𝑁 (𝐺,𝐷) + 𝜆 ∗ L𝐿1 (𝐺). (3)

3.1.2 Generator Network Architecture. The objective of our model can be described as a style

transfer objective. Borrowing techniques from style transfer models, such as Pix2Pix [21], we use

a special Encoder-Decoder network [16] with skip connections called U-Net [46], allowing us to

keep any input shape given by the Template. However, when feeding it through the generator

𝐺 , the model will add the characteristics of the low-resolution capacitive sensor, thus applying

the style transfer. Encoder-Decoder networks [16] downsample the image into a latent space (a

representation of the input in a lower-dimensional space). From the latent space, the network then

upsamples the data while adding the "new style" – the characteristics of the sensor. To not only rely

on the information in the latent space, skip connections between the layers can be added, referred

to as U-Net [46]. This generally has been shown to yield better results, cf. Isola et al. [21]. Figure 2a

presents the final network architecture.

3.1.3 Discriminator Network Architecture. The overall structure of our discriminator is shown in

Figure 2b. Generally, the model is a simple Convolutional Neural Network (CNN) combined with

a batch norm [19]. To counteract blurry images, we use a Markovian discriminator (PatchGAN),

which has been shown to counteract blurry images by model design [21, 32]. This affects the output

layer of the model returning 𝑁 × 𝑁 patches. Moreover, PatchGANs have fewer parameters and,

therefore, are faster to train and run.

3.2 Recognizer Network
Our recognizer is a traditional CNN model which based on a capacitive sample 𝑥𝑠 predicts the class

𝑦𝑐 and the orientation 𝑦𝑎 ; thus, 𝑅(𝑥𝑠 ) → 𝑦𝑐 , 𝑦𝑎 . Such a model is common in processing capacitive

images, e.g., [27, 29, 47, 49].

The output for the class prediction 𝑦𝑐 is a 𝑛 long vector, representing the one-hot notion of the 𝑛

classes for the different models a designer can envision. We predict the sine and cosine components

(𝑦𝑠𝑖𝑛 and 𝑦𝑐𝑜𝑠 ) of the angle 𝑦𝑎 for better performance as suggested by White [64]. While this is

similar to Schmitz et al. [47], however, they only calculated the components post-prediction. Thus,

we calculate the orientation angle 𝑎 based on: 𝑎 = 𝑎𝑡𝑎𝑛2(𝑦𝑠𝑖𝑛, 𝑦𝑐𝑜𝑠 ).

3.2.1 Loss Function. For our rotational regression branch, the network tries to minimize the error

between𝑦𝑎 and𝑦𝑎 by minimizing the root-mean-square error (RMSE)L𝐴𝑛𝑔𝑙𝑒 . In detail, we minimize

the distance between the two components 𝑦𝑠𝑖𝑛 − 𝑦𝑠𝑖𝑛 and 𝑦𝑐𝑜𝑠 − 𝑦𝑐𝑜𝑠 , in the following manner:

L𝐴𝑛𝑔𝑙𝑒 (𝑅) =

√√√
1

𝑏

𝑏∑
𝑖=1

(0.5 ∗ ((𝑦𝑠𝑖𝑛,𝑖 − 𝑦𝑠𝑖𝑛,𝑖 )2 + (𝑦𝑐𝑜𝑠,𝑖 − 𝑦𝑐𝑜𝑠,𝑖 )2)), (4)

where 𝑦𝑠𝑖𝑛 and 𝑦𝑐𝑜𝑠 are the ground trough angles of any input 𝑥𝑠 and 𝑏 is the batch size. The loss

for our class output branch is the multi-class cross-entropy loss L𝐶𝑙𝑎𝑠𝑠 . The final objective of our

recognizer is described by

𝑅∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑅

L𝐴𝑛𝑔𝑙𝑒 (𝑅) + L𝐶𝑙𝑎𝑠𝑠 (𝑅). (5)
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Fig. 3. Structures of our three deep neuronal models.

4 MODEL TRAINING
While our Simulator Network only needs to be trained once, we need a small dataset first. Thus, we

first collect data to train the Simulator Network using AprilTag markers [62] and a larger set to train

and test various recognizer models. Only then can we perform pre-processing, data augmentation,

and hyperparameter tuning.

4.1 Data Collection
To train and test our models, we fabricated a wide range of fiducial markers, cf. Figure 4. We

recorded 2 Types of markers, 36h11 AprilTags and 16h5 AprilTags, each with 3 different pitch Sizes

per pixel (4, 6, and 8 mm), resulting in 6 different sizes: 16h5 AprilTags with 24, 36, and 48 mm tag

width, and 36h11 AprilTags with 32, 48, and 64 mm tag width (see Figure 4). For each combination,

we recorded 15 markers, resulting in 2 × 3 × 15 = 90 markers. For generalization purposes, we

also recorded 10 different custom shapes, see Figure 5a. Each custom shape was fabricated with 3

Widths (8, 12, and 16 mm), resulting in 30 additional markers. We made all markers from aluminum

foil glued onto of a 4 mm high foam board. For capacitive sensing, we added a ∼ 1cm wide tap that

has to be touched (3D-printed markers will include them in the core of the print, e.g., [37, 47]).

For data collection, we use a Samsung Galaxy Tab S2 tablet (9.7") lying flat on a table and plugged

into the recording PC. The tablet has 49 × 37 capacitive pixels (6.33PPI, 4.0127 mm dot-pitch).

Commercial devices rarely expose the capacitive image via a public API. Thus, we deployed a

custom kernel driver to directly communicate with the Synaptics touch controller via 𝐼 2𝐶 as done

many times before [27, 29, 40]. Here, we achieve a frame rate of ∼ 9FPS (∼ 110 ms per frame). In

line with prior work, e.g., [39, 47], we used an optical motion capture system (OptiTrack-V120:Trio

recording at 120 Hz) with millimeter accuracy to record the orientation of the marker. Using three

markers attached to a custom apparatus, we were able to track the orientation of the tangibles

relative to the tablet.

During our data collection, we recorded a total of 448,261 capacitive frames over the course of

13 h and 41 min. We recorded each marker for an average duration of 6 min 51 s (SD = 33 s).

4.2 Pre-Processing & Data Augmentation
While we timestamped the capacitive images and ground truth orientation of the fiducial markers

gained from OptiTrack, the system has a latency of 8.33 ms. Thus, we manually aligned sub-latency

shifts by visually inspecting the orientation and change of the capacitive image.

During pre-processing, we identified all capacitive blobs (an imprint of the fiducial marker) by

finding the contours [52] on a thresholded version of the capacitive image. Here, we removed

all images without any fiducial markers present. Next, we cropped a 32 × 32 patch around the

center of the blob. This allowed us to recognize fiducial markers with a diameter of up to 128 mm

(32 dots * 4.0127 mm dot-pitch). For data augmentation, we rotated each sample 3 times by 90
◦
,
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Fig. 4. Size comparison of the differently sized markers in our dataset.

resulting in 3 times the amount of initial data. Thus, we were left with 1, 699, 044 samples (655, 392

36h11 AprilTags, 640, 684 16h5 AprilTags, and 402, 968 shapes). Finally, we normalized the input

images between -1 and 1 to help the training process and to overcome different capacitive ground

conditions that affect the sensing as discussed in prior work, e.g., Choi et al. [4].

4.3 Datasets
We call the final set of data we obtained after our pre-processing and data augmentation step 𝐷𝑆

(see Section 4.2). The shape recording we put into a separate dataset 𝐷𝑆𝑆ℎ𝑎𝑝𝑒 . We use all 36h11

AprilTags and 16h5 AprilTags for training, validation, and testing. These markers we split into two

sets: one for the GAN training 𝐷𝑆𝐺𝐴𝑁 and one to train the recognizer 𝐷𝑆𝑅 . We split the data so

that one AprilTag is only in 𝐷𝑆𝐺𝐴𝑁 or 𝐷𝑆𝑅 . This guarantees no occurrence of overfitting between

the simulator network and the recognizer network. 𝐷𝑆𝐺𝐴𝑁 contained 5 different 36h11 ids and 5

different 16h5 ids each in 3 sizes. Therefore, the 𝐷𝑆𝑅 set contains the remaining 10 and 10 ids each

in 3 sizes, respectively.

Subsequently, the marker set 𝐷𝑆𝐺𝐴𝑁 was randomly split into training (𝐷𝑆𝑡𝑟𝑎𝑖𝑛
𝐺𝐴𝑁

) and validation

(𝐷𝑆𝑣𝑎𝑙
𝐺𝐴𝑁

) subsets using a 70% : 30% split (303, 565 : 130, 099 samples). While this could potentially

lead to overfitting, the latent space reduces the information to counteract overfitting. Moreover,

as 𝐷𝑆𝑅 does not contain the same markers, we argue that the simulator network has to generalize

beyond its seen 30 different markers for the recognizer to work with completely new markers. In

fact, the recognizer models will highlight any weakness of the simulator network and the recognizer
models will act as a test model with its unseen data 𝐷𝑆𝑅 set for testing.

As the recognizer models will only be trained on simulated data 𝑦𝑔, the set 𝐷𝑆𝑅 does not need to

be split. Thus, 100% (862,412 samples) of this set can be used to test the quality of the recognizer
models.

4.4 Simulator Network Training & Tuning
Overall, the simulator network structure is inspired by style transfer papers such as Isola et al. [21].

Combined with a trial-and-error method and hyperparameters tuning, we derived the following

model, which is beneficial for conductive fiducial simulation. The task of the generator network is

to generate 32× 32 capacitive images 𝑦𝑔 . While we initially aimed to generate 𝑦𝑔 based on a 32× 32

representation of the template 𝑥𝑡 , we found it beneficial to start with more information. Thus, the

generator expects a template to be four times the size of its low-resolution counterpart; therefore,

the input template 𝑥𝑡 has to be 128 × 128. To increase the variance of our training set 𝐷𝑆𝐺𝐴𝑁 , we

randomly shifted the samples 𝑥𝑐 by ±1 in both x and y directions, and 𝑥𝑡 is shifted by ±4 due to the
scaling.

4.4.1 Generator Model. Figure 3b represents the final model architecture of the generator network

with its 5,942,369 parameters. The model starts with a downsampling component as the input is
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Fig. 5. Image depicting the shapes used for testing the simulator network on generating shapes other than

AprilTag fiducials: (a) shapes used to generate 𝐷𝑆𝑆ℎ𝑎𝑝𝑒 and (b) shapes by Schmitz et al. [47].

larger than the output. The central component is an Encoder-Decoder network [16] with skip

connections called U-Net [46]. To avoid deterministic outputs of the model, we employ a Dropout

layer [50] after the latent space reduction. The model was trained with an Adam optimizer with a

learning rate of .0002 and momentum parameter 𝛽1 = .5, 𝛽2 = .999. We used a batch size of 128 to

train the model. The training time for the generator model was 66 hours on an Nvidia Tesla V100.

4.4.2 Discriminator Model. The final network architecture of the discriminator model is depicted

in Figure 3b with its 736,337 parameters. Here, each CNN layer is followed by a batch normalization

layer. All CNN layers use a 3 × 3 kernel. All CNN layers but the concatenate layer and output layer

use a stride of 2. The others use a stride of 1. As activation functions, we chose LeakyReLU [36]

for all layers but the output layer. The output layer, the PatchGAN output, uses a linear activation

function. All other layer parameters are set to standard. The model was trained with an Adam

optimizer with a learning rate of .0002 and momentum parameter 𝛽1 = .5, 𝛽2 = .999. We used a

batch size of 128 to train the model.

4.5 Recognizer Network Training & Tuning
The various recognizer models presented in the following are solely trained on generated capacitive

data gained from our generator network. In any marker set𝑀 , the markers are only represented with

one specific orientation; thus, for training, we rotate the input template 𝑥𝑡 round itself (1
◦
steps in

[0, 360)◦). Additionally, to increase the variation, we apply shifts on the input templates 𝑥𝑡 as we

did during GAN training (𝑥𝑡 is shifted by ±4 due to the scaling). Finally, to add even more variation

to the input for the recognizer, we added Perlin noise [44] to 𝑦𝑔 (the output of the generator).

We used the trial-and-error method combined with a smaller grid search for hyperparameters

tuning. The model was trained with an Adam optimizer with a learning rate of .001. We used a

batch size of 64 to train the model. However, we applied early stopping with a patience of 20;

however, maximally trained for 400 epochs. The training time for a single recognizer was between

.07 and 7.38 h on an Nvidia Tesla V100; however, the time is highly impacted by the class count (n
= 2 : .07 h, n = 10 : 1.17 h, n = 30 : 3.42 h, and n = 60 : 7.38 h).

5 EVALUATION
In the following, we present a series of evaluations showcasing our simulation tool’s accuracy

and the final recognizer quality. Here, for the simulator network, we use the unused dataset 𝐷𝑆𝑅 .

Moreover, we evaluate our approach on our shape markers 𝐷𝑆𝑆ℎ𝑎𝑝𝑒𝑠 and the shapes provided by

Schmitz et al. [47] for better external validity. Finally, we use the data recorded by Schmitz et al.

[47] on a Nexus 5 to showcase the quality when using a different device for deployment. This is of
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Fig. 6. Each column shows a geometrical template, a recorded capacitive blob, and a simulation result of the

respective geometric template: a) 16ℎ513,14 in 24, 36, and 48 mm width; b) 36ℎ1138,55 in 32, 48, and 64 mm

width; and c) 𝑆ℎ𝑎𝑝𝑒𝑐𝑖𝑟𝑐𝑙𝑒,𝑠𝑞𝑢𝑎𝑟𝑒 in 8, 12, and 16 mm width. These were not used for training the simulator

network.

special interest as the dot-pitch of the Nexus 5 is different: 4.1 mm instead of 4.022 mm. The overall

results are composited in Table 1. For all results, we provide a Random Forest baseline, see Table 1.

However, as in prior work, the baseline does not outperform our models, cf. [29, 47].

5.1 Simulator Network Evaluation
Our simulator model generates 2,048 images per second (0.000488 s per image) on an Nvidia Tesla

V100 with a batch size of 512 images. In terms of quality, on our training dataset, the average error

is 7.6 out of 255 (SD = 18.0). This is a mean discrepancy of 3.0%. For the validation and test sets,

the results are similar at 3.0% and 3.1%, respectively (𝑀 = 7.6, SD = 18.1, and𝑀 = 7.0, SD = 18.4).

Thus, we conclude that our simulator is not prone to overfitting. For a visual quality comparison,

please see Figure 6.

5.2 Marker Size and Form Effect
We used the different subsets of our dataset 𝐷𝑆𝑅 to train 6 different recognizers to understand the

effect of Type × Size. Thus, we independently trained models for the three 36h11 AprilTags (32, 48,

and 64 mm) and the three 16h5 AprilTags (24, 36, and 48 mm). We trained each model with the 10

unseen markers.

The results show that all models achieve accuracies over 93.5% with an average of 98.9%, see

Figure 7a. There is no statistically significant difference for Type between our tested AprilTags
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Table 1. Overview of evaluated models including the evaluation of shapes and data by Schmitz et al. [47]

Classification Rotation

Baseline Baseline

Experiment Samples Classes Acc. F1 ZeroR RF MAE SD RF

16h5 – 24mm only 139, 652 10 93.5 % 0.93 10.5 % 9.8 % 9.8 16.0 86.3

16h5 – 36mm only 141, 384 10 100.0 % 1.0 10.6 % 22.3 % 3.4 3.2 83.4

16h5 – 48mm only 145, 460 10 100.0 % 1.0 11.5 % 45.4 % 2.2 1.7 69.7

36h11 – 32mm only 145, 940 10 99.9 % 1.0 10.3 % 12.0 % 3.3 6.4 87.1

36h11 – 48mm only 145, 456 10 100.0 % 1.0 10.5 % 36.7 % 1.3 1.0 57.9

36h11 – 64mm only 144, 520 10 100.0 % 1.0 10.8 % 97.2 % 1.6 1.2 14.3

16h5 – all 426, 496 30 97.3 % 0.97 3.9 % 24.7 % 6.8 10.6 81.1

36h11 – all 435, 916 30 100.0 % 1.0 3.6 % 47.5 % 3.4 4.5 58.7

Random AprilTag 10 143, 258 10 99.9 % 1.0 10.6 % 31.5 % 3.0 6.2 66.2

Random AprilTag 30 431, 644 30 99.6 % 1.0 3.7 % 30.6 % 4.7 6.7 70.7

Random AprilTag 60 862, 412 60 98.6 % 0.99 1.9 % 24.6 % 6.4 9.2 70.6

Shapes – 8mm only 123, 812 10 9.2 % 0.04 11.1 % 11.2 % 90.4 52.3 89.2

Shapes – 12mm only 140, 632 10 14.7 % 0.06 10.5 % 10.3 % 74.5 52.1 89.6

Shapes – 16mm only 138, 524 10 42.6 % 0.4 10.6 % 9.8 % 48.9 48.0 86.5

External Shape Validity
12mm – Galaxy [47] 4, 924 10 14.9 % 0.11 10.3 % 10.5 % 81.0 53.0 83.2

16mm – Galaxy [47] 4, 950 10 33.1 % 0.24 10.6 % 10.0 % 57.0 48.6 83.2

20mm – Galaxy [47] 4, 950 10 85.9 % 0.86 10.6 % 13.9 % 21.8 26.1 83.1

8mm – Nexus 5 [47] 66, 645 10 11.7 % 0.06 11.3 % 12.2 % 88.0 51.9 92.4

12mm – Nexus 5 [47] 64, 795 10 12.8 % 0.09 11.1 % 10.2 % 86.7 51.8 86.5

16mm – Nexus 5 [47] 66, 239 10 25.3 % 0.21 12.0 % 11.7 % 72.9 52.0 84.3

20mm – Nexus 5 [47] 64, 032 10 50.3 % 0.49 11.1 % 13.2 % 64.4 54.4 85.3

36h11 and 16h5 (𝑡 (6) = −.98, 𝑝 = .381). However, the accuracy is lower than 100% only for the 24

mm models.

The average rotation error is only 3.8◦, varying between 1.3◦ and 9.8◦. Also, here, AprilTags
had no significant impact on the rotation (𝑡 (6) = 1.5, 𝑝 = .191). Again unsurprisingly, the 24 mm

models perform slightly worse than the two larger markers.

5.3 AprilTag Recognizer
In real life, more than 10 classes are often needed to enable use-cases. Thus, we next trained two

models to recognize all AprilTags 36h11 and AprilTags 16h5 of our 𝐷𝑆𝑅 dataset. Thus, both models

have 30 classes. Overall, the accuracy and rotation error did not drop over only 10 classes. The

30-classes models have an average accuracy of 98.7% and an average rotation error of 5.7◦, see
Figure 7b.

5.4 Effect of Marker Count onQuality
To generally understand the quality and robustness of our recognizer model architecture, we

performed validation on the number of classes captured by the recognizer. Here, we trained models

with 2 to 60 different classes based on our 𝐷𝑆𝑅 dataset, which comprised 60 different markers. We

randomly picked n markers out of the data set and trained a model. To show the robustness of our

results, we trained each model with n classes three times with different random picks.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. MHCI, Article 183. Publication date: September 2022.



183:12 Benedict Steuerlein & Sven Mayer

Cl
as

si
�c

at
io

n 
Ac

cu
ra

cy
 [%

]

A
bs

ol
ut

e 
Ro

ta
tio

n 
Er

ro
r [

°]

36h1116h5
24mm 36mm 48mm 48mm32mm 64mm

(a) Model results by AprilTag Type and Size

0 0

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 [

%
]

A
b

so
lu

te
 R

o
ta

ti
o

n
 E

rr
o

r 
[°

]

36h1116h5
Acc Rot Acc Rot

5

10

15

20

25

30

20

40

60

80

100

(b) Model results by AprilTag Type

Fig. 7. Model results of classification accuracy and absolute rotation errors concerning the recognizer pipeline:

(a) results for the six recognizers trained on markers that are in the same Type (16h5 AprilTag vs. 36h11

AprilTag) and have the same Size, and (b) results of two recognizers trained on all markers in one Type.

The average accuracy is 99.31% (SD = .67). The model accuracy has overall a slight downward

trend with respect to the class count; using a linear fit, we show 𝑅2 = .58 (slope = −.020), see
Figure 8. However, this results in a great performance even with 60 classes (98.6%). In terms of

rotation error, the rotation error increased with more classes; using a linear fit, we show 𝑅2 = .89

(slope = .056), see Figure 8. Here, we achieved an average rotation error of 5.51◦ (SD = 8.3◦) with the

most classes (n = 60) resulting in a rotation error of 6.4◦ (SD = 9.2◦). Results are shown in Figure 8.

5.5 Shape Markers
So far, our architecture has no problems recognizing the structure from the raw capacitive sensor.

Thus, to push our model to its limits, we recorded the 𝐷𝑆𝑆ℎ𝑎𝑝𝑒𝑠 dataset (see Figure 5a) in line with

Schmitz et al. [47]. The shape’s bounding box was only 8, 12, and 16 mm. This is 89%, 75%, and 56%

smaller than our smallest AprilTag in imprint (16h5 – 24 mm: 24 ∗ 24mm = 576mm2
).

We trained three recognizers, one for eachmarker size, with all 10 markers included. The accuracy

for the smallest shapes (8 mm) dropped drastically to chance level on our 𝐷𝑆𝑆ℎ𝑎𝑝𝑒𝑠 dataset; see

Table 1. However, as soon as the marker becomes larger, e.g., 12 mm and 16 mm in Width, the

model can again pick up on the details encoded in the fiducial marker, bringing the accuracy up to

14% and 43%, respectively.

Next, we used the shapes provided by Schmitz et al. [47], which were also recorded on a Samsung

Galaxy Tab S2 tablet. Again, we trained three recognizers, one for each marker size, with all 10

markers included. Their dataset provides 12, 16, and 20 mm markers that are already 4 mm larger.

Especially for the 20 mm markers, we see a drastic improvement, allowing us to recognize now 86%

of the markers correctly, see Table 1. Comparing our 12 and 16 mm shapes to the ones of Schmitz

et al. [47], we see that ours perform a bit better, but we argue this is due to the shape design.

When comparing our results using simulated data to the domain-specific model by Schmitz et al.

[47], we see a reduction in performance. On average, we are 49% worse in accuracy and 35.4◦ less
accurate in detecting the rotation. Unsurprisingly our results are not as good as the domain-specific

model. However, the results between training externally recorded data and our data are very much

in line. This suggests that the training of the recognizer is not the cause of the drop in quality.

Rather our simulator network does not deliver good simulation data for small objects; however,

this is also unsurprising as the simulator network has never seen such small markers.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. MHCI, Article 183. Publication date: September 2022.



Conductive Fiducial Marker for Everyone 183:13

0°80

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 [

%
]

A
b

so
lu

te
 R

o
ta

ti
o

n
 E

rr
o

r 
[°

]

Number of Classes

100

95

90

85 3°

6°

9°

12°

Fig. 8. Test results for increasing the number of randomly sampled classes from 𝐷𝑆𝑅 . In blue is the average

classification accuracy displayed, and in green is the average absolute rotation errors. We trained each step

independently a total of three times. Additionally, the standard deviations are displayed.

5.6 Nexus 5 Data - External Validity
As our approach is tested only with one device and one screen type (4.022 dot-pitch), we next

investigate if our simulator network can also simulate data for different dot-pitches with appropriate

marker scaling. Therefore, we use the second half of the data provided by Schmitz et al. [47], which

contains shape markers recorded on a Nexus 5. Again, our model struggles to recognize smaller

shapes; however, we see the same trend as with Samsung Galaxy Tab S2 data, where larger markers

can be recognized and rotation estimated, see Table 1.

5.7 Potential Fiducial Marker Set
The largest marker set we tested is the AprilTag 36h11 marker set, containing 587 unique markers.

Here, we tested marker sizes of 32 × 32mm. The marker set AprilTag 16h5 allows to create smaller

markers, such as 24 × 24mm, however, the unique marker count is reduced to 30 unique markers.

Both allow for error correction of at least 2 bits. However, totally different dot patterns are possible.

To understand the boundaries of our approach, we need to study both marker size and data density.

First, we need to determine the largest possible marker that can be recognized. The input to the

recognizer is 32×32 pixels and we assume a sensor size of 4×4mm – the average size of a capacitive

pixel on today’s devices. Thus, the real world footprint is 32 × 32 ∗ 4mm = 128 × 128mm; however

we also need to account for markers places 45
◦
rotated onto the screen. Thus, 128/

√
2 ≈ 90mm is

the longest edge of a square that can be fed into the recognizer – the largest marker that can be

recognized using our implementation is 90 × 90mm.

As a next step, we need to define the smallest dot size for the pattern. From our results, we

know that 4mm is still doable with a high accuracy. When using this as the dot pattern size, we

arrive at a dot pattern with 90 × 90mm/4mm ≈ 22 × 22. This theoretically means we can use

22 × 22 = 484bit ≈ 60byte to store information in the largest possible marker footprint.

For simplicity, we turn now to QR codes as they now fit into the footprint given. The smallest-

sized QR code is Version 1 QR codes with a size of 21× 21. Such a QR code can store 152 bits and has

an error correction of 7% (level L); with a higher error correction, this reduces down to 72 bits with

30% error recovery rate (level H). Even with 30% correction that allows for 2
72 = 4.7 ∗ 1021 unique

markers with at bit/pixel size of 4 × 4mm and a marker size of 90 × 90mm. When using specialized

dot patterns like AprilTags, even more unique markers are possible with the given marker size as

less bits are taken up by the QR coding scheme.
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5.8 Model Run Time
We deployed the final recognizer model with 8-bit quantization on a Samsung Galaxy Tab S2

tablet and ran the recognition 2,370 times. First, we evaluated the effect of the quantization, which

resulted in no performance loss for the test 16h5 models with 30 classes (97.3% and rotation error

6.83, SD = 10.6). On average, the prediction time was 42.15 ms (SD = 6.52ms). Additionally, the

pre-processing (blob extraction and normalization) takes on average 15.45 ms (SD = 3.62ms). As

we pull the capacitive image every ∼ 110ms, we can process the marker in real time on the device.

6 TOOLKIT & APPLICATIONS
With this work, we aim to enable everyone to build their own conductive fiducial recognizer without

data collection and ML knowledge. Therefore, we provide a toolkit allowing us to generate a use-

case-specific model based on fiducial templates. Moreover, we present a set of possible example

applications.

6.1 Toolkit
The toolkit allows everyone to train their own use-case-specific deep learning model. As such,

users of the toolkit only need to provide 2D sketches of the imprint of their fiducial markers and

then the toolkit can automatically deliver a plug-and-play recognizer to be deployed on phones

and tablets. This will give designers the opportunity to design games such as chess, which has 32

pieces, games with many more pieces like memory but also museum applications to display many

different objects. As such, the toolkit provides a pre-trained simulator model (the simulator model

described above, see Figure 3a), allowing everyone to simulate capacitive data used to train the

recognizer model. The simulated capacitive data is then used to train our recognizer model based

on our general recognizer architecture (the recognizer architecture described above, see Figure 3c).

As we did not perform additional hyperparameter tuning when training the numerous models

in our evaluation, we argue that the recognizer model is ready to be trained for various fiducial

markers. Thus, the user only needs to provide the toolkit with the templates of the fiducial markers

as shown in Figure 6 and the toolkit will then automatically train an appropriate recognizer model.

The toolkit requires python 3.5+ and uses TensorFlow 2.5+ as ML back-end, and provides the

user with a single tf-lite file
1
, which is ready to be deployed on a large variety of operating systems

such as Android, and iOS but also Embedded Linux (e.g., Raspberry Pi) and even microcontrollers.

Our toolkit will be released as an open-source toolkit. We additionally provide the scripts to train

the models used in the toolkit. Finally, we released the collected capacitive image data to allow

others to build upon our results and offer a benchmark for future evaluations. Our open-source

contribution is available for download via https://github.com/mimuc/Conductive-Fiducial-Marker-

Simulation-Toolkit.

6.2 Applications
Based on our toolkit pipeline, we build four example use-cases in order to explore the wide range of

possibilities to bring tangibility back to today’s touchscreens. We built four showcase applications

and manufactured fiducial tags attached to our use-case-specific objects. While we manufactured

them using conductive foil, they can easily be 3D-printed using conductivematerials, e.g., [11, 12, 24].

This allows for a large number of objects as we find in applications such as the museum app and

chess (32 board pieces).

Discovery & Learning Tangibles in museums are generally nothing new, e.g., Ma et al. [35]

and tangibls have long been used for learning, cf. Li et al. [33]. However, allowing users to discover

1
TensorFlow Lite https://www.tensorflow.org/lite
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(a) Tangible Museum (b) Tangible Radio

Fig. 9. Two applications with the respective capacitive input. a) Tangible museums use-case where each

artifact has a code on the bottom for recognition. b) The radio is manipulated using tangible controllers.

objects on their own devices is not possible yet. Thus, to overcome this limitation, our setup can

enable museums and teachers to build tangibles. Here, accompanying apps can use by everyone to

explore the objects themselves. Our museum demonstrator application allows placing objects on

the screen to get additional information, see Figure 9a.

Radio Inspired by earlier work music creation [22], we built a tangible-enabled radio, see

Figure 9b. In detail, one tangible enables the user to scroll through the different radio stations

in line with old-school FM or AM radios. Additionally, a second tangible now allows the user to

manipulate the volume as typically present on car radios.

Dungeons & Dragons Game Our toolkit allows game developers to bring tangibles back into

everyone’s home. While a game can consist of traditional figures such as in chess and other games,

the board can now be interactive itself as it allows tracking game figures on personal devices. This

brings back tangibility to digital board games and allows for collaboration, fostering engagement

and fun [45, 72]. Here, we present a multiplayer Minecraft-inspired Dungeons & Dragons game,

see Figure 10a.

Smart HomeWhile we see screens in smart home environments, the directness of the haptic

touch of a switch is still dominant. With our tangible light switches on capacities screen, we

combine the best parts of both worlds: a) the flexibility of the touchscreen and b) the tangibility

of physical knobs, see Voelker et al. [60]. Therefore, we present a smart home interface that is

controlled by different physical sliders, see Figure 10b.

7 DISCUSSION
Over the last few years, we have seen great development in the domain of capacitive sensing.

However, today we still do not see widespread use. We argue that one major problem is the missing

ease of use of the latest development, e.g., recognition using deep learning. Our toolkit allows

designers to design arbitrary markers that fit their needs while avoiding time-consuming data

collection studies and simplifying the realization of TUIs on capacitive devices. We opted to use a

cGAN, which learns to transfer the style of a capacitive sensor to sketches of conductive markers.

With this, our tool eliminates the need for data collection and hyperparameter tuning, both elements

that are hard for designers. Thus, we improve the ease of use of capacitive fiducial tangibles.

AprilTag Fiducials. We conditioned and trained our simulator solely on imprints and capacitive

images of conductive AprilTag fiducials. This is reflected in the evaluation of our trained recognizers,

where we achieved an average classification accuracy of 99.7% on unseen capacitive images for
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(a) Tangible Game (b) Smart Home Controller

Fig. 10. a) Minecraft-inspired dungeons and dragons game using multiple fiducial recognized tangibles at

the same time, which is even playable with two players. b) Smart home control panel where lights can be

controlled directly with their respective tangible counterpart.

our simulator with an average error of 4.9◦ (SD = 1.4◦). While our results are overall promising,

we achieve the lowest classification accuracy and our highest rotation error with 93.5% and 9.8◦

(SD = 16
◦
) for our smallest 24 mm AprilTags. One impact factor could be the combination of the

low-resolution capacitive matrix with a dot-pitch of 4.022 mm, which might also result in slight

deviations from actual to recorded rotation. This can result in a rounding of the corners of our

simulations and blurring the inner structures of the simulation (see Figure 6a GT Recording and

cGAN Simulation). When comparing our model to prior work, Mayer et al. [40] used the raw

capacitive image to allow for tangible fiducial tracking. Mayer et al. [40] achieved between 66.2%

and 99.0% on average on differently sized AprilTags. Thus, our general marker generation approach

outperforms a specialized approach.

Results Small Marker. In detail, the results by Mayer et al. [40] already showed a performance

loss for markers with high information density. Therefore, we purposefully included markers with

a high information density to analyze if this problem persists with our approach, see Figure 4. For

our smallest AprilTags (Type 16h5 Size 24 mm) a clear representation of the internal structure is

necessary for a reliable classification as they encode 16 bits within 256 mm
2
or ∼ 16 capacitive

pixels. This also explains why our accuracy for all other AprilTags is better as they either encode

more bits (Type 36h11) or encode the same amount of bits within a larger capacitive area due to

increasing Size. That statement is further supported by markers of Type 36h11 Size 32 mm, whose

pixel size is equal to our worst-performing AprilTag but they encode over twice the amount of

bits, which shows that the information density for small markers is crucial. Thus, our recognizer

can extract more features, highlighting the need for design considerations when developing small

conductive fiducial markers. This further demonstrates that a deep learning generator approach

outperforms the super-resolution approach by Mayer et al. [40]. However, their argument is that

higher visual accuracy will result in a higher recognition rate with any recognizer. Thus, using

super-resolution approaches additionally in our network will likely also boost our performance in

a future version.

Results Shapes. Our results suggest that for conductive AprilTags, our simulator can model

the responses of the capacitive touch sensor. Nevertheless, when evaluating the results of our

experiments on shapes, we can see that our simulations do not represent real sampled capacitive

images as classification accuracy is < 43%. Because we exclusively conditioned our simulator on

imprints of AprilTags, the model lacks the fine-grained capabilities needed for the conductive
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shapes. This becomes even more clear when looking at the respective imprints of the shapes. Here,

theWidths of our shapes were 8, 12, and 16 m and their imprints corresponded, respectively, to

only 11%, 25%, and 44% of that of our smallest AprilTag. Comparing our results to Schmitz et al.

[47], which achieved between 88.86% and 99.51% on 3 models supporting 10 classes our model

performs worse. Our general marker generation approach does not sufficiently support small shape

markers. To improve the simulator to capture such fine-grained details, we propose training the

simulator on a wider variety of data. As we recorded such data, this can easily be done in the next

step.

Size of the Capacitive Matrix. To gather performance metrics on capacitive data of other devices,

we used the shape data by Schmitz et al. [47]. Large markers of Width 20 mm outperformed small

8 mm shape markers with an accuracy of 50.3% compared to 11.7%. Overall, our classification and

rotation prediction results are not nearly as good as for shape data. However, it is hard to define

whether the poor performance was due to incorrect simulations or the quality of the dataset as the

capacitive matrix of the Nexus 5 tends to produce noisy images. Note that these shapes are small

and, thus, suffer from the same problem as discussed above. Thus, as we observe the same trend

for higher accuracy with increasingWidth, we argue that our simulator can generate capacitive

imprints for other devices.

Marker Fabrication and Quality. The fabrication of our conductive markers might have led to

inconsistencies between capacitive recordings and simulations. Because we produced our markers

by hand, we could not avoid slight deviations from the actual shape. However, with sub-millimeter

errors and the ability to utilize conductive material, 3D printers have shown to be effective for

printing tangibles [37, 47]. On the other hand, together with our pipeline, this opens up new

prototyping capabilities as now not only can tangibles be modeled within minutes, but also the

model can be trained without time-consuming data collection.

Limitations. While all devices internally have the capacitive matrix stored to extract the position

of the fingers, the capacitive matrix is typically not exposed to the OS layer. For this reason, we

applied kernel modification to our test device, as others, e.g., Schmitz et al. [47]. Moreover, the

Nexus 5 and the Samsung Galaxy Tab S2 kernels are publicly available. Thus, while it is possible to

retrieve the data, today’s designers would need to additionally apply this modification; while in the

future, manufacturers can expose this easily, today, extra effort is required.

8 CONCLUSION
To bring back effortless conductive fiducial tangibles to capacitive touchscreens, we presented

a toolkit for training a recognizer network solely on simulated data, thus allowing everyone to

train their own recognizer. In detail, we contribute a simulator cGAN network that simulates

the response of a capacitive touch sensor based on sketches of fiducial markers. We pre-trained

the simulator network on the capacitive data of 30 fiducial markers. Additionally, we provide

a recognizer network structure capable of classifying conductive markers while simultaneously

predicting the rotation with which the markers rest on the capacitive screen. Using our toolkit,

we found that we can classify conductive AprilTag fiducials with an average accuracy of over 98%.

Moreover, we can predict the correct orientation of AprilTag fiducials with an average error of

4.8◦. Finally, our toolkit does not require domain knowledge or a data collection study. All crucial

elements for designers to develop robust interactions with tangibles on today’s touch devices are

included. Thus, our tool will help designers and practitioners to develop new fiducial markers and

bring back tangible interaction to today’s capacitive devices.
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Currently, we see a performance loss when simulating fine-grained details of markers. Thus, as

a next step, we want to investigate approaches to simulate also fine-grained details by training the

simulator with more small tangibles. Moreover, we see great potential in using super-resolution

techniques to improve the recognition performance; however, the downside will be a recognition

delay, cf. Mayer et al. [40]. Moreover, to support the designer further, a heuristic model could already

show the designer during design time how well the model will likely recognize the real-world

counterparts of the sketches.
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