
Privacy-enhanced Intelligent Automatic Form Filling
for Context-aware Services on Mobile Devices

Enrico Rukzio, Albrecht Schmidt, Heinrich Hußmann
Ludwig-Maximilians-University Munich

80333 Munich, Germany
{enrico.rukzio, albrecht.schmidt, heinrich.hussmann}@ifi.lmu.de

Abstract
In this paper we describe our approach to intelligent
automatic form filling in the context of mobile services
based on user data. In a small study we show that manual
form filling is slow and perceived a stressful task. And
hence it is not surprising that most current mobile services
provide primary information, more complex interactions
such as ordering a specific product are often very
complicate and time consuming tasks or are even not
provided. In our approach the individual forms elements
are preset based on the content and context of the form,
existing rules and the user’s preferences.
Our work is grounded in an analysis of requirements. We
investigated popular current WAP based mobile services
and their characteristics. Through an analysis of
conventional HTML based services we concluded which
data a user has to type in when filling out a form.
Furthermore we analyzed the behavior of people during
filling out forms. Based on these observations and
additional interviews, we present an overall architecture. A
prototype, taking into account these findings is outlined at
the end of the paper.

Keywords
Intelligence, Mobile Device, Context, Services, Automatic
Form Filling, Privacy

INTRODUCTION
In the late nineties during the omnipresent internet hype
also the phrase Mobile Commerce and the corresponding
technologies for mobile services such as the Wireless
Application Protocol (WAP), Wireless Markup Language
(WML), compact HTML (cHTML) and i-mode appeared.
Until now these services are not widely accepted in
Europe.
Many people have devices and service contracts so that
they could use mobile services but they still do not use
these services. When talking to people several general
reasons often are given why these mobile services are not
used e.g..
• users see no need for such services
• it often does not work at all or it is not clear whether or

not it will work in the given context
• it is too expensive for the added value provided

• it is too complicate to use and setup
• it is complicate to input text with T9 or a stylus
In our research we wanted to find out more details about
the last mentioned problem and how to build a system to
overcome this problem. In this paper we outline a system
through which the user can be unburdened from the input
of text through an intelligent automatic form filling process
for mobile services. Our work is also concerned with a
further requirement: ensuring privacy. Particularly for e-
commerce applications based on transactions such as
ordering a product or reserve a special service this is
essential for many customers.
This work was performed in the context of the EU-project
Simplicity [1] and the depicted architecture and the
prototype are part of a current implementation process
which leads to a bigger prototype that represents the whole
project. The key concept of this EU-project is the
Simplicity Device which might be an enhanced SIM card
that is worn by the user which stores the user data and
preferences. Based on this data, terminals, services and
networks will be adapted through the Simplicity
framework.
The paper is organized as follows. The next section relates
our work to existing approaches. Afterwards existing
mobile services and conventional web based services are
analyzed. Furthermore we describe an initial user test
which investigates the input of text into forms with a stylus
based mobile device. In the next section we present a
generic architecture for our concept. Afterwards we depict
a prototype which is currently under development. The
paper is completed by a discussion and outline of our
further work.

RELATED WORK
In this section we analyze in the context of mobile devices
and services, the state of the art of text input, automatic
form filling, adaptive web services and the usage of
artificial intelligence in rule- and policy-based systems that
support these adaptations.
There are big differences between the text input on a
desktop PC and on a mobile device. Basically we can
distinguish between three different text entry techniques for
mobile devices: key-based, stylus-based and predictive
input techniques [2]. There are big differences regarding
the text entry speed which is normally measured in words

per minute (wpm). A skilled touch typist using a
conventional keyboard can enter an average of 72 wpm [3].
The text entry on a mobile device is slower as you can see
in the following table:
Table 1. Text entry speed on mobile devices

Name WPM User skills Ref.
PDA
Graffiti 21,5 average user [3]
QWERTY keyboard 20,2 novice user [3]
Mobile Phone
T9 41-46 expert user [4]
Multi-press method 25-27 expert user [4]

Graffiti which is popular in PALM-OS - based systems is a
stylus based input technology that is based on handwritten
letters. In mobile phones every button also represents three
letters. The T9 system uses a predictive algorithm which is
based on a dictionary where words have a probability
associated. Thus in many cases the user has only to select
the buttons which represents among others also the
intended letter to write a word. When using the traditional
multi-press method the user has to select the intended letter
through multiple pressing a key until reaching the desired
one.
As one can see in Table 1 the T9 system is the fastest
approach that is based on a predictive algorithm which
takes the frequency or probability of specific words stored
in a corresponding database into account. Unfortunately
words that are used for format filling like name, address or
e-mail often are not included in these databases. Because of
this T9 is not very effective for form filling and often the
traditional multi-press method on mobile phones is used
that reaches 25-27 wpm when used by experts. Besides this
it has to be taken into account that most users are not
experts in T9 or Graffiti.
When using commercial websites the user very often has to
input data in different kinds of forms. There are various
proposals and concepts how this process can be automated.
Chusho et al. [5] presented a system where an agent
supports the automatic filling of forms in web applications.
Therefore a corresponding architecture that is similar to
modern AI architectures was developed that includes an
inference engine, a learning facility and a knowledgebase.
Furthermore there exists a W3C working draft Client Side
Automated Form Entry [6] which includes among others an
ontology for the description of identity, contact, postal,
billing and organisational information. Barton et al.
presented their XForms approach [7] that supports adaptive
services through clients that fill forms with sensor data.
Furthermore there are already some existing commercial
applications like RoboForm [8] or iOpus Internet Macros
[9] available that have functions for automatic form filling.
In contrast to these approaches we concentrate on mobile
devices and mobile services.

The exploration and development of context-aware
services is currently a field that is considered by a lot of
researchers and scientific projects. The basis for this is
context information [10] like user data, device, location,
surrounding devices, profiles, time, activity etc. This
context information is used to adapt the services and
contents. In the application area of this paper particularly
personalized web applications for mobile devices have to
be concerned that adapt web applications according the
user and according the used device [11, 12, 13, 14].
The usage of rule- or policy-based systems that are based
on concepts of the field of artificial intelligence are one
standard approach when designing systems for context-
aware services. Suryanarayana and Hjelm presented an
architecture [15] that takes different profiles such as user
profile, application profile and transport profile into
account. Regarding the processing of this data they discuss
possibilities that are based on rules languages such as
RuleML and policies. They concern also the usage of XSL
Transformations (XSLT) to adapt services according the
context. A platform supporting coordinated adaptation in
mobile systems that is based on policies is presented in [16]
and [17]. They distinguish strictly between the monitored
context information, the policies and the adaptation
mechanisms. It is possible to use policies for different
adaptations and the adaptation mechanisms are independent
from the policies. Through this the mobile services can be
adapted in a system-wide manner. Rei, a policy language
for pervasive computing application was presented by
Kagal et al. [18]. It is possible to express rules for rights,
obligations, dispensations, and prohibitions. We restrict our
approach to the domain of form filling for mobile services,
which reduces the complexity to a great extend.

ANALYSIS
After looking at related work this chapter analyses mobile
services that are actually used and discussed actual
problems regarding their usage. Afterwards we analyzed 20
different existing traditional web services and concentrated
particularly on data users have to fill in for a transaction
like e.g. order a book, rent a car or reserve a hotel room.
We finish our analysis with an initial user test where we
tested our concept through a mock-up.

Services
Currently the most services provided and used are based on
WAP (Wireless Application Protocol) [19], cHTML,
HTML and XHTML. The following Table 2 shows the top
5 services of mobile services from three different German
mobile network operators.

Table 2. Top 5 of three German mobile operators

 T-Mobile
[20]

O2 Germany
[21]

E-Plus
Germany [22]

1. Ring tones 1. Live chat 1. Ring tones
2. Download
games

2. eBay 2. Playboy

3. Chat 3. O2 E-Mail 3. Sport news
4. Soccer 4. O2 Ring

tones
4. Poptone

Top 5
Services

5. MMS-
services

5. O2 Games 5. eBay

Format WAP/WML WAP/WML cHTML,
i-mode

Data
from

28/06/2004 28/06/2004 01/07/2004

As depicted in Table 2 mobile entertainment services like
games, chat and ring tones are mostly used. Furthermore
the mobile network operators provide often specific content
that is accessed by a pre-configured mobile phone which
has a corresponding soft-link to the corresponding portal of
the mobile network operator.
We have recognized that a lot of commercial websites do
not provide forms because it is so complicate to fill them
with the limited text input capabilities of mobile devices.
For instance the WAP version of a German online book
shop Booxtra [23] has only these three possibilities to order
a book after it was selected by the user: call Booxtra with
the phone, sending of a corresponding email to my
personal email account or using an existing Booxtra
account. It’s not possible to order a book online without
having an existing Booxtra account. In the WAP version of
a German mobile phone distributor [24] the user has to
input his phone number after finding the desired mobile
phone, afterwards the distributor calls the potential
customer.
Furthermore our survey showed that most mobile services
provide information only that is accessible through simply
navigating hyperlinks. More complex interactions that
require text input or form filling are seldom found.

Needed Personal Data
Due to this fact that there are very few mobile services that
ask for user information we looked at web pages designed
for desktop systems to identify the data that is required for
potential services. We analyzed 20 different existing
commercial HTML services on the internet and looked at
the data that the user has to fill in when he/she wants to
order or reserve something. Based on this analysis we
concluded that it is possible to implement such a system
because most of these forms where quite similar. We
recognized that most of the services asked for a basic set of
very similar data. Furthermore we found out that there are
fixed groups of labels on the fields and of variable names

for that field. From this we concluded that the usage of
synonym lists for attribute names is essential for the
development of our system. Through this input fields that
are related to an element of our context model could be
addressed in a uniform manner.
In Table 3 specific sets of variable names are shown. When
building a system for form filling this has to be taken into
account.
Table 3. Variable names in three different forms

 Amazon.com Sixt.com Hilton.com
Address
First Name name firstName
Last Name name nam1 lastName
Adress1 adress1 adress1
Adress2 adress2 adress2
E-Mail-
Address

email emai email

City city city
State/Provin
ce/Region

state state ||
otherstate

ZIP/Postal
Code

zip postalCode

Country country name country
Phone
Number

voice tel phoneNumber

Payment
Payment
Method

paymentMethod zah

Credit Card newCreditCardIssuer
Credit Card
No.

newCreditCardNumber ccnr CCNumber

Expiration
Date

newCreditCardMonth,
newCreditCardYear

 CCExpMonth
,CCExpYear

Cardholder’s
name

newCreditCardName

As one can see at the variable names at Amazon.com that
begin with new these names has also to be concerned. This
indicates that a system will require sub-string analysis of
variable names. At Sixt.com system specific attributes and
uncommon abbreviation are used. At Hilton.com an
example of predefined values and alternatives is given. The
variable state is represented by a selection list and
alternatively it is also possible to use a text input field
(otherstate).

Initial User Test
In an initial user test we studied the behaviour and
experiences of the potential users using a web service on a
PDA. We used a P800 smartphone from Sony Ericsson
which accessed the internet via a Bluetooth connection. We
have built a mock-up HTML-based hotel reservation
service that was visualized by “Opera for
Smartphone/PDA” on the P800. We provided two different

versions of the reservation service. In the first version the
user has to fill out every form field by herself whereby in
the other version the fields where already filled out with
user data. In the second version we integrated two errors
(wrong street name and credit card) that the tester has to
identify and to correct. This mock-up can be found under
[25] and can be used with any web browser.
Figure 1. Screenshot of our mock-up web application
and activated virtual keyboard

In booth versions the first name, last name, address, city,
ZIP, phone number, e-mail address, method of payment,
card number and expiration date have to be filled in,
accepted or corrected.
We tested this with 8 users (colleagues from our
department) whereby all where familiar with web forms
and the concept of mobile services but used a P800 for the
first time. As you can see in the Picture 1 the virtual
keyboard was used to fill out the forms.
We took into consideration the usage of a mobile phone
which supports the T9 system. We rejected this possibility
because the potential testers were mostly familiar with
keyboards but their experience with T9 differed greatly. It
would be an interesting test to evaluate the speed of
predictive systems like T9 when filling out forms because
there are special requirements such as using special signs
(e.g. +, @, -,.), input of numbers for ZIPs or credit card

numbers and mixed input of text, special signs and
numbers such as email addresses. But this was not the main
focus of our investigation.
We show in the following Table 4 the durations for the
filling of the empty forms and the completion time for pre-
filled forms. Furthermore we also show the average times
the testers needed in the first, the second and the third run.
Table 4. Average input times over all users, user were
ask to perform several runs

 Empty forms Pre-filled forms
1. run 240 seconds 60 seconds
2. run 170 seconds 37 seconds
3. run 115 seconds 33 seconds

The most important result was that the testers need about
four times longer to fill the empty form compared to the
pre-filled form which needed corrections. Furthermore we
recognized that the testers learned quit fast to use the
virtual keyboard and the styles. But anyway they factor
four exists also after three runs. From this we conclude that
a form filling application would be extremely helpful and
would if intensively used, support the further development
of mobile services.
Beside this numeric results we recognized that most users
where really frustrated when they used the stylus of the
smartphone when they inserted text. Therefore we
concluded it is very important that the user has to type in as
few as possible.
At the beginning of every test we explained the tester the
intension of the different forms. We explained them that in
the second version there is an intelligent assistant which
tries to fill out all fields based on the available user data.
After this explanation many testers said they do not want to
give their personal data away, e.g. as in the Microsoft .NET
Passport [26]. From this we concluded the requirement that
all data has to be stored on a physical device that is owned
by the user himself. This supports the concept of the
Simplicity Device as the key concept of the Simplicity
project where the user carries personal data stored on a
private physical device. Furthermore the users liked being
in control and want to see what data is filled in the different
fields and so he/she has the possibility to delete or change
the automatically inserted data. This approach provides the
user an overview where and when data is transmitted and
what data is given to which service.

THE OVERALL ARCHITECTURE
In this section we present an overall architecture that
supports automatic form filling for mobile services that for
instance are realized with WAP, X(HTML) or cHTML.
This agent-based architecture is build on the evolving
Simplicity framework, our analysis presented in Section
Analysis and on the work of Chusho et al. [5] that we
adapted for mobile devices.
Figure 2 depicts the elementary parts of our overall
architecture. The mobile device includes the four

components proxy, web browser, personal assistant and
user data. After the user requests a specific website which
includes a form, it is transmitted from the server to the
mobile device. To get access to the transmitted HTML-data
a proxy is integrated in the mobile device. Before a website
is transmitted to the web browser and before a website is
transmitted to the server, the proxy has to be passed. The
proxy provides an interface to access the actual web page.
Such a proxy has the advantage that every existing web
browser can be used by our system because we do not have
to access the web browser through a special interface. The
web browser interprets the different mobile services and
shows them to the user.
 The personal assistant uses the interface of the proxy to get
the access to the current website. Based on this information
and the user data the personal assistant performs the
automatic form filling.
Figure 2. Overall architecture

Mobile Device

User Data

Mobile Service A
(WAP-based

forms)

Mobile Service B
((X)HTML-based

forms)

Mobile Service C
(cHTML-based

forms)

Address:
First Name, Last Name, Address, City/
ZIP, E-Mail, Phone

Bank account:
Credit card, Number, Expiration

Web Browser

Personal Assistant
User

Inference
Engine

Learning
Facility

Rule base

Proxy

Available Data
There are two different types of data which are the basis for
the decision that has to be made by the personal assistant.
One type is data related to the user, such as address, bank
account or preferences (e.g. non-smoker, “I like window
seats”, etc.). This data can be initially defined by the user
or could be learned through the observation of the user

interaction. For the context model existing ontologies and
infrastructures such as the 3GPP Generic User Profile [27]
and the W3C working draft Client Side Automated Form
Entry [6] are used.
The other type is data that is already existing in the web
form. This includes a lot of information that is taken into
account by the personal assistant. Examples are caption of
the field (e.g. Name), definition of the field, the context of
the field (e.g. fields before and afterwards, title of and
heading in webpage), variable names, and context of the
user (e.g. he/she is in an airport). By the field definition
(e.g. <input name="Name" type="text" size="20"
maxlength="30">) it is possible to get a lot of information
about the desired input such as attribute name (Name), data
type (text) and length (between 20 and 30 characters). But
there is of course ambiguity as the services developers
choose the names of attributes. This depends on the
methodology of the developer or the conventions of the
used web authoring software. This problem might become
less important through the further usage of XML or
Resource Description Framework (RDF) in the
development of mobile services.

Personal Assistant
The personal assistant is an active entity on the mobile
device which works in the background and which is not
directly visible to the user. After a new website of a mobile
service (e.g. WAP-, (X)HTML- or cHTML-side) is
requested the personal assistant analyses this and tries to
fill out the fields of the included forms.
The personal assistant is a rule based agent whereby the
inference engine that uses a rule base is responsible for the
decisions which field is filled out with which content.
Furthermore there is a learning facility included that
enhances the rule base and the synonym lists.
Based on the approach from Chusho et al. [5] we will also
use sets of synonyms that are related to our own context
model and rules that concern the context of a field. Our
ontology for user data includes for instance the variable
LastName. It is possible to predefine a set of synonyms that
can be used also as alternative variable names such as
FamilyName, surename or name2. As rules we use IF-
THEN statements which have the following structure: IF
‘constraints’ THEN ‘insert value’. In the constraint
statement we address the input field trough the synonym
set rather then a concrete attribute name. The different
attributes that can be considered in the constraint statement
have been already described in subsection Available Data.
The learning facility is able to extend the existing
synonyms and to generate new rules. If there is e.g. a form
including a field with variable name name_2 this might be
not filled out by the personal assistant because this one is
not part of the existing synonyms. So the user has to fill out
this field with his family name by himself. This filled field
is transmitted through the proxy to server. The personal
assistant recognizes that there is a field whose value

corresponds to the family name of the person. So the
existing synonym list (e.g. FamilyName, surename or
name2) is extended by name_2.
Furthermore the personal assistant includes a function
which receives and sends new rules and synonyms from
and to a central server. If for instance the personal assistant
of user A has identified a new synonym because he/she
was one of the first users filling out the new form of a
specific service, users B’s form is already correctly filled
because of the updated synonym list.

Prototype
Based on the overall architecture we are currently
developing a corresponding prototype in the context of the
EU-Project Simplicity [1]. As a first step there will be two
different web based services available which can be used
by a user through a mobile device. The personal assistant
on the mobile device will try to fill out the transmitted
forms based on the available information.
As you can see in Figure 3 our prototype will consist of a
mobile device (Nokia 6600) and a server (Laptop Sony
Vaio PCG-Z1XMP).
Figure 3. Components of the prototype to evaluate the
approach for automated form filling on mobile devices

Mobile Device
(Nokia 6600)

User Data
(as J2ME
Records)

Server
(Sony Vaio PCG-Z1XMP)

Personal Assistant

J2ME / MIDP 2.0 J2SE

Web serverJade Middleware

Jess-
Application
(Inference
Engine)

Jade
Middleware

Se
rv

ic
e

A
 (H

TM
L-

ba
se

d)

Se
rv

ic
e

B
 (H

TM
L-

ba
se

d)

Jade-Agent
(Load

balancing
for Jess)

Proxy

Bluetooth API Bluetooth API

W
eb

 b
ro

w
se

r

Rule base

We use Java as the implementation language. As our
platforms we use on the mobile device J2ME (Java 2
Platform, Micro Edition) and on the server J2SE (Java 2
Platform, Standard Edition). The communication between
mobile device and server is done via a Bluetooth
connection. Based on the Java runtime environments we
use the middleware Jade (Java Agent Development
Framework) [28] which runs on J2SE as well as on J2ME.
So we do not have to concern the special aspects of
programming applications for mobile devices (e.g.
asynchronous communication, unreliable connections, and
limitations of mobile devices) because Jade provides an
abstraction layer which hides these aspects.
Furthermore the server will run a web server and the two
already mentioned web based services. We plan to provide
as a first step a hotel reservation service and a car rental
service.

The user data conforms to a special ontology that is
currently developed in the Simplicity project and consists
of different profiles such as user, device, services, etc. For
the storage of these data we use J2ME records.
We will use the Jess (Java Expert System Shell) [29] as the
basis for the implementation of the personal assistant. The
personal assistant observes all received web pages which it
gets form the proxy. Based on this, the user data and the
rule base of the personal assistant try to fill in the correct
data. Afterwards the personal assistant sends the changed
web pages and transfers it to the web browser. The user can
now control the filled data and maybe he/she has to correct
some of them or has to fill in leftover empty fields.
To reduce the processing power required on the mobile
device we do not run the interference engine locally. We
used a function of the Jade middleware which can split an
agent in a front end and a backend where only the front end
is running on the mobile device and the backend is running
on the server. Therefore it is possible to migrate the
inference engine to the server. The corresponding Jade
agent is depicted in the server of Figure 3.
In the next step we will use existing mobile services to test
our approach with this prototype.

CONCLUSION
In this paper we presented a conceptual system which
supports the automatic filling of forms in web based mobile
services. The basic idea is that there is a personal assistant
running in the background of the mobile devices taking the
user data and the content and context of the form into
account. Based on this information and corresponding rules
the forms are filled. The user has only to control, correct
and confirm this pre filled forms.

ACKNOWLEDGEMENTS
This work was performed in the context of the framework
of IST Project Simplicity funded by the EU and the DFG
funded research group “embedded interaction”. The
authors wish to express their gratitude to the other
members of the Simplicity Consortium [7] and the
embedded interaction research group [30] for valuable
discussions.

REFERENCES
[1] Simplicity Project, http://www.ist-simplicity.org
[2] I. MacKenzie and R. Soukoreff, „Text entry for mobile

computing: Models and methods, theory and practice”,
Human-Computer Interaction, 17, 147-198. 2002.

[3] J. Pierce and H. Mahaney, “Opportunistic Annexing
for Handheld Devices: Opportunities and Challenges”,
Human-Computer Interface Consortium, 2004.

[4] M. Silfverberg, I. MacKenzie and P. Korhonen,
„Predicting Text Entry Speed on Mobile Phones”,
Proceedings of the SIGCHI conference on Human
factors in computing systems, The Hague, The
Netherlands, ISBN 1-58113-216-6, pp. 9-16, 2000.

[5] T. Chusho, K. Fujiwara and K. Minamitani,
“Automatic Filling in a Form by an Agent for Web
Applications”, Asia-Pacific Software Engineering
Conference 2002, IEEE Computer Society, pp.239-
247, 2002.

[6] P. Hallam-Baker, “Client Side Automated Form
Entry”, W3C Working Draft WD-form-filling-960416
http://www.w3.org/TR/WD-form-filling.html

[7] J. Barton, T. Kindberg, H. Dai, N. Priyantha and F. Al-
bin-ali, „Sensor-enhanced Mobile Web Clients: an
XForms Approach”, Proceedings of the twelfth
international conference on World Wide Web, ISBN
1-58113-680-3, Budapest, Hungary, pp. 80-89, 2003.

[8] RoboForm, http://www.roboform.com/
[9] iOpus Internet Macros, http://www.iopus.com
[10] G. Abowd and A. Dey, “Towards a Better

Understanding of Context and Context-Awareness”,
in: Technical Report GIT-GVU-99-22, College of
Computing, Georgia Institute of Technology, pp. 12,
1999.

[11] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Keränen and E-
J Malm, “Managing context information in mobile
devices”. IEEE Pervasive Computing 2(3):42-51.
2003.

[12] G. Rossi, D. Schwabe and R. Guimar, “Designing
Personalized Web Applications”, Proceedings of the
tenth international conference on World Wide Web,
Hong Kong, ISBN 1-58113-348-0, pp. 275-284, 2001.

[13] D. Billsus, C. Brunk, C. Evans, B. Gladish and M.
Pazzani, “Adaptive interfaces for ubiquitous web
access”, Communications of the ACM 45/5, pp. 34-38,
2002.

[14] Z. Fiala, M. Hinz, K. Meißner and F. Wehner, „A
Component-based Approach for Adaptive, Dynamic
Web Documents”, Journal of Web Engineering, Vol.2
No.1&2, pp. 58-73, Rinton Press, September, 2003

[15] L. Suryanarayana and J. Hjelm, “Profiles for the
situated web”, Proceedings of the eleventh
international conference on World Wide Web,
Honolulu, Hawaii, USA ISBN 1-58113-449-5, pp.
200-209, 2002.

[16] C. Efstratiou, A. Friday, N. Davies and K. Cheverst,
“A Platform Supporting Coordinated Adaptation in
Mobile Systems”, Proceedings of the 4th {IEEE}
Workshop on Mobile Computing Systems and
Applications (WMCSA) 2002, pp 128-137, 2002.

[17] C. Efstratiou, A. Friday, N. Davies and K. Cheverst,
“Utilising the Event Calculus for Policy Driven
Adaptation in Mobile Systems”, Proceedings of the
3rd International Workshop on Policies for Distributed
Systems and Networks (POLICY 2002), 2002.

[18] L. Kagal, T. Finin and A. Joshi, “ A Policy Language
for a Pervasive Computing Environment”, IEEE 4th

International Workshop on Policies for Distributed
Systems and Networks, Lake Como, Italy, pp. 63.
2003.

[19] WAP Forum, http://www.openmobilealliance.org/
tech/affiliates/wap/wapindex.html

[20] T-Zones, T-Mobile Germany, http://www.t-
zones.de/de/Getting_started/Wap/50simulator.html

[21] Wap Portal O2 online, wap.o2online.de
[22] E-Plus Germany, www.eplus-imode.de
[23] Booxtra, http://wap.booxtra.de
[24] Getmobile, http://wap.getmobile.de/
[25] Web service for initial user test,

http://www.rukzio.de/formfilling/
[26] Microsoft .NET Passport, http://www.passport.net
[27] 3GPP Generic User Profile, Different documents

under www.3gpp.org
[28] Java Agent Development Framework (JADE),

http://jade.tilab.com/
[29] Java Expert System Shell (Jess),

http://herzberg.ca.sandia.gov/jess/
[30] Research Group "Embedded Interaction”,

http://www.hcilab.org/

