
Identifying Malicious Players in GWAP-based
Disaster Monitoring Crowdsourcing System*

Changkun Ou
Institute of Computer Science

University of Munich
Munich, Germany

changkun.ou@ifi.lmu.de

Yifei Zhan
Institute of Computer Science

University of Munich
Munich, Germany

yifei.zhan@campus.lmu.de

Yaxi Chen 1,2

1. The Key Laboratory for Computer Systems of
State Ethnic Affairs Commission

2. School of Computer Science and Technology
Southwest Minzu University

Chengdu, China
yaxichen@swun.cn

Abstract—Disaster monitoring is challenging due to the lake
of infrastructures in monitoring areas. Based on the theory
of Game-With-A-Purpose (GWAP), this paper contributes to
a novel large-scale crowdsourcing disaster monitoring system.
The system analyzes tagged satellite pictures from anonymous
players, and then reports aggregated and evaluated monitoring
results to its stakeholders. An algorithm based on directed graph
centralities is presented to address the core issues of malicious
user detection and disaster level calculation. Our method can be
easily applied in other human computation systems. In the end,
some issues with possible solutions are discussed for our future
work.

Index Terms—Human Computation, Network Analysis, Large-
scale Crowdsourcing, Game-With-A-Purpose

I. INTRODUCTION

MANY Non-Profit Organizations (NPOs) such as the
United Nations Children’s Fund (UNICEF) provide [1]

humanitarian assistance in developing contries. The largest
challenges for these organizations are those unreachable zones
[2] where the real time war situation or disaster level are
extremely difficult to be derived. Lack of sufficient local
infrastructures, disasters can only be monitored from the sky
level. Satellite sensors are widely deployed in order to report
images of monitoring areas [3].

Nowadays automatic disaster monitoring has not achieve
satisfying success while highly costly manual methods cannot
satisfy real-time requirements. Therefore, the fields of human
computation and crowdsourcing are investigating methods to
harvest crowd wisdom. GWAP is one representative theory
which convert time- and energy-consuming image process-
ing problems into games in which players are motivated
to contribute. Inspired by this theory, we present a novel
large-scale crowdsourcing disaster monitoring system. The
system analyzes tagged satellite pictures from players and
then calculate the disaster level automatically. An algorithm
based on directed graph centralities is presented to address
the core issues of malicious player detection as well as
disaster level calculation. Out method can be applied to other
human computation systems in general. As justification, the

* This research has been supported by the Bavarian IUK Program (IUK-
1805-0004//IUK577/002) and Sichuan Science and Technology Program
(2019YFH0055).

mathematical correctness of the system is proved. In the end,
we also discusse some limitations and relevant solutions for
the future work.

II. RELATED WORKS

Human computation system is a paradigm for utilizing
the human processing power to solve problems that nei-
ther computers or humans can solve independently [4], [5].
Most of the human computation systems can be seen [6] as
crowdsourcing trade, which rely on the wisdom of crowds.
Surowiecki claimed [7] four critical properties of wisdom of
crowds: diversity of opinion, independence, decentralization
and aggregation. Oinas-Kukkonen further concluded [8] the
theoretical foundation of wisdom of crowds based on network
analysis. For instance, PageRank was first proposed by Lary
Page [9] and applied to social network analysis [10]. It is
commonly used for expressing the stability of physical systems
and the relative importance, so-called centralities, of the nodes
of a network. PageRank fulfil the four condition of a wisdom
of crowd mentioned above.

The fundamental theory for this paper is Game-With-A-
Purpose (GWAP), which involves game theory [11] in hu-
man computation systems [12], [13]. It outsourced within
a computational process to humans in an entertaining way,
namely gamification, and recently considered as the power of
addressing large-scale data labeling costs in machine learning
research [14]–[16]. Nevertheless, the data collection mecha-
nisms for a game is variety that should be considered in a
proper way [17]. In long-term research, ESP [12], and ARTigo
[18] have verified through years of operations that human
inputs are valuable and meaningful, and the most important
two challenges in GWAP systems are game incentivization
and malicious player detection.

Unfortunately, these existing representative GWAP-based
human computation systems have the following issues: (1)
They require two online players competing with each other,
which may harm the degree of playability and even meet
troubles when lacking of players. (2) They only use the
most commonly appeared tags that cannot prevent massive
malicious players attacking the system and providing mean-
ingless tags. However, manually managing the tag database
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Fig. 1: System architecture: the system is designed to cooperate with multiple microservices, the most critical components are
task generating service, the rating service and ranking service. The task generating service mixes reliable resulted images and
new reported satellite images to generate player’s tasks. The rating service and ranking service are based on the PRM and
DEM model respectively.

is not feasible due to the high cost of human labor and the
inevitable issue of system cold start. In order to deal with the
lack of players, our system turns multiplayers-required game
into game between new players and existing reliable players.
Furthermore, a malicious player detection algorithm based on
directed graph centralities is proposed which requires only one
single reliable players to avoid the issue of cold start.

III. DESIGN AND MODELS

In this section, we describe the overall design and proposed
models in detail. First, we propose the system architecture
and specify the most critical components: player task gener-
ator (PTG), player rating model (PRM) as well as disaster
evaluation model (DEM). With these components, the disaster
monitoring system can handle the common issues in human
computation system, such as system cold start and malicious
player detection. It is also expandable, portable and can
be easily applied to any other similar human computation
systems.

A. System Architecture and Functionalities

Figure 1 illustrates the architecture of our disaster mon-
itoring system. The system databases are composed of two
different type of databases. The player database (PlayerDB)
stores gaming data including the player’s property and raw
tagging inputs. The other database is called ResultDB where
persistents the reliable players’ inputs that rated by our rating
service. The overall data flow can be described as following:

Step 1: Player task generation: The PTG mixes the
reliable gaming results from ResultDB and new reported
images from satellite, and then assigns them to the future
players.

Step 2: Malicious player detection: A reliable player
requires to pass the malicious detection algorithm (see Al-
gorithm 1) embedded in the PRM. Then the system will mark
all the results from this player as reliable and then send them
to the ranking service.

(a) (b) (c)

Fig. 2: System interface. a) Player game panel overview; b)
Multi-tags selection for selected areas; c) Disaster level report
in stakeholder view. Satellite images are taken from [19].

Step 3: Disaster level evaluation: the system reuses the
reliable players’ inputs into DEM that embedded in ranking
service and calculates the disaster level of the monitoring
region then persistents it in ResultDB.

After these three major steps, a disaster level report can be
retrieved from ResultDB.

In our game, a player can execute infinity rounds of tasks,
and each single round of task contains n image tagging tasks.
In one task, the player is asked to tag n images (see Figure
2a). The player needs to draw a rectangle to select an area
where a sign of danger or damage (such as fire or explosion)
is discovered. System-suggested tags will then pop up and the
player can select relevant ones by simply clicking on them (see
Figure 2b). The player can also input new tags. The system
analyzes the user input and creates a disaster level report (see
Figure 2c) for this region which can be used by NGOs and
governments.

B. Preliminaries

To describe and establish our models, we describe a few
basic definitions in this subsection.

Definition 1. The region of interests (ROI) is an indicator
that represents player-selected two-dimentional region. The i-
th ROI from player p in image k at image creation time t is
denoted by ROIp,i,k,t.



Considering image k implies its creation time t (an image
always contains its creation time), for convenience, ROIp,i,k,t
is simplified as ROIp,i,k. For instance, Figure 3 shows some
examples of ROIs in different images.
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Fig. 3: Examples of ROIs in the disaster monitoring system:
In this figure, reliable players (red and blue) draw rectangles
to indicate area with disaster, however a player that does not
cooperate with the game (black) selects different ROIs. The
ROIp,i,k indicates the i-th ROI from player p in image k.

Remark 1. The definition is designed for our database
scheme, which includes PlayerDB and ResultDB, and their
data schemes are illustrated in Listing A.1 and Listing A.2.
See Appendix A for more descriptions.

As we discussed in Section III, each tag can only be selected
once, and players are allowed to input new tags for the
selected ROIs. Then, We define the ROI tag vector for the
model:

Definition 2. Assuming the database stores n different tags
g1, g2, ..., gn for a certain image k, the tag vector Tp,i,k of
ROIp,i,k (the i-th ROI in image k of player p) is a vector that
is denoted by the following formula:

Tp,i,k = (|g1|, |g2|, ..., |gn|)> (1)

where gl is the l-th tag where l = 1, 2, ..., n, |gl| is the count
of gl in a player task object, and n equals to the number of
tags.

Remark 2. Since each tag can only be selected once, the
components of tag vector is either 1 or 0. This definition
performs a popular data preprocessing technique, which called
One-Hot Encoding trick [20], [21].

Remark 3. For instance, for a certain image k, 5 different tags
g1, g2, g3, g4, g5 were input by our game player. Assuming
player p selects the first ROI and inputs tags for ROIp,1,k:
{g1, g2, g3, g4}, and player q selects the first ROI and inputs

tags for ROIq,1,k: {g1, g3, g4, g5}. Then tag vector Tp,1,k of
ROIp,1,k is (1, 1, 1, 1, 0)> and tag vector Tq,1,k of ROIq,1,k
is (1, 0, 1, 1, 1)>.

C. Player Task Generator

The PTG creates task images by combining images from
satellite and ResultDB. A player task contains 2n different
images in random order, in which n images are untagged new
satellite images and other n images are tagged images from
ResultDB, PTG thus contains two generating steps:

Step 1: PTG splits a monitoring region into small pieces
of images, assigning a unique identifier for each piece (The
reason is discussed in Section IV-B).

Step 2: PTG retrieves tagged images from ResultDB,
then combines these two types of images to create a task for
a new upcoming player.

D. Player Rating Model

The PRM is responsible for detecting malicious players.
We convey the basic idea of centralities of a network and
use eigenvalue as the trust value for each player to identify
malicious players among all players.

The model is established from image dependent perspective.
For a certain image k, considering a directed player rating
graph (PRG) between players who tagged the image k. Each
player is a node of PRG, as illustrated in Figure 4.

Image k

Image k

New player comes

wp,q,k

wq,p,k

wq,p,k

wp,q,k

Player p Player q

Player p Player q

Player r (new)

Fig. 4: PRG for certain images: Assume player p and q are
former players who have been evaluated as reliable players.
Consider each of the player as a node in a graph, the wp,q,k
is players’ PRMR shown as a directed arc in the graph. A
new player is composed with former players in the graph as
a game network.



Definition 3. Assuming the database stores n different tags
g1, g2, ..., gn. The system weight vector v = (p(g1), p(g2),
..., p(gn))> of all tags can be calculated by the following
Equation 2:

p(gi) =
|gi|∑n
j=1 |gj |

(2)

where |gi| is the count of gi in the system.

Definition 4. Assuming different tags gr1 , gr2 , ..., grs were
tagged in a certain image k, the image weight vector is a
vector for image k that is composed by part of the system
weight vector, which is denoted by vk =(p(gr1), p(gr2), ...,
p(grs))> with ri(i = 1, 2, ..., s) ∈ {1, 2, ..., n}, ri 6= rj(i 6=
j, j = 1, 2, ..., s) and s ≤ n.

Remark 4. For instance, the system has 2 different images.
The first image is tagged by two players. One is g1, g2, g5
and another is g1, g2; The second image is tagged by three
players, their results are: g1, g2, g5; g2, g4, g5; g3, g4, g5.
Thus, the system currently has 5 different tags g1, g2, g3, g4,
g5. Each tag has corresponding counts: 3, 4, 1, 2, 4; Therefore
the system weight vector is ( 3

14 , 2
7 , 1

14 , 1
7 , 2

7 )>; the image
weight vector of the first image is ( 3

14 , 2
7 , 2

7 )> since the first
image only is tagged by g1, g2, g5, and the image weight
vector of the second image is the same as the system weight
vector since the second image is tagged by all exist tags.

Lemma 1. p(gi) holds the properties: a) 0 ≤ p(gi) ≤ 1, b)∑n
i=1 p(gi) = 1, and c)

∑s
i=1 p(gri) ≤ 1.

So far our player has two different type of inputs: the
ROI, and its tag vector. To define the PRG edge weight, we
introduce two input measurements in the subsequent Definition
5 and 6.

Definition 5. The players ROI matching ratio (PRMR) is an
importance measurement that measures the proportion of two
different ROI intersection surface from player p, q and the ROI
surface from player p in a certain image k, which is denoted
by the following formula:

PRMR(p, q, i, j, k) =
|ROIp,i,k ∩ROIq,j,k|

|ROIp,i,k|
(3)

where ROIp,i,k is the i-th selected ROI from player p, and
|ROIp,i,k| is the surface area of ROIp,i,k.

Lemma 2. The following inequality holds:

0 ≤ PRMR(p, q, i, j, k) ≤ 1 (4)

Definition 6. The players input tag correlation (PITC) is
an importance measurement that measures the proportion of
the covariance of two different tag vectors Tp,i,k,Tq,j,k from
player p, q and the covariance of Tp,i,k from player p with
itself under the image weight vector vk, which is denoted by
the following formula:

PITC(p, q, i, j, k) =
Cov(Tp,i,k,Tq,j,k;vk)

Cov(Tp,i,k,Tp,i,k;vk)
(5)

where Cov(X,Y;w) is the weighted covariance between X
and Y, which denoted by:

Cov(X,Y;w) = (6)∑n
i=1 wi(xi −

1
n

∑n
i=1 wixi)(yi −

1
n

∑n
i=1 wiyi)∑n

i=1 wi
(7)

with X = (x1, x2, ..., xn)>,Y = (y1, y2, ..., yn)>,w =
(w1, w2, ..., wn)>.

Remark 5. The definition of PRMR and PITC share the same
intent for measuring asymmetric importance between player p
and player q (namely how p thinks of q).

Remark 6. The definition of PRMR is inspired by intersec-
tion over union (IoU), a wide-used computer vision criteria
also as known as Jaccard index [22], [23]. statistically used to
compare the similarity and diversity of sample sets. Differ
from IoU, we only divided a single ROI surface area to
guarantee the asymmetric property for directed graph weight.

Remark 7. The definition of PITC is inspired by the weighted
pearson correlation coefficient [24], which is a measure of the
linear correlation between two variables. In our case, with the
same intent of PRMR, we drop the part of covariance of player
q in denominator to guarantee the asymmetric property for
directed graph weight.

Remark 8. The PRMR and PITC both are not metrics of
distance due to PRMR(p, q, i, j, k) 6= PRMR(q, p, i, j, k) as
well as PITC(p, q, i, j, k) 6= PITC(q, p, i, j, k).

Lemma 3. The following inequality holds:

− 1 ≤ PITC(p, q, i, j, k) ≤ 1. (8)

So far, we have enough techniques to define the edge weight
of PRG.

Definition 7. For a certain image k, the edge weight of the
PRG between player p and q is denoted by the formula 9:

wp,q,k =
n∑
j=1

m∑
i=1

PRMR(p, q, i, j, k) (PITC(p, q, i, j, k) + 2)

(9)
with player p selected m ROIs, player q selected n ROIs.

The Perron-Frobenius theorem guarantees our goal can be
drifted to the calculation of the adjacency matrix of PRG. In
consequence, one can use the normalized adjacency matrix by
using formula 10:

Ak = (ap,q,k) = (
wp,q,k∑
q wp,q,k

) (10)

where k is the image indicator.

Theorem 1 (Soundness). The normalized adjacency matrix
Ak of PRG of a certain image k is irreducible, real, non-
negative, and column-stochastic, with positive diagonal ele-
ment.



Remark 9. From the proof (in Appendix F) of property of
positive diagonal elements, one can observe that the number
“2” is a translation that guarantees PITC(p, q, i, j, k) lies
on closed interval [1, 3] which helps us prove this theorem
successfully.

According to Perron-Frobenius theorem and Theorem 1, one
can infer that there exists an uniqueness eigenvector Vk =
(λ1,k, ..., λn,k)> of Ak (Perron vector), with an uniqueness
eigenvalue ρ(Ak) is the spectral radius of Ak (Perron root),
such that:

Ak ·Vk = ρ(Ak) ·Vk, λi,k > 0,

n∑
i=1

λi,k = 1.

Therefore, we define the trust value of a player as following:

Definition 8. A trust value λi,k of player i on image k is a
score that equals to the i-th component of the Perron vector
of the normalized PRG adjacency matrix Ak.

This definition represents the rating score from player p to
player q for a certain image k, as same as the centrality of
the player q. With the trust value of players, we propose our
classification algorithm:

Algorithm 1: Malicious Player Detection
input : New Player p,

Trusted Player p1, p2, ..., pm,
Task Images k1, k2, ..., k2n,
Acceptance Threshold δ

output: Reliability of Player p
begin

counter ←− 0
reliability ←− false
for k ∈ [k1, k2, ..., k2n] do

if k is tagged image then
calculate λp,k, λp1,k, ..., λpm,k
if λp,k ≥ 1

m

∑m
i=1 λpi,k then

counter ←− counter +1
end

end
end
if counter ≥ δ then

reliability ←− true
end

end

Remark 10. The criterion of classifying new players per-
forms the action that the trust value of a new player should not
be less than the mean value of overall trust value of players on
image k, which means the tagging performance of new player
should not be worse than result performance of former players.
The acceptance threshold is a customizable parameter that can
be set beforehand. For instance, if δ = 1, the new player only
needs to pass one singular image of all tagged images; if δ = n
(half images of the task), the new player has to pass all tagged

images, which makes the system unbreakable if the system is
initialized by a trusted group.

Note that sometimes new player carries new tags into the
system. It will influence the tag vector calculation and cause
the weight not computable due to the inequal dimensions of
the tag vector of new player and old player. A solution for
this issue is proposed in the following steps:
• If a new player does not provide new tag: Directly

perform the calculation with the algorithm;
• If a new player carries new tags only: Directly drop them

because they are unreliable;
• If a player carries both selected and new tags: a) Perform

the calculation with the algorithm without new tags; b)
Merge and update all weight vector v via formula 9 if the
player is reliable; c) Otherwise drop and mark the result
as unreliable.

E. Disaster Evaluation Model

The idea of stochastic pooling [25]–[27] is applied to define
our Disaster Evaluation Model. For a monitoring region at
time t, we address the DEM through disaster level definition
as follows:

Definition 9. A monitor region is composed by images
k1, ..., kn. Each image exists rki number of ROIs with i =
1, ..., n, and each ROI is tagged with tags g1, ..., gm. The
disaster level ∆ of a monitor region is calculated by the
following:

∆ =

m∑
j=1

(
p(gj)

∑
gj
|ROI|∑n

i=1 |ki|

)
(11)

where |ROI| is the surface area of a ROI,
∑
gj
|ROI| means

accumulated surface area of all ROIs that tagged by gj , and
|ki| is the surface area of image ki.

Remark 11. The disaster level is defined as a weighted area

coverage. The
∑

gj
|ROI|∑n

i=1 |ki|
is a surface ratio of the ROI over

monitoring area, and the p(gi) is the correcponding weight of
the ratio.

Theorem 2 (Denseness). The disaster level ∆ is dense in
internal [0, 1].

With Theorem 2, one can calculate the disaster level for a
monitoring region according to Equation 11. An area gains
higher disaster if the disaster level is closer to 1, and vise
versa.

F. Model Initialization

Due to the lack of users in the very beginning, cold start
is a common problem in such human computation system.
This issue is nornally solved by hiring people to create data
manually. In this system, we only have to consider one system
initialization issue of cold start.

The issue appears in the PTG. To initialize the whole
system, we need to address an initial trusted group for PTG
who shall tag enough initial trusted results as well as a
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fixed predefined tag list (containing all of the most important
keywords that need to be monitored) for PTG and then assign
the tagged images to new upcoming players. Once a new
player is included in the trusted group, all the relevant result
from this player will be considered as reliable. The trusted
group and available dataset grows with gradually growing
number of reliable players and their reliable tags, as shown
in Figure 5.

Thus, we have only one issue regarding the minimum
number of the initial trusted group. Our PRM is based on graph
centrality calculation, which means we need a (at least) two
dimensional matrix to perform the overall model calculation.
Hence, with the new player, the minimum number of the initial
trusted group is 1. Then the initial trusted group (one person)
with the new player form a two dimensional adjacency matrix
that makes the model computable. For larger initial trusted
groups, the trust value can be simply initialized to 1

n with n
is the number of initial trusted group.

IV. DISCUSSION

We have described the system architecture and 3 core mod-
els for task generation, malicious player detection and disaster
level evaluation. Malicious player detection is essentially a
classification problem in which our system determines the
reliability of a new player based on the trust value. In this
section, we would like to discuss some issues for the future
work.

A. Simulated evaluation

To evaluate our model, a typical classification model per-
formance evaluation metric is receiver operating characteristic
(ROC) curve [28], which plots True Positive (on the y-axis)
against False Positive and the ideal surface under the ROC

Monitored Geographical Region

(x,y)

WROI

HROI

Fig. 6: An example of ROI simulation which can be used in
the system evaluation.

curve is 1. Nevertheless, before we test the system with real
users, one can generate a reasonable random dataset to test
the performance of our classification model (PRM).

Our player has two different types of inputs: the ROI and
its tag vector. For a reasonable player data entity, one has to
define the ROI selection and its corresponding tag vector. To
generate reasonable ROI for simulating real user behavior, we
would like to discuss a desktop target click behavior first.

The target click behavior on a screen has been explored
for years [29], [30]. It has been modeled and proved that
the distribution of click behavior for a certain point satisfy
Gaussian distribution [31]. Thus, from frequency statistic view,
the actual ROI(s) certainly exists. No matter where the user
starts, according to the Fitts Law and FFitts Law, the starting
click point should follows normal distribution around the
actual point, as shown in Figure 6. Similarly, the end point
of the selection of ROI(s) should also follows a normal
distribution.

Therefore, to generate ROI(s), let (x, y) as the player ROI
starting point, (HROI , WROI) as the height and width pair of
this ROI, then we generate noise for the ROI starting points
and landing points: (x+ε, y+ε), (HROI+ε,WROI+ε) where
ε ∼ N(0, δ). For the parameter δ, one can use maximum
likelihood estimator [32] to perform the inference for all
manually ROI selection samples from initial trusted group.

The generation of tag vector for a certain image is simpler
than ROI’s. A randomly pick from initial trusted group is
sufficient for the simulation case because these tags are trusted
results and a partially randomly selection already introduced
the noise in this case.

Eventually, one can apply this random dataset to evaluate
surface under the ROC curve as an indication of the overall
performance (the model may show good performance if the
surface approximate to 1).
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Fig. 7: Information loss may occur on the intersection lines;
a possible solution is to perform a “half shifting” cut.

B. Data leakage and information loss

In order to prevent leakage of data to malicious players,
we intentionally cut original satellite images into small seg-
mentations. However, this method may cause information loss
if some important ROIs are located at the intersection of two
dividing lines. A possible solution is to consider “half shifting”
cut, as shown in Figure 7.

C. Limitations

a) Outdated Evaluation: Our PRG network is based on
image dependent perspective, that leads, each calculated dis-
aster level may become invalid if the region image is outdated.
We assume the satellite takes pictures for the monitoring area
between intervals. However, our model only calculates the
disaster level at a unique moment, which means the disaster
level needs transvaluation when a new image is generated. If
none of the new images gets evaluated, then the disaster level
will not be updated. The disaster level of a certain region over
time is essentially a non-stationary process [33] time series
prediction method [34] can be applied on the disaster level
time series.

b) Game Playability: Considering the fact that most
parts of the earth are lake, forest, desert and so on, during
the game playing, players may meet the situation that there
is no available ROI in several continuous rounds. Obviously,
it will decrease the playability and enjoyment of the game. A
possible solution is pre-filtering these images from the image
database.

V. CONCLUSION

In this paper, we explored a GWAPs-based disaster mon-
itoring system. We firstly proposed a player rating model
based on eingenvalue centralities to calculate the trust value
of a player. And then we proposed an algorithm for malicious
user detection. As justification, we proved the mathematical
correctness of this model. We then calculate the regional
disaster level in the disaster evaluation model. We also deal
with the general problem of system cold start by introducing
the method of image half shifting cut. Our system design
can also applied to other similar human computation systems.
Furthermore, we discussed theoretical evaluation criteria for

this system, and then addressed corresponding solutions for the
issues of data leakage, information loss and game playability.
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APPENDIX

A. Examples of database scheme

With Definition 1, the players of our system are able to
select ROIs for each image as well as capable of select tags for
each ROI. Thus, the tasks field in PlayerDB is an array object,
stores each player image result with an assigned identifier.

[{
” p l a y e r i d ” : ”E3A6F124−4A6C−4C6E−B7F1−F8BC9A7381CC ” ,
” t a s k s ” : [{

” image id ” : ”3A21E99E−F074−454B−A590−8D8C5ABD8E77 ” ,
” i m a g e a t ” : ”2017−07−31 1 1 : 2 8 : 4 0 ” ,
” r e l i a b l e ” : t r u e ,
” ROIs ” : [{ ” x ” : 103 , ” y ” : 121 , ” h e i g h t ” : 56 , ” wid th ” : 78 ,

” t a g s ” : [ ” b u r n i n g b u i l d i n g ” , ” e x p l o s i o n ” ]
}]

}]
} , . . . ]

Listing A.1: An example of PlayerDB data scheme

Each object in the tasks array has a field reliable, which
indicates the reliability for this object task; Each object also
contains a ROIs field, which is an array object that contains
the player inputs for this object image; Each ROI object in the
ROIs field has four properties that describes the ROI geometric
location: x, y, height, width, and also a tags array field that
describes the input tags for this image from this player. For
tags field, game players can select the related tags for each
ROI, and stores in this array.

[{
” r e g i o n i d ” : ”FBEB6204−0B94−4811−94F0−9DDC5FBBE6D8” ,
” h i s t o r y ” : [{

” image id ” : ”3A21E99E−F074−454B−A590−8D8C5ABD8E77 ” ,
” i m a g e a t ” : ”2017−07−31 1 1 : 2 8 : 4 0 ” ,
” ROIs ” : [{

” x ” : 103 , ” y ” : 121 , ” h e i g h t ” : 56 , ” wid th ” : 78 ,
” t a g s ” : [ ” b u r n i n g b u i l d i n g ” , ” e x p l o s i o n ” ]
}]
}]
} , . . . ]

Listing A.2: An example of ResultDB data scheme

B. Proof of Lemma 1
Proof: a) According to the Definition 3, |gi| is non-

negative, then 0 ≤ |gi| ≤
∑n
j=1 |gi|. Thus, we have

0 ≤ p(gi) ≤ 1. b)
∑n
i=1 p(gi) =

∑n
i=1

|gi|∑n
j=1 |gj |

= 1. c)∑s
i=1 p(gri) ≤

∑n
i=1 p(gri) ≤ 1.

C. Proof of Lemma 2
Proof: According to the Definition of ROI, |ROIp,i,k ∩

ROIq,j,k| can archive its maximum value only and only if
ROIp,i,k = ROIq,j,k as well as its minimum value only and
only if ROIp,i,k has no intersection with ROIq,j,k. Thus:

0 =
0

|ROIp,i,k|
≤ PRMR(p, q, i, j, k)

≤|ROIp,i,k ∩ROIp,i,k|
|ROIp,i,k|

=
|ROIp,i,k|
|ROIp,i,k|

= 1.

(12)

D. Proof of Lemma 3
Proof: We know that the weighted Pearson Correlation

Coefficient [24] lies on [−1, 1], i.e.

−1 ≤ Cov(Tp,i,k,Tq,j,k;vk)√
Cov(Tp,i,k,Tp,i,k; vk)Cov(Tq,j,k,Tq,j,k;vk)

≤ 1

To prove Equation 8, we have to show:

Cov(Tp,i,k,Tq,j,k;vk)

Cov(Tp,i,k,Tp,i,k;vk)
≤ |Cov(Tq,j,k,Tq,j,k;vk)√

Cov(Tp,i,k,Tp,i,k;vk)Cov(Tq,j,k,Tq,j,k;vk)| ≤ 1 (13)

and

Cov(Tp,i,k,Tq,j,k; vk)

Cov(Tp,i,k,Tp,i,k;vk)
≥ −|Cov(Tq,j,k,Tq,j,k;vk)√

Cov(Tp,i,k,Tp,i,k; vk)Cov(Tq,j,k,Tq,j,k;vk)| ≥ −1

(14)
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Then we need to show:

0 ≤ Cov(Tp,i,k,Tp,i,k;vk)Cov(Tq,j,k,Tq,j,k;vk)3 ≤ 1
(15)

Considering Tp,i,k,Tq,i,k are described in general, with Equa-
tion 6, we only need to show (s is an vector components index
instead of exponential):

0 ≤ Cov(Tp,i,k,Tp,i,k;vk)

=

∑n
s=1 v

s
k

(
Ts
p,i,k − 1

n

∑n
s=1 v

s
kT

s
p,i,k

)2
∑n
s=1 v

s
k

≤ 1
(16)

According to the definition of tag vector and image weight
vector, the components of Tp,i,k are either 1 or 0, the
components of vk lies on [0, 1], with Lemma 1, we have:

0 ≤

(
Ts
p,i,k −

1

n

n∑
s=1

vskT
s
p,i,k

)2

≤ 1 (17)

Therefore,

0 =

∑n
s=1 v

s
k · 0∑n

s=1 v
s
k

≤ Cov(Tp,i,k, Tp,i,k; vk) ≤
∑n
s=1 v

s
k · 1∑n

s=1 v
s
k

= 1

(18)
which proves Equation 16.

E. Proof of Theorem 1

Proof:
Irreducibility As shown in Figure 4, for a certain image k,

the PRG is strong connected because the player who selected
ROIs in image k has a direct connection to any other player
who also selected ROIs in image k (the edge weight is
well defined according to Equation 9). Thus, since Ak is an
normalized strong connected PRG adjacency matrix, which
proves Ak is irreducible.

Real elements With Lemma 2 and 3, each part of the
Equation 9 are real number. Thus, of course, the matrix Ak
elements are calculated by Equation 10 that are real elements.

Non-negative elements With Lemma 2 and 3, we have:

wp,q,k (19)

=

n∑
j=1

m∑
i=1

(PRMR(p, q, i, j, k) (PITC(p, q, i, j, k) + 2))

(20)

≥
n∑
j=1

m∑
i=1

(0 · (−1 + 2)) = 0 (21)

Thus, wp,q,k has its lower bound when
PRMR(p, q, i, j, k) = 0 (for alli = 1, ...,m; j = 1, ..., n) and
PITC(p, q, i, j, k) = −1(for all i = 1, ...,m; j = 1, ..., n).
Meanwhile,

wp,q,k (22)

=

n∑
j=1

m∑
i=1

(PRMR(p, q, i, j, k) (PITC(p, q, i, j, k) + 2))

(23)

≤
n∑
j=1

m∑
i=1

(1 · (1 + 2)) = 3mn (24)

and wp,q,k has its upper bound when PRMR(p, q, i, j, k) =
1(for alli = 1, ...,m; j = 1, ..., n) and PITC(p, q, i, j, k) =
1(for alli = 1, ...,m; j = 1, ..., n).

Positive diagonal elements According to Lemma 3, the
diagonal elements can be formalized by follows:

wp,p,k (25)

=

m∑
j=1

m∑
i=1

(PRMR(p, p, i, j, k) (PITC(p, p, i, j, k) + 2))

(26)

≥
m∑
j=1

m∑
i=1

(
|ROIp,i,k ∩ROIp,j,k|

|ROIp,i,k|
(−1 + 2)

)
(27)

=

m∑
j=1

m∑
i=1

|ROIp,i,k ∩ROIp,j,k|
|ROIp,i,k|

(28)

=
∑
i=j

|ROIp,i,k ∩ROIp,j,k|
|ROIp,i,k|

(29)

+
∑
i6=j

|ROIp,i,k ∩ROIp,j,k|
|ROIp,i,k|

(30)

≥
∑
i=j

|ROIp,i,k ∩ROIp,j,k|
|ROIp,i,k|

(31)

=

m∑
i=1

|ROIp,i,k ∩ROIp,i,k|
|ROIp,i,k|

(32)

=

m∑
i=1

|ROIp,i,k|
|ROIp,i,k|

= m > 0 (33)

Column stochastic according to the definition of matrix A,
the sum of the column elements are:

∑
q

ap,q,k =
∑
q

wp,q,k∑
q wp,q,k

=

∑
q wp,q,k∑
q wp,q,k

= 1 (34)

F. Proof of Theorem 2

Proof:
According to the Definition 9 and Lemma 1, it is trivial to

show sup ∆ = 1 and inf ∆ = 0, since p(gi) lies in [0, 1] and∑
gj
|ROI| ≤

∑n
i=1 |ki|.

The rest of the proof will prove ∀∆p < ∆q , there exist ∆r

such that ∆p < ∆r < ∆q .



We may assume two monitored region ∆p has mq tags and
∆q has mq tags where mp + 2 = mq , which indicates that
there exists two tags gα and gβ are not appeared in ∆p but in
∆q . Let mr = mp + 1, i.e. one of gα and gβ appear in region
∆r, thus we have:

∆p =

mp∑
j=1

(
p(gj)

∑
gj
|ROI|∑n

i=1 |ki|

)
(35)

<

mp+1∑
j=1

(
p(gj)

∑
gj
|ROI|∑n

i=1 |ki|

)
= ∆r (36)

<

mp+2∑
j=1

(
p(gj)

∑
gj
|ROI|∑n

i=1 |ki|

)
= ∆q (37)
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