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Figure 1: Subset of images from kitchen objects from our database, sorted by their perceived danger perception across the three 
Scenarios (mezzaluna having the highest danger perception, napkin having the lowest). 

ABSTRACT 
In the future, humans collaborating closely with cobots in everyday 
tasks will require handing each other objects. So far, researchers 
have optimized human-robot collaboration concerning measures 
such as trust, safety, and enjoyment. However, as the objects them-
selves infuence these measures, we need to investigate how humans 
perceive the danger level of objects. Thus, we created a database 
of 153 kitchen objects and conducted an online survey (N=300) in-
vestigating their perceived danger level. We found that (1) humans 
perceive kitchen objects vastly diferently, (2) the object-holder 
has a strong efect on the danger perception, and (3) prior user 
knowledge increases the perceived danger of robots handling those 
objects. This shows that future human-robot collaboration studies 

must investigate diferent objects for a holistic image. We contribute 
a wiki-like open-source database to allow others to study prede-
fned danger scenarios and eventually build object-aware systems: 
https://hri-objects.leusmann.io/. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI).
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1 INTRODUCTION 
Today’s voice assistants (e.g., Siri) can answer questions and access 
APIs to control smart home environments. However, they cannot 
support users through direct actions with the physical world. Do-
mestic robots like vacuum robots have the capability to interact 
with the users’ environment. However, they are still only capable of 
solving one specifc task. In the future, collaborative robots (cobots) 
can bridge this gap, either interacting with users directly or with 
physical objects around them. The humans’ role during this inter-
action can range from only observing the other actor to working 
cooperatively together [23]. To interact with the world, the cobot 
will use common tools (e.g., a drill) or directly move objects (e.g., 
a dinner plate). In most cases, the robot manipulates the environ-
ment, and especially in more collaborative settings interacts with 
the same objects as humans or does a hand-over [22]. Augmented 
Reality systems can be used to show the intent of the robot and the 
future position of objects [26, 34]. While we know that interactions 
with robots carrying objects are associated with subjective feelings 
of danger [25, 30, 32], it is unclear how users’ danger perception 
difers between various objects and which objects are especially 
dangerous when being carried by a robot as compared to a human. 

We know that danger perception is infuenced by diferent situa-
tional or personal factors [9, 10, 14, 29]. In particular, people hold-
ing objects of varying danger has an efect on danger perception, 
whereas holding a dangerous object also increases the perceived 
danger [1, 35]. Robots additionally are associated with a feeling 
of eeriness and scariness themselves that may likewise be exacer-
bated when carrying dangerous objects [25, 30, 32]. However, from 
a technical standpoint, cobots are designed to ensure users’ safety 
by including collision detection via, e.g., force sensors [6, 8, 13]. 
Thus, users are not actually in danger but may still perceive the 
situation as dangerous. This is further complicated by the fact that 
future cobots may be able to carry and hand over any kind of object 
in the physical space. To design human-robot interaction (HRI) 
efectively, danger elicited by cobots has to be understood in tune 
with the type of object that is maneuvered by the robot. To the 
best of our knowledge, there is currently no extensive open-source 
image database of kitchen utensils, especially not in the context 
of danger perception in HRI. As direct interaction between robots 
and humans is still very novel, the perception of danger is still 
infuenced by a multitude of things. By understanding how the 
wielded object afects this interaction we can remove one element 
of this danger perception equation. 

We aim to understand how danger is perceived for various ob-
jects to allow for optimal HRI. In this work, we will focus on the 
danger levels of kitchen objects as a prominent example of HRI, 
cf. [5, 21, 31, 33]. In the kitchen, some of these objects can often-
times be dangerous. Kitchen objects like knives or a hot pan can 
directly hurt users. Thus, we usually treat them more carefully than 
other items. In detail, we investigated the danger perception of 
objects from three diferent Scenarios: when the object is used 
by oneself, when used by another human close by, or when used 
by a cobot close by. Therefore, we curate a dataset of 153 unique 
kitchen objects. Our dataset will also enable future research in the 
domain of domestic cobots, e.g., kitchen cobots. In an online survey 
with 300 participants, we gain an understanding of the diferences 

in the perception of danger from kitchen objects. In this survey, 
participants had to rate how dangerous they feel objects under the 
three Scenarios: self, other, and robot. With this, we can understand 
if users perceive cobots similar to other humans. The diference 
between a robot and a human close by using an object is of special 
importance to understanding long-term efects. 

Our investigation of 153 diferent kitchen objects showed that 
they are perceived vastly diferently, ranging from 0 to 100 on a 
101-point danger scale. The danger levels are generally consistent in 
the three interaction Scenarios; however, our results showed that 
the same object used by a cobot is more dangerous than when used 
by self or other. Interestingly, when the cobot uses an object, fre is 
perceived as very dangerous, even more than sharpness, but sharp 
objects like knives are still among the most dangerous objects. Our 
results highlight the need to investigate not only a single object to 
understand optimal human-robot interaction. Therefore, we open-
source our database, allowing others to investigate their scenarios. 
Moreover, as our current database is only a small step in identifying 
a large number of objects that occurs in the HRI context, the next 
step is to enlarge the database now that we have shown there is a 
large impact of the object on the perceived dangers. 

2 DATASET 
To the best of our knowledge, there is no extensive dataset of items 
with pictures, especially not kitchen objects. Most datasets in the 
kitchen domain are video-based datasets, mostly used for action 
segmentation tasks [7, 12, 17]. Other extensive datasets collected 
3D-models of general objects [3, 18, 27] However, none of these is 
an extensive dataset with labeled images of kitchen objects together 
with an investigation of the perceived danger level. 

Thus, we create an extensive open-source dataset of objects in 
the following. In this initial step, we focus only on kitchen objects as 
they already comprise many items and cover a wide range of object 
properties. However, we will extend the list with more everyday 
objects in the future. We aim to set a foundation for HRI research to 
investigate how various items impact human-robot collaboration. 
In the frst step, we curate a list of names of kitchen objects and 
representing images. 

2.1 Item Generation 
We created the frst set of kitchen items in a 3-hour workshop with 
four authors. Here, we started by investigating diferent kitchen 
item lists online. During this, we also discussed the granularity 
of items, e.g., when to group items. We decided to group items as 
long as the functionality and intended use were the same. Thus, we 
grouped all items in one group even if they have a diferent color, 
form, and size, such as a red plate and a blue plate. However, when 
the functionality of the intended us is diferent, we would put them 
in diferent groups, e.g., paring knife and table knife. 

With this initial list, we asked 30 additional people if they were 
missing any kitchen items. The people were from four diferent 
continents (South America, North America, Europe, and Asia) to 
ensure a diverse set of cooking styles and cultures were represented 
in the dataset. 

In a second workshop, we discussed all item names with a North 
American citizen to ensure consistent language. As we created this 
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Figure 2: The vision of a future kitchen, where cobots support 
users with their cooking tasks. Source: Oechsner et al. [21] 
under Creative Commons license. 

initial item list for human collaboration scenarios, we removed 
it with the following exclusion criteria: The item is typically not 
moved and, thus, typically has a dedicated spot in the kitchen, e.g., 
microwave or fridge. This resulted in our fnal set of 153 items. In 
this stage, we also added alternative names for the items. Finally, 
we took pictures of all the items enabling everyone to understand 
the item even if the name was unclear. See Figure 1 for 28 example 
items. 

3 STUDY DESIGN 
We conducted an online survey to understand how the perception 
of the 153 kitchen objects difers. We asked 300 participants to rate 
their perceived danger of each item. As items can be used in various 
scenarios, we investigate three Scenarios: self, other, and robot. 
In Scenario self, the item is used by one’s self. From a diferent 
perspective, during Human-Human Collaboration when cooking 
together, humans perceive the item from a bystander Scenario 
(condition: other). Here, the perceived danger should change. In 
line with this is Human-Cobot Collaboration, where the item is 
being used by a cobot, not a human (condition: robot). See such an 
example in Figure 2. 

3.1 Questionnaire 
We designed a four-part questionnaire to discover the perception 
of various kitchen items, see Section A.1. We informed participants 
beforehand that this questionnaire was about the perception of 
diferent kitchen objects. In the frst part, we asked participants 
about their demographics (e.g., age, gender), and technical expertise 
using the afnity for technology interaction questionnaire [11], 
cooking expertise, and cooking frequency per week. For the next 
three parts, each participant was assigned ten random kitchen 
objects out of the 153 kitchen objects from our dataset. However, we 
ensured that each item would have at least 15 results. We informed 
participants before each part about what they should envision for 
the next ten presented kitchen objects. In the second part, we asked 
the participants about their familiarity with the shown kitchen 
object, whether they own it, and lastly, about how dangerous they 
feel that object is when they are using it themselves. The third 
part (condition: other) showed the same ten objects in the same 
order and just asked them how dangerous they fnd that item to be 

when someone else next to them used it. Lastly (condition: robot), 
we asked about the danger perception when a robot next to them 
would use that object. Before that, we showed the participants a 
picture of a potential vision of such a robot in the kitchen being a 
regular 6-Degree-of-Freedom robotic arm hanging from the ceiling, 
see Figure 2. Lastly, we asked participants for general feedback via 
a text feld. 

Participants answered the questions with sliders ranging from 0 
(Strongly Disagree) to 100 (Strongly Agree), with the initial position 
in the middle. We did not display the numbers or ticks on these 
sliders, c.f. Matejka et al. [20] as such sliders have been shown to 
lead to more precise responses [24]. Thus, we chose them over 
standard Likert scales. 

3.2 Preprocessing 
During and after the survey, we rejected and removed participants’ 
responses, which either (1) were obvious low-efort responses, or 
(2) had a miss-match between demographic data in prolifc and our 
survey. To fnd low-efort answers, we automatically screened the 
responses. We fagged responses found by our automatic approach 
and then manually looked at the responses to decide whether we 
would reject that participant. Our questionnaire mainly consisted 
of questions that had to be answered via a slider to select a value 
between 0 and 100. Thus, we frst looked if all questions had been 
answered with the same value, so if people just took the slider and 
dragged it completely to the left (0) or the right (100). Next, we 
handpicked a set of very obviously dangerous (e.g., chef’s knife, 
cleaver) and not dangerous items (e.g., sponge, napkin, dish towel) 
and screened responses with unftting danger perception scores. 
When screening the responses, we would never reject participants 
for just one outlier, but we would always consider the global scope 
of the response. We also excluded responses where the age and sex 
provided via prolifc did not match their responses in our survey. 

3.3 Participants 
We recruited all our participants via Prolifc . In total, we accepted 
responses from 300 participants (154 female, 142 male, and 4 non-
binary) balanced for six continents (Africa, Asia, Europe, North 
America, Oceania, and South America), resulting in 50 participants 
from each. On average, the participants were between 19 and 73 
years old (� = 32.6, �� = 11.3). Out of the 300 participants, 175 
stated to work full-time, 69 part-time, and 56 stated a diferent 
employment status. On average, participants took 10.1 (��� = 4.0, 
��� = 57.2, �� = 5.0) minutes to fnish the survey. The average 
household size of participants was 3.21 persons (��� = 1, ��� = 10, 
�� = 1.48). The majority of participants have a bachelor’s degree 
or higher (149 bachelor’s, 42 master’s, and 11 Ph.D.). 

1

4 RESULTS 
In the following, we will present the results from the questionnaire 
responses collected in October 2022. Every participant gave results 
for 10 out of the 153 randomly selected objects. We collected survey 
responses iteratively to make sure we had a balanced amount of 
responses for every object. Every object got at least 15 responses 
(� = 19.477,��� = 30.00, �� = 3.424). We then created one dataset 
1https://www.prolifc.co/ 

https://www.prolific.co/
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Figure 3: (A) Perceived Danger for each Scenario (B) Histogram of Cooking Experience (C) ATI scores (D) Distribution of 
owned objects (E) Cooking frequency, split up in meals cooked per week in general, meals cooked per week alone, and together. 
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including all danger scores for the three Scenarios and the other 
measurements, c.f. Figure 3. We use a Bayesian approach to data 
analysis in the form of Bayesian linear mixed models (BLMM). The 
Bayesian approach has been taken up lately in HCI [15, 16, 19, 28] 
as it presents several advantages to classical statistics. Kay et al. 
[16] explain the advantages of Bayesian statistics in HCI that are 
also relevant to our study. We can incorporate prior knowledge 
about the to-be-estimated parameters, get probability functions for 
each parameter instead of point estimates, and the inferences are 
more robust to non-normality in the data. We can incorporate a 
large number of factors into our analysis and, most importantly, 
are not testing binary hypothesis which would mandate correction 
procedures. To model the data, we ftted several linear mixed mod-
els using brms [2] models in STAN [4] using 4 chains and 20.000 
iterations with a warm-up of 10% for each. Efects were considered 
meaningful when there was a particularly low probability (�� <= 
2.5%) of the efect being zero or the opposite. In addition to the 
median of the parameter, we calculated the High-Density Interval 
(HDI) at 95% of the posterior distribution for all parameters, which 
indicates the possible range of efects given the data, alongside the 
median of the respective parameter. 

4.1 Danger 
We frst investigated how the Scenario as fxed efect afects dan-
ger perception in a mixed efects model with random intercepts for 
participants and stimuli with each random slope for Scenario. Self 
was specifed as a baseline with treatment contrasts. We found that 
the Scenario robot has a distinguishable efect on the perceived 
danger (�� < 0.001, ������ = 16.272, ���95% = [13.866, 18.770]). 
Thus, objects carried by robots increased ratings by about 16 points 
in our model. There is also a distinguishable efect from the Sce-
nario other on the perceived danger (�� = 0.005, ������ = 1.656, 
���95% = [0.422, 2.934]). Therefore, objects carried by others 
elicited slightly larger ratings of perceived danger, see Figure 4. 

To explore the efects of our other variable (familiarity, owning, 
technical expertise, cooking experience, and cooking frequency), 

we expanded the model by one fxed-efects level and also esti-
mated the interaction for each Scenario. The general results of 
the questions leading to these factors are depicted in Figure 3. We 
found a distinguishable efect between the parameter estimating 
the robot × familiarity interaction (�� < 0.001, ������ = 0.065, 
���95% = [0.026, 0.103]). In the expanded model for owning, we 
found a distinguishable efect for the parameter on owning objects 
and robot (�� < 0.001, ������ = 4.909, ���95% = [2.321, 7.595]). 
The model that included technical expertise was similar to the only-
scenario fxed efect model, i.e., we did not fnd distinguishable ef-
fects for technical expertise and robot �� > .025. There was also no 
distinguishable interaction efect for the model including cooking 
experience, i.e., robot × cooking experience parameter(�� = 0.251, 
������ = 0.024, ���95% = [−0.047, 0.093]). Note that in this model, 
we found that the parameter for other × cooking experience(�� = 
0.001, ������ = 0.063, ���95% = [0.023, 0.105]) was distinguish-
able. However, whether the diference of self to other Scenario 
changed with cooking experience was not relevant to our study. 
Likewise, therefore the model with robot ×cooking frequency, the 
efect was centered around zero (�� = 0.202, ������ = 0.160, 
���95% = [−0.128, 0.536]). From this, we can state that the Sce-
nario robot, together with the familiarity and ownership of the 
given object, has an efect on the perceived danger. 

4.2 Object Danger 
Figure 4 depicts the perceived danger levels for all our 153 objects. 
The top fve most dangerous objects from self Scenario are a 
mandoline, mezzaluna, paring knife, pressure cooker, and blow 
torch. The fve least dangerous items from self Scenario are: whisk, 
scouring sponge, napkin, serving spoon, and kitchen scale. The top 
fve most dangerous objects from other Scenario are a mezzaluna, 
matchbox, bread knife, knife sharpener, and cheese cleaver. The 
fve least dangerous items from other Scenario are dish cloth, 
kitchen paper, piping bag, measuring spoon, and tea spoon. The top 
fve most dangerous objects from robot Scenario are a matchbox, 
blow torch, mezzaluna, bread knife, and kitchen knife. The fve 
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Figure 5: Results of predicted values for fxed efects in the 
frst simple Scenario model (a), with distinguishable efects 
on the perceived danger per Scenario. (b) Object familiarity 
decreases perceived danger for when humans handle that 
objects, but not for robots. (c) Owning objects increases the 
diference of perceived danger between humans and robots. 
(d) Cooking expertise increases the slope of perceived danger 
when other humans handle that object. 

least dangerous items from robot Scenario are napkin, kitchen 
paper, scouring sponge, dish cloth, and coaster. Objects with small 
perceived danger values are all items, which are not sharp, fre, and 
can not break when dropped. Dangerous items are mostly sharp or 
entail fre; thus, there are direct risks of being hurt. 

4.3 Object Danger Diference 
We used the posterior predictive distribution of our simple Sce-
nario model and predicted the diference of random slopes for 
robot vs. self for each of the objects (random intercept) ignoring 
individual variation between and within subjects and the fxed ef-
fect. We visualized this diference in Figure 6. We found that there 
are signifcantly more items with a negative robot-self diference 
without zero-crossings (18), i.e., people have a higher danger percep-
tion when using these items themselves, than a positive diference 
(4). Potentially obvious, but also interestingly, is that all objects 
used to grate or slice are rated with way higher self -danger than 
robot-danger. 

5 DISCUSSION 
As expected, we found that the perceived danger of items varied 
substantially; see Figure 4. Soft, dull, and unbreakable items, such 
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as a napkin or containers, are among the items that are perceived 
as the least dangerous. In contrast, sharp and fre-related items are 
rated as the most dangerous, e.g., kitchen knives, and blowtorch. 
This emphasizes the importance that whenever investigating users 
interacting with items, it is crucial to ensure that a range of diferent 
danger levels is investigated to produce generalizable results. 

We found that the danger level for interacting with an item (self ) 
and someone else interacting with an item close by (other) are 
descriptively similar. However, the perceived danger when a robot 
is working with objects is much more pronounced, see Figure 3a. 
Thus, when investigating HRI scenarios, it is important to ensure 
that users are comfortable with the interaction, as everything is 
perceived as much more dangerous. 

At the same time, we uncovered that not all danger levels increase 
when a robot uses an item compared to oneself; see Figure 4. We fnd 
three categories. First, objects that are relatively more dangerous 
for self as compared to the robot (all objects with HDI’s outside 
not crossing 0 and being negative). These are, in particular, objects 
that are sharp or have sharp edges, including mandoline, grater, 
mezzaluna, or knife sharpener. Second, objects that are indiferent 
to Scenario (crossing the zero line), e.g., tablecloth, mill, or mufn 
tray. And lastly, objects that are more dangerous when being carried 
by the robot as compared to carrying them oneself (positive; not 
crossing the zero-line), e.g., bowl, water glass, or bottle. Six of the 
ten items with the highest positive diference are objects that will 
most likely break when dropped (porcelain, glass), highlighting that 
the diference in danger perception is not equal to the generally 
perceived danger, as these objects are rated with overall danger 
levels around the mean. 

Overall, we found that familiarity with an item decreases per-
ceived danger no matter the scenario, see Figure 5b. In detail, we 
found that more familiarity does not decrease the perceived danger 
the same in the robot condition as compared to the self condition. 
Interestingly and against intuition, we found that the afnity to 
technology measured using the ATI questionnaire [11] did not 
impact the perceived danger scores. This illustrates that robots, 
especially in domestic scenarios, are still such a new technology 
that even people with higher technical interest and expertise can 
not fully envision this form of future interaction possibilities, indi-
cating the research potential and also the necessity for cobots in 
domestic settings in the future. 

6 CONCLUSION 
We envision that in the future, our open-source database not only 
contains kitchen objects but also other household objects and even 
tools for fabrication, such as power drills. Therefore, we plan to 
add additional objects and create guidelines for others to contribute 
to this wiki-like database. Future work could also add 3D Models 
for each kitchen object to enable comparison studies in AR/VR 
and the real world. In this work, we investigated the diference 
in danger perception when an object is used by oneself, another 
person in close vicinity, or a cobot nearby. We found that currently, 
users’ danger perception of objects is way higher when a cobot 
uses an object compared to a human. We additionally found that 
the diference in danger perception between self-use and robot-use 
can be categorized into three clusters: (1) Objects that are perceived 

as relatively more dangerous when used oneself (sharp), (2) objects 
where it does not matter whether the object is wielded by oneself 
or a robot (dull), and (3) objects that are perceived more dangerous 
when used by a robot (fragile). While we performed this investiga-
tion on kitchen objects, we hypothesize that our fndings apply to 
all other felds where robots use various objects to accomplish tasks. 
Thus, our next steps will be to enlarge our database by incorporat-
ing items outside of the kitchen context and also verify our results 
in an actual kitchen scenario via a lab study that can consider other 
factors such as proxemics, context, and robot dynamics. 

7 OPEN SCIENCE 
We encourage the reader to build upon this research. Therefore, our 
experimental setup, collected data, and analysis are online available 
as a wiki-like open-source database: https://hri-objects.leusmann. 
io/. Further, we strongly encourage contributions to extend the 
database. 

ACKNOWLEDGMENTS 
During this work, Jan Leusmann was supported by Honda Research 
Institute Europe. Carl Oechsner was supported by the Deutsche 
Forschungsgemeinschaft (DFG, German Research Foundation), Project 
ID 425412993-SPP 2199. 

REFERENCES 
[1] Adam T. Biggs, James R. Brockmole, and Jessica K. Witt. 2013. Armed and 

Attentive: Holding a Weapon Can Bias Attentional Priorities in Scene Viewing. 
Attention, Perception, & Psychophysics 75, 8 (Nov. 2013), 1715–1724. https://doi. 
org/10.3758/s13414-013-0538-6 

[2] Paul-Christian Bürkner. 2017. Brms: An R Package for Bayesian Multilevel 
Models Using Stan. Journal of Statistical Software 80 (Aug. 2017), 1–28. https: 
//doi.org/10.18637/jss.v080.i01 

[3] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Siddhartha 
Srinivasa, Pieter Abbeel, and Aaron M Dollar. 2017. Yale-CMU-Berkeley dataset 
for robotic manipulation research. The International Journal of Robotics Research 
36, 3 (2017), 261–268. https://doi.org/10.1177/0278364917700714 

[4] Bob Carpenter, Andrew Gelman, Matthew D. Hofman, Daniel Lee, Ben Goodrich, 
Michael Betancourt, Marcus A. Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 
2017. Stan: A Probabilistic Programming Language. Journal of Statistical Software 
76 (2017), 1. https://doi.org/10.18637/jss.v076.i01 

[5] Elizabeth Cha, Jodi Forlizzi, and Siddhartha S. Srinivasa. 2015. Robots in the Home: 
Qualitative and Quantitative Insights into Kitchen Organization. In Proceedings of 
the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction 
(HRI ’15). Association for Computing Machinery, New York, NY, USA, 319–326. 
https://doi.org/10.1145/2696454.2696465 

[6] MichałCzubenko and Zdzisław Kowalczuk. 2021. A Simple Neural Network for 
Collision Detection of Collaborative Robots. Sensors 21, 12 (Jan. 2021), 4235. 
https://doi.org/10.3390/s21124235 

[7] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Jian 
Ma, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will 
Price, and Michael Wray. 2022. Rescaling Egocentric Vision: Collection, Pipeline 
and Challenges for EPIC-KITCHENS-100. International Journal of Computer 
Vision (IJCV) 130 (2022), 33–55. https://doi.org/10.1007/s11263-021-01531-2 

[8] Alexander Dietrich, Thomas Wimbock, Alin Albu-Schafer, and Gerd Hirzinger. 
2012. Integration of Reactive, Torque-Based Self-Collision Avoidance Into a 
Task Hierarchy. IEEE Transactions on Robotics 28, 6 (Dec. 2012), 1278–1293. 
https://doi.org/10.1109/TRO.2012.2208667 

[9] Mary Douglas. 2002. Risk Acceptability According to the Social Sciences. Routledge, 
London. https://doi.org/10.4324/9780203708781 

[10] Mary Douglas and Aaron Wildavsky. 1983. Risk and Culture: An Essay on the 
Selection of Technological and Environmental Dangers. 

[11] Thomas Franke, Christiane Attig, and Daniel Wessel. 2018. A Personal Resource for 
Technology Interaction: Development and Validation of the Afnity for Technology 
Interaction (ATI) Scale. Taylor & Francis. https://doi.org/10.1080/10447318.2018. 
1456150 

[12] Georgios Georgakis, Md Alimoor Reza, Arsalan Mousavian, Phi-Hung Le, and 
Jana Kosecka. 2016. Multiview RGB-D Dataset for Object Instance Detection. 

https://hri-objects.leusmann.io/
https://hri-objects.leusmann.io/
https://doi.org/10.3758/s13414-013-0538-6
https://doi.org/10.3758/s13414-013-0538-6
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.1177/0278364917700714
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1145/2696454.2696465
https://doi.org/10.3390/s21124235
https://doi.org/10.1007/s11263-021-01531-2
https://doi.org/10.1109/TRO.2012.2208667
https://doi.org/10.4324/9780203708781
https://doi.org/10.1080/10447318.2018.1456150
https://doi.org/10.1080/10447318.2018.1456150


A Database for Kitchen Objects CHI EA ’23, April 23–28, 2023, Hamburg, Germany 

In 2016 Fourth International Conference on 3D Vision (3DV). IEEE, Stanford, CA, 
USA, 426–434. https://doi.org/10.1109/3DV.2016.52 

[13] Amin Hamed, Mehdi Tale Masouleh, and Ahmad Kalhor. 2020. Design & Charac-
terization of a Bio-Inspired 3-DOF Tactile/Force Sensor and Implementation on a 
3-DOF Decoupled Parallel Mechanism for Human-Robot Interaction Purposes. 
Mechatronics 66 (April 2020), 102325. https://doi.org/10.1016/j.mechatronics. 
2020.102325 

[14] Mary B. Harris and Kari C. Miller. 2000. Gender and Perceptions of Danger. Sex 
Roles 43, 11 (Dec. 2000), 843–863. https://doi.org/10.1023/A:1011036905770 

[15] Matthew Kay, Steve Haroz, Shion Guha, and Pierre Dragicevic. 2016. Special 
Interest Group on Transparent Statistics in HCI. In Proceedings of the 2016 CHI 
Conference Extended Abstracts on Human Factors in Computing Systems (San Jose, 
California, USA) (CHI EA ’16). Association for Computing Machinery, New York, 
NY, USA, 1081–1084. https://doi.org/10.1145/2851581.2886442 

[16] Matthew Kay, Gregory L. Nelson, and Eric B. Hekler. 2016. Researcher-Centered 
Design of Statistics: Why Bayesian Statistics Better Fit the Culture and Incentives 
of HCI. In Proceedings of the 2016 CHI Conference on Human Factors in Computing 
Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machin-
ery, New York, NY, USA, 4521–4532. https://doi.org/10.1145/2858036.2858465 

[17] Hilde Kuehne, Ali B. Arslan, and Thomas Serre. 2014. The Language of Actions: 
Recovering the Syntax and Semantics of Goal-Directed Human Activities. In 
Proceedings of Computer Vision and Pattern Recognition Conference (CVPR’14). 
IEEE. https://doi.org/10.1109/CVPR.2014.105 

[18] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. 2011. A large-scale hierar-
chical multi-view RGB-D object dataset. In 2011 IEEE International Conference on 
Robotics and Automation. 1817–1824. https://doi.org/10.1109/ICRA.2011.5980382 

[19] Jisoo Lee, Erin Walker, Winslow Burleson, Matthew Kay, Matthew Buman, and 
Eric B. Hekler. 2017. Self-Experimentation for Behavior Change: Design and 
Formative Evaluation of Two Approaches. In Proceedings of the 2017 CHI Con-
ference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI 
’17). Association for Computing Machinery, New York, NY, USA, 6837–6849. 
https://doi.org/10.1145/3025453.3026038 

[20] Justin Matejka, Michael Glueck, Tovi Grossman, and George Fitzmaurice. 2016. 
The Efect of Visual Appearance on the Performance of Continuous Sliders and 
Visual Analogue Scales. In Proceedings of the 2016 CHI Conference on Human 
Factors in Computing Systems (CHI ’16). Association for Computing Machinery, 
New York, NY, USA, 5421–5432. https://doi.org/10.1145/2858036.2858063 

[21] Carl Oechsner, Sven Mayer, and Andreas Butz. 2022. Challenges and Opportu-
nities of Cooperative Robots as Cooking Appliances. (2022), 7. https://ceur-
ws.org/Vol-3154/paper14.pdf 

[22] Valerio Ortenzi, Akansel Cosgun, Tommaso Pardi, Wesley Chan, Elizabeth Croft, 
and Dana Kulić. 2021. Object Handovers: A Review for Robotics. IEEE Transactions 
on Robotics 37, 6 (Jan. 2021), 1855–1873. https://doi.org/10.1109/TRO.2021.3075365 
arXiv:2007.12952 [cs, eess] 

[23] Max Pascher, Uwe Gruenefeld, Stefan Schneegass, and Jens Gerken. 2023. How 
to Communicate Robot Motion Intent: A Scoping Review. (2023). 

[24] Ulf-Dietrich Reips and Frederik Funke. 2008. Interval-Level Measurement with 
Visual Analogue Scales in Internet-based Research: VAS Generator. Behavior 
Research Methods 40, 3 (Aug. 2008), 699–704. https://doi.org/10.3758/BRM.40.3. 
699 

[25] David A. Robb, Muneeb I. Ahmad, Carlo Tiseo, Simona Aracri, Alistair C. Mc-
Connell, Vincent Page, Christian Dondrup, Francisco J. Chiyah Garcia, Hai-
Nguyen Nguyen, Èric Pairet, Paola Ardón Ramírez, Tushar Semwal, Hazel M. 
Taylor, Lindsay J. Wilson, David Lane, Helen Hastie, and Katrin Lohan. 2020. 
Robots in the Danger Zone: Exploring Public Perception through Engagement. 
In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot 
Interaction (HRI ’20). Association for Computing Machinery, New York, NY, USA, 
93–102. https://doi.org/10.1145/3319502.3374789 

[26] Eric Rosen, David Whitney, Elizabeth Phillips, Gary Chien, James Tompkin, 
George Konidaris, and Stefanie Tellex. 2019. Communicating and Controlling 
Robot Arm Motion Intent through Mixed-Reality Head-Mounted Displays. The 
International Journal of Robotics Research 38, 12-13 (Oct. 2019), 1513–1526. https: 
//doi.org/10.1177/0278364919842925 

[27] Ruben Sagues-Tanco, Luis Benages-Pardo, Gonzalo López-Nicolás, and Sergio 
Llorente. 2020. Fast Synthetic Dataset for Kitchen Object Segmentation in Deep 
Learning. IEEE Access 8 (2020), 220496–220506. https://doi.org/10.1109/ACCESS. 
2020.3043256 

[28] Abhraneel Sarma and Matthew Kay. 2020. Prior Setting in Practice: Strategies 
and Rationales Used in Choosing Prior Distributions for Bayesian Analysis. In 
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, 
NY, USA, 1–12. https://doi.org/10.1145/3313831.3376377 

[29] Chauncey Starr. 1969. Social Beneft versus Technological Risk. Science (Sept. 
1969). https://doi.org/10.1126/science.165.3899.1232 

[30] Jan-Philipp Stein and Peter Ohler. 2017. Venturing into the Uncanny Valley 
of Mind—The Infuence of Mind Attribution on the Acceptance of Human-like 
Characters in a Virtual Reality Setting. Cognition 160 (March 2017), 43–50. 

https://doi.org/10.1016/j.cognition.2016.12.010 
[31] Rainer Stiefelhagen, Christian Fogen, P. Gieselmann, Hartwig Holzapfel, Kai 

Nickel, and Alex Waibel. 2004. Natural Human-Robot Interaction Using Speech, 
Head Pose and Gestures. In 2004 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Vol. 3. IEEE, Sendai, Japan, 
2422–2427. https://doi.org/10.1109/IROS.2004.1389771 

[32] Megan K. Strait, Cynthia Aguillon, Virginia Contreras, and Noemi Garcia. 2017. 
The Public’s Perception of Humanlike Robots: Online Social Commentary Refects 
an Appearance-Based Uncanny Valley, a General Fear of a “Technology Takeover”, 
and the Unabashed Sexualization of Female-Gendered Robots. In 2017 26th IEEE 
International Symposium on Robot and Human Interactive Communication (RO-
MAN). IEEE, Lisbon, 1418–1423. https://doi.org/10.1109/ROMAN.2017.8172490 

[33] Kristina Tornbjerg, Anne Marie Kanstrup, Mikael B. Skov, and Matthias Rehm. 
2021. Investigating Human-Robot Cooperation in a Hospital Environment: Scru-
tinising Visions and Actual Realisation of Mobile Robots in Service Work. In 
Designing Interactive Systems Conference 2021. ACM, Virtual Event USA, 381–391. 
https://doi.org/10.1145/3461778.3462101 

[34] Chao Wang, Anna Belardinelli, Stephan Hasler, Theodoros Stouraitis, Daniel 
Tanneberg, and Michael Gienger. 2023. Explainable Human-Robot Training and 
Cooperation with Augmented Reality. https://doi.org/10.1145/3544549.3583889 
arXiv:2302.01039 [cs] 

[35] Jessica K. Witt and James R. Brockmole. 2012. Action Alters Object Identi-
fcation: Wielding a Gun Increases the Bias to See Guns. Journal of Experi-
mental Psychology: Human Perception and Performance 38, 5 (2012), 1159–1167. 
https://doi.org/10.1037/a0027881 

A APPENDIX 

A.1 Survey 
A.1.1 Demographics. 

(1) How old are you? (number feld) 
(2) How do you describe yourself? 

• Male 
• Female 
• Non-binary 
• Self-described (text feld) 

(3) What is the highest degree you have received? 
• High school graduate 
• Some college but no degree 
• Bachelor’s degree 
• Master’s degree 
• Doctoral degree 
• Vocational education 

(4) What is your current primary occupation? (text text) 
(5) Which country do you currently reside in? (text text) 

A.1.2 Cooking Habits & Expertise. 

(1) I consider myself an expert cook. (101-point sliders from 
strongly disagree to strongly agree) 

(2) How many people live in your household? (number feld) 
(3) How many times do you prepare meals in total in an average 

week? (meals per week) (number feld) 
(4) How many times do you prepare meals alone, on average, 

per week? (meals per week) (number feld) 
(5) How many times do you prepare meals together with others, 

on average, per week? (meals per week) (number feld) 

A.1.3 Afinity for Technology Interaction. Next, we asked partic-
ipants to fll in the Afnity for Technology [11] Interaction ques-
tionnaire. (6-point Likert scale ranging from completely disagree 
to completely agree) 

A.1.4 Kitchen utensil familiarity and perception when using the item. 
We explained: In the following you will be presented a kitchen item 
and questions about how familiar you are with the item and about 
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your perception when using this item. Additionally, we stated: Now, 
envision you are using this item. Then answer the questions below. 
With this, we displayed the name of the object as well as the image 
of the object. 

(1) I own this item. 
• Yes 
• No 

(2) I am very familiar with this item. (101-point sliders from 
strongly disagree to strongly agree) 

(3) I fnd the situation dangerous when I am using this item. 
(101-point sliders from strongly disagree to strongly agree) 

A.1.5 Kitchen utensil perception when others use the item. Now, 
envision a person next to you is using this item. Then answer the 
questions below. 

(1) I fnd the situation dangerous when somebody next to me is 
using this item. (101-point sliders from strongly disagree to 
strongly agree) 

A.1.6 Kitchen Robot Qestions. We displayed the image of Figure 2 
by Oechsner et al. [21] and the text Imagine yourself being in a 
kitchen environment where robot arms are available to support you 
with all kitchen tasks. These robot arms are able to grab and move 
every item you can fnd in a kitchen. Kitchen utensil perception when 
a robot uses the item. In the following, you will be presented the same 
10 kitchen items with questions regarding your danger perception 
when such a robot next to you is using this item. Then again we 
asked the following question for each object in the current survey: 

(1) I fnd the situation dangerous when a robot next to me is 
using this item. (101-point sliders from strongly disagree to 
strongly agree) 

A.1.7 General Feedback. 

(1) This is the end of the survey. If you have any further feedback, 
this is the last spot where you can let us know. (text feld) 

A.2 Additional Insights 
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Figure 6: The diference between the perceived danger from ones own Scenario and the perceived danger from the robot 
Scenario. Objects with negative means are perceived as relatively more dangerous when used self, than by a robot. 
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