MobiDev: A Mobile Development Kit for
Combined Paper-Based and In-Situ
Programming on the Mobile Phone

Bastian Pfleging

Pervasive Computing and User
Interface Engineering Group
University of Duisburg-Essen
45117 Essen, Germany
bastian.pfleging@uni-due.de

Elba del Carmen Valderrama
Bahamondez

Pervasive Computing and User
Interface Engineering Group
University of Duisburg-Essen
45117 Essen, Germany
elba.valderrama-
bahamondez@uni-due.de

Albrecht Schmidt

Pervasive Computing and User
Interface Engineering Group
University of Duisburg-Essen
45117 Essen, Germany
albrecht.schmidt@uni-due.de

Martin Hermes

Pervasive Computing and User
Interface Engineering Group
University of Duisburg-Essen
45117 Essen, Germany
martin.hermes@stud.uni-due.de

Johannes Nolte

Pervasive Computing and User
Interface Engineering Group
University of Duisburg-Essen
45117 Essen, Germany
johannes.nolte@stud.uni-due.de

Copyright is held by the author/owner(s).
CHI 2010, April 10-15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Abstract

In this paper we present MobiDev, a development kit
that allows the creation of applications for mobile de-
vices by developing directly on a mobile phone and by
using paper-based sketches as a starting point for
creating the user interface (UI). Although programming
mobile applications on a computer has a well defined
development structure, developing a mobile application
on the mobile phone instead offers some advantages:
(1) it allows people without access to a computer but to
a mobile phone to create mobile applications and (2) it
supports the development of applications which employ
enhanced mobile phone features that are not fully sup-
ported by current desktop development environments.
Users draw UI sketches on paper (similar to a paper
prototype) as the initial step in an evolutionary UI de-
velopment process to speed up the development of the
application and to minimize the text input effort.

Keywords

Design, Programming, Mobile Phone, Mobile Application
Development, Rapid Software Generation, Visual Pro-
gramming.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation (e.g.,
HCI)]: User Interfaces — Screen design (e.g., text,



graphics, color), Prototyping, User-centered Design;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques - User Interfaces; D.2.6 [Software Engineer-
ing]: Programming Environments.

General Terms
Human Factors, Design

Introduction

Currently, the creation of applications for mobile devic-
es, i.e., mobile phones, is done on personal computers
(PCs). Most of the development toolkits include a mo-
bile phone emulator where the generated applications
can be debugged and tested. However, this approach of
mobile programming leads to some problems:

First, in developing countries mobile phones are more
widespread than PCs. According to data from [5] in av-
erage around 46% of the households in developing
countries have access to mobile phones compared to
only 24% of the households with access to a PC. A sur-
vey that we conducted in public schools in Panama
showed that 97% of the teachers have mobile phones
versus 63% with PC access; 80% of the students (5" to
9" grade) have mobile phones compared to 43% of the
pupils with access to a PC at home. Moreover, the trend
shows a continuous growth of the access to mobile
phones rather than a growth of PCs. This means that in
underdeveloped regions citizens currently are unable to
create custom applications for their mobile phones, as
they do not have access to a PC. In addition to this,
researchers [4] agree that for the development of soft-
ware applications in underdeveloped regions it is very
important to consider the local cultural and social prac-
tices. Easy development tools running directly on mo-
bile phones could empower those people to build suc-

cessful applications based on the cultural and social
context that they know very well.

Second, new communication features and behavior in-
tegrated in mobile phones, such as Bluetooth, WIFI,
and GPS, cannot be fully recreated on the emulators of
desktop development kits. Thus, developers code on a
PC, then they debug and test on the mobile device and
for changing code parts they have to return to the PC.
All of this leads to a time-wasting switching between PC
and mobile device and vice versa as many times as the
programmer wants to test the program.

Finally, existing prototyping techniques do not allow
adding full functionality of mobile applications. In paper
prototyping, real interactions are very limited and high-
er fidelity prototypes such as those made in Power
Point or Flash allow a nicer presentation but still do not
permit a real interaction. Some programmers prefer
then to create prototypes directly using standard pro-
gramming languages. Instead of this we propose a de-
velopment framework that enables users to rapidly de-
velop prototypes and real applications directly on the
mobile phone.

In this paper we will at first discuss some related works
found in the literature. Later, different challenges of
developing mobile applications in-situ will be analyzed.
Then our concept and workflow will be explained, fol-
lowed by the feedback received from an initial focus
group conducted. Finally some future direction of the
work will be discussed and we draw a conclusion.

Related Work

In the literature, some incipient research about proto-
typing in-situ for mobile environments can be found.
The most prominent one is [2], [3] where a framework
is presented that supports the creation of low to high



14t lon 1 EUIX

Advanced
content
placeholder

Text field

Combo box

Label

Checkbox

Radio
button

Gauge

Command

Program
transition

Entry point

Exit point

Resuming
point

Figure 1: Currently available symbols
to draw a paper-based UI sketch.

fidelity prototypes. In this approach, the application
allows the combination of scanned hand drawings with
digital images to create a high fidelity prototype. The
sketches as well as the application flow are created on
a PC and the resulting prototype runs on a mobile de-
vice. Additionally, the framework allows users to edit
the properties of the graphical user interface (GUI)
elements both on the PC and directly on the mobile
device. The users can follow the transitions of the pro-
totype created by the framework on the mobile device,
interact with the prototype, and finally fill out a feed-
back questionnaire about their experiences.

iStuff Mobile [1] is another example of an in-situ proto-
typing framework which in contrast to the former fo-
cuses on creating low-fidelity prototypes of new sensor-
enhanced interfaces for mobile phones. It uses wireless
sensors which are externally attached to existing, un-
modified mobile phones in order to augment their fea-
tures. The framework employs software components
across a network to handle phone input events and
sensor events and to forward the intended output
events to any (even built-in) application on the mobile
phone. As the mapping between the afore mentioned
events is done on a PC using a visual programming en-
vironment and as external sensors are attached to the
phone, the intended target groups for this framework
are mainly interaction designers and researchers.

Some Programming Environments include a visual de-
velopment tool to support a rapid GUI creation. In Vis-
ual Basic users can drag and drop GUI elements,
change properties, and define behavior accordingly to
events raised. Netbeans for Java ME includes a Visual
Mobile Designer tool, which allows the creation of GUIs
and the definition of the flow between different screens.

Challenges for Mobile In-situ Development
If one intends to develop applications directly on the
phone, a couple of difficulties and inconveniences arise
- especially if the development method should be simi-
lar to desktop development. Primary shortcomings are
caused by hardware constraints like device/screen size
and interaction modalities. Big issues are the limited
sizes and resolutions of most phone displays, which
complicate the possibility, e.g., to overview longer parts
of code, which is a common task at least while develop-
ing on a PC. Upcoming technologies like mobile phone
projectors might help to overcome this problem. Addi-
tionally most mobile phones lack of an efficient typing
method. This inconvenience might be solved if a full
QUERTY-keyboard (perhaps foldable) can be connected
to the phone, which in return limits portability. Thus,
reducing the typing effort instead might be a better
solution. Another feasible solution which is used in our
underlying concept is to utilize visual input using the
camera, which is integrated into almost every current
phone. By drawing objects or writing text and then
processing captured images, input can be generated to
develop mobile applications.

Technology

In order to allow the development of mobile applica-
tions without a PC, we aim to reduce the technological
requirements for the development process. The only
device, which shall be required to be able to develop
applications, is an ordinary mobile phone. This phone
has to provide at least an integrated camera and has to
be capable of running Java ME applications. Thus, com-
puter vision and image processing methods can be used
to transfer captured images of UI sketches into a basic
version of a mobile application.



/]
1 L1

Figure 2: A sample UI sketch
consisting of one form which
contains the proposed symbols
representing the different UI
elements.

Concept
In this section, our concept will be illustrated in further
detail. The key facts of our concept can be summarized
as follows:

= Mobile applications are generated using just a mo-
bile camera phone itself without the need of a personal
computer for the developer.

= Mobile user interfaces can be generated by first
drawing paper-based sketches of the required Ul
screens and then capturing images of the sketches.

. The general application logic of such a mobile ap-
plication can be defined by visually connecting the
drawn GUI sketches with arrows.

= Code entry can be reduced to the processing of the
different user inputs and to refinements of the applica-
tion logic.

= Mobile code entry can be facilitated by offering
code completion, graphical programming, and optical
character recognition (OCR).

As a core idea, our concept intends to minimize the
efforts of developing applications for mobile phones by
providing a software development kit which only re-
quires a mobile, a pen, and a sheet of paper as a de-
velopment environment. The necessity of entering big
amounts of code on the phone is minimized by using
the input of an integrated camera to generate the GUI.
Thus, mobile application development on the phone
becomes as easy as it is when using desktop develop-
ment tools like the Netbeans Visual Mobile Designer.

Work Flow

According to our proposition, a mobile application can
be developed by executing the following tasks: As a
first step, all screens that might be visible when execut-

ing the application have to be drawn on a sheet of pa-
per. In order to simplify the image processing methods,
every screen is abstracted by using the symbols, which
are explained in Figure 1. The available symbols cor-
respond to the different objects which can be integrated
into a typical Java ME form. A sample screen using
those symbols is shown in Figure 2.

The second step is to define the general application
logic, i.e., to specify the different transitions like, e.g.,
switching between or refreshing screens. The transi-
tions are drawn as arrows on the same sheet of paper.
Every arrow connects the triggering object with the
screen that is shown next. Special symbols are used to
visualize constructs like, e.g., loops (in future versions),
entry and exit points for starting, resuming, or termi-
nating an application. Figure 3 shows the sketches for
an example application containing all screens of the
application as well as the main transitions.

Il
I

I

TR
Figure 3: An Example of the complete visual input for develop-

ing a mobile application. The sketch includes all screens and
the main application flow.

Once all screens and the main transitions are drawn on
paper, the software development kit will be used for the
final steps until the new application has been deployed.
First, the application captures an image of the complete



Stringitem

Date Field

Optionen

Figure 4: A screenshot of the
development kit showing the
detection result of the captured
UI sketch shown in Figure 2.
The displayed items can be
modified or deleted and new
items can be added as well.

sketch prepared in the previous steps. The image is
then processed to detect all visible elements and to
generate the desired objects and transitions. In a first
processing step, the different screens and the global
logic are recognized and the different elements of every
screen are parsed. The results for each screen are dis-
played on the phone one after another. Figure 4 shows
the detection result of the exemplary sketch presented
in Figure 2. Corrections to each screen can be done by
modifying or removing the displayed UI elements or by
adding new elements. Additionally, the properties of
each item can be adjusted like, e.g., setting a meaning-
ful name for an item in order to allow easier access
during the coding phase. As shown in Figure 5 a pre-
view mode is available to visualize how the screen will
look like in the final application.

Whenever an appraisal of a screen is finished the tran-
sitions beginning at the current screen are examined
and stored. If a transition starts at a command, it will
be initiated when the command is executed. If the tran-
sition starts at a specific item on a form, the developer
can select the event related to this item which should
trigger the transition.

As a last step, the developer has the possibility to add
specific code to each transition and thus to give life to
the application itself. To reduce code entry even in this
step, different supporting techniques are possible. One
possibility is of course to provide code completion me-
chanisms while entering code. If longer pieces of code
have to be entered, the user could also write the cor-
responding code onto a piece of paper and capture an
image of the text which will then be processed by an
optical character recognition web service to integrate
the code into the application. If a projector phone is

used, this technique could be extended to allow instant
changes within the projection by using a pen.

As soon as all mentioned steps are completed, the mo-
bile application can be started, debugged, and even
distributed as a full program to other phones.

Initial Feedback

In order to get feedback about our concept, we con-
ducted a focus group with users who had experiences in
mobile programming. The participants were six males
with an average age of 23.5 years. All of them were
senior students in computer science at our university
with experience in mobile and desktop programming.

The idea of programming directly on the mobile devices
was well received by the focus group. The participants
stated that they could imagine to develop on mobile
phones instead of on the desktop when they are on the
way or have no access to a PC: "When I have an idea
to implement something and I do not have the laptop
with me (...) I can just open my (mobile) phone and
make the improvements.” In addition the participants
found that for some applications debugging and testing
in-situ is much more suitable than on emulators as one
participant stated: “Hardware specifics of phones are
difficult to test in the emulator, for example: how do I
debug a multi-touch mobile application on a PC?”
Another participant complained about the permanent
need to switch between the PC and the mobile phone
while coding and testing. The small screen and espe-
cially the limited text input mechanisms were the main
concerns raised by each participant for coding on mo-
bile phones. The members of the focus group consi-
dered the use of paper-based sketches as the base for
the implementation of GUI elements and interactions as



e
= (9)
textfield
Please enter your name!|
gauge
e

stringltem
Lorem ipsum...
datefield

12:00 24.12.2009

Figure 5. A screenshot of the de-
velopment kit showing the preview
mode for the form shown in

Figure 4.

very useful - especially for a rapid development of ap-
plications. All participants stated that they definitely
would use a tool like the proposed development Kkit.
Without much effort and without any previous explana-
tion the participants understood the symbols and tran-
sitions of the presented paper-based sketching method.

Conclusion and Future Work

Although current mobile phones have more power than
personal computers of the middle 90s and mobile
phones are very popular in developed and developing
countries, programming for mobile phones is done sole-
ly on the PC. One main reason resides in the output
and input limitations caused by small screens and key-
boards. Here, we propose the concept of MobiDev, a
development kit that combines paper-based sketches
with in-situ mobile phone programming. In order to
reduce the usage of the keyboard for coding, paper-
based sketches are utilized as a basic visual GUI devel-
opment tool. User only draw sketches of the applica-
tion, then MobiDev interprets the GUI elements, inte-
ractions and transitions between the forms drawn, and
converts them to a real mobile application.

Citizens from developing countries could directly benefit
from such a system. As many of those people only have
access to a mobile phone our system would offer them
easy means to develop plain applications for the first
time. For example teachers could build learning applica-
tions for their pupils, or students could learn program-
ming, which so far has been impossible to do properly
without access to a PC.

In addition, it could also benefit expert programmers as
MobiDev allows to develop and to debug software which
uses hi-tech mobile phone features that are not fully
supported by the emulators, such as camera and GPS.

Thus, environment switching between PC and phone
becomes redundant as everything is done on the
phone.

The first development steps of MobiDev have been
completed. Currently MobiDev is able to transform the
UI sketches into real Java ME forms. Next, the recogni-
tion of the general application logic as well as the code
entry methods will be implemented. As soon these
steps are completed, we plan to conduct user studies to
test our toolkit with real users.

Further improvements, related to image processing,
could be to support text recognition, and, e.g., to allow
color picking through taking a picture of a texture to
customize GUI colors, borders and backgrounds.
Finally, the system could be extended with a web ser-
vice in order to accelerate complex image processing
tasks or to generate and distribute standalone JAR files
of a created application.

References

[1] Ballagas, R., Memon, F., Reiners, R., and
Borchers, J.: iStuff mobile: rapidly prototyping new
mobile phone interfaces for ubiquitous computing. In
Proc. CHI 2007, ACM (2007), 1107-1116.

[2] De Sa, M. and Carrigo, L.: A mobile tool for in-situ
prototyping. In Proc. MobileHCI 2009, ACM (2009), 1-4.

[3] De Sa, M., Carrigo, L., Duarte, L. and Reis, T.:
A mixed-fidelity prototyping tool for mobile devices. In
Proc. AVI 2008, ACM (2008), 225-232.

[4] Kam, M., Mathur, A., Kumar, A. and Canny, J.: De-
signing digital games for rural children: a study of tra-
ditional village games in India. In Proc. CHI 2009, ACM
(2009), 31-40.

[8] Measuring the Information Society — The ICT De-
velopment Index (Edition 2009), International Tele-
communication Union ITU, Geneva, Switzerland, 2009.



