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ABSTRACT
Touchscreens are the most successful input method for smartp-
hones. Despite their flexibility, touch input is limited to the
location of taps and gestures. We present PalmTouch, an ad-
ditional input modality that differentiates between touches of
fingers and the palm. Touching the display with the palm can
be a natural gesture since moving the thumb towards the de-
vice’s top edge implicitly places the palm on the touchscreen.
We present different use cases for PalmTouch, including the
use as a shortcut and for improving reachability. To evaluate
these use cases, we have developed a model that differentiates
between finger and palm touch with an accuracy of 99.53%
in realistic scenarios. Results of the evaluation show that par-
ticipants perceive the input modality as intuitive and natural
to perform. Moreover, they appreciate PalmTouch as an easy
and fast solution to address the reachability issue during one-
handed smartphone interaction compared to thumb stretching
or grip changes.
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INTRODUCTION
Smartphones have recently become the most successful mobile
devices. Through a touchscreen, smartphones offer a wide
range of functions that are used by millions of people. While
most functions are accessible within a number of touches,
some are used so frequently that shortcuts were introduced.
Traditional devices offer volume buttons and a power button
to enable users to change the device’s volume and state with
just one press. With an increasing number of frequently used
functions such as device assistants, cameras or music players,
device manufacturers and developers look for new ways to
integrate them for faster access. Recently, Samsung introduced
a dedicated hardware button to call the Bixby assistant on
the Samsung Galaxy S8. The HTC U11 incorporates Edge
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(a) (b) (c)
Figure 1. Using the palm as an additional input modality on smartpho-
nes. Figure (a) shows a palm touch when holding the device one-handed,
Figure (b) and (c) show palm touches for two-handed interaction.

Sense, a pressure sensitive frame that launches a user-defined
action when squeezing the device. While these additional
input controls fulfill their purpose, they require additional
hardware which leaves out the possibility to update already
existing and older devices. Further, these solutions clutter
the device itself and become inconvenient when users are not
holding the device in their hand or are using a bumper case.

Touch gestures constitute a possible solution to the challenge
described above. For example, OnePlus devices recognize
gestures on the lock screen to launch user-defined applicati-
ons. However, system-wide drawn gestures that are always
accessible for user-defined actions may conflict with other
applications. Previous work presented a number of alterna-
tive input modalities to support traditional multi-touch input.
This includes using the finger’s 3D orientation [37, 41, 42,
50], contact size [7], pressure [23], or the shear force [21].
While these enrich the information of a finger’s touch, they
also bring restrictions since specific finger postures may now
trigger unwanted actions. One solution to lower the likelihood
of triggering unwanted actions is to differentiate between fin-
gers or parts of fingers, which prevents interference with the
main finger for interaction. Previous work [13, 16, 22] diffe-
rentiated between different parts of the finger (e.g., knuckle)
or fingers themselves to assign unique touch actions.

Motivated by previous work, we applied this concept for one-
handed as well as two-handed smartphone interaction. As a
result, we present PalmTouch, an additional input modality that
enables people to use the palm to trigger pre-defined functions
instead of simply rejecting palm input as recent smartphones
do. We show that this is a natural and fast gesture especially
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when the device is held one-handed. Stretching the thumb
towards the top edge to access targets that are out of reach
often places the palm on the touchscreen implicitly and subtly
as shown in Figure 1a. The placement is often caused by
unawareness of users which suggests that this gesture can be
performed naturally. Figure 1 shows three examples of using
PalmTouch in one-handed and two-handed scenarios to trigger
assigned functions.

Previous work presented different features to detect a palm
on a touchscreen. These include spatiotemporal touch fea-
tures [43], and hand model filters [47] to detect the palm in
inking scenarios on tablets. Moreover, Matero and Colley [36]
presented characteristic patterns of unintentional touches, in-
cluding touch duration which had the largest influence on
rejection performance. However, these approaches require at
least two touch points (pen and palm) or introduce latency due
to temporal features which makes them not suitable for our
proposed palm input modality. Recent smartphones feature a
basic palm rejection which omits input in case the contact area
is larger than a usual finger. However, they work on a driver
level and are not reliable enough to be used for interaction.

In this work, we propose PalmTouch, an additional touch input
modality to trigger pre-defined functions by placing the palm
on the touchscreen. Accordingly, we present four use cases
for PalmTouch and evaluate the input modality as a shortcut
and to improve reachability during one-handed smartphone
interaction. To evaluate PalmTouch, we have developed a palm
detection model that differentiates between finger touches and
palm touches with a high accuracy. In contrast to previous
work, we use the raw capacitive image of the touchscreen to
classify the low-resolution fingerprint using a convolutional
neural network. We show that this runs on off-the-shelf smartp-
hones, also works with single touch points and introduces no
latency opposed to previous work. The contribution of this
work is two-fold: (1) PalmTouch, an additional input modality
using the palm, and (2) a high-accuracy palm detection model
including a validation in realistic scenarios.

RELATED WORK
Previous work presented palm rejection approaches to ignore
all touches made by the palm. Aiming to extend the touch
input vocabulary by the palm, we also looked into a body of
work that extended the input vocabulary on touchscreens.

Extending Touch Vocabulary
Previous work proposed different methods to extend the input
vocabulary on touchscreens. Using capacitive images of tou-
chscreens as shown in Figure 4, previous work [37, 50] trained
machine learning models to estimate the 3D orientation of
fingers on the screen. Based on the same technology, Holz
et al. [25] presented BodyPrint to recognize body parts (e.g.,
ear or fist) for user identification purposes. Similarly, Guo et
al. [19] proposed to use capacitive images as a low-resolution
fingerprint scanner to authenticate users. Recently, researchers
built smartwatch prototypes which provide capacitive images
to investigate area-based touches [39] and specific fingers in
exaggerated poses as an additional input modality [16]. Si-
milarly, Boring et al. [8] used the contact radius provided by

iPhones as an additional input modality. Before Apple introdu-
ced Force Touch in 2014 which extended touch by a pressure
modality, researchers presented a wide range of use cases for
pressure-based touch, including one-handed zooming [38],
and enriching touchscreen interaction by using shear which
is the force tangential to a screen’s surface [21]. Commercial
and proprietary products include EarSense by Qeexo1 which
recognizes an ear on the touchscreen as a software-only al-
ternative to the standard proximity sensor. Further, Qeexo’s
FingerSense is featured in the Huawei P10 as a shortcut to the
screenshot function using the finger’s knuckle. Harrison et
al. [22] identified hand parts that are touching the screen by
evaluating tap sounds from an object’s impact. Similarly, Col-
ley and Häkkilä [13] explored the feasibility of finger specific
interaction on smartphones using a Leap Motion.

Based on additional hardware sensors, Wilkinson et al. [48]
used a wrist-worn Inertial Measurement Unit (IMU) to add
additional features such as roll, pitch, and force to touchscreen
interaction. Similarly, Yeo et al. [52] combined the built-in
accelerometer with touch input to enable one-handed text entry
on large devices. Previous work also attached additional sen-
sors to smartphones, such as Back-of-Device (BoD) sensors
and input mechanisms on the edge of the device [33]. BoD
interaction extends the input capability of the front display and
enables a wide range of use cases [32], including addressing
the fat-finger problem [4], improving reachability [31], 3D ob-
ject manipulation [2, 44], preventing shoulder surfing through
authenticating on the rear [14], and performing user-defined
gesture input [45]. Input mechanisms on the device’s edge
serve as a novel way to zoom and scroll using pressure [24], or
to select items while using the device one-handed [49]. While
the described input modalities extend the touch input vocabu-
lary, none of them focused on using different parts of the hand
or finger for interaction using only off-the-shelf smartphones
with a low likelihood of unintended activation.

Palm Rejection
Previous work presented algorithms to reject palm touches
while writing on tablets using a pen. These algorithms are
based on 2D touch points provided by the operating system.
Schwarz et al. [43] identified different features to train a ma-
chine learning model for differentiating palm from pen tou-
ches. Features include touch duration, segmentation of touch
points, consistency in touched areas, and the movement. Si-
milarly, Tanyag et al. [47] used hand model filters to infer
touches made by the palm. As these approaches require mul-
tiple touch points at once (palm and pen), they are limited to
a writing scenario on tablets. For smartphones, Matero and
Colley [36] identified a set of features to reject unintended
touches. Amongst others, this includes the distance from the
display edge and the duration which would introduce latency
when used for classification. Recent Android smartphones
feature a basic palm rejection which can be observed when ge-
nerating a contact area on the touchscreen which is larger than
a usual finger. However, this cannot be used for PalmTouch
since it works on a driver level and does not work when the
palm on the screen center as tested on different devices.
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On the hardware side, smartphone manufacturers use inductive
pens to differentiate stylus input from the capacitive input of
the human finger. For example, Samsung’s S Pen2 uses an
electromagnetic field generated from a compatible device (e.g.,
Samsung Galaxy Note 2) to calculate the position relative to
the screen. Liang et al. [35] proposed GaussSense which uses
a grid of magnetic sensors on the back of the device to sense
a magnetic field emitted from the stylus on the touchscreen.
Gu et al. [18] used proximity sensing to recognize unintended
palm touches on laptop computers. Recently, Camilleri et
al. [11] investigated the effect of palm rejection technology on
users. Their findings conclude with a less perceived discomfort
and an increased productivity due to fewer interruptions.

Previous work invested considerable effort into palm detection
approaches. However, the results were used to reject palm
input instead of using it as an intended and additional input
modality. Moreover, researchers used capacitive images on
off-the-shelf devices to differentiate between different input
objects. However, these were used either for authentication
or on smartwatches. Using capacitive images to distinguish
between finger and palms, we close the gap between these
fields by proposing palm input as an additional input modality
for one-handed and two-handed smartphone interaction.

PALMTOUCH CONCEPT AND USE CASES
PalmTouch is an additional input modality for a wide range
of functions. We applied the idea of hand part specific touch
interaction presented in previous work (e.g., using different
fingers [13, 16] or finger parts [22]) for one-handed as well as
two-handed interaction scenarios. Since using other fingers
than the thumb or other parts of the hand (such as a knuckle)
can be inconvenient or even infeasible during one-handed
interaction, we instead use the palm for interaction.

During one-handed interaction, the palm can be placed subtly
on the touchscreen by moving the thumb towards the upper
edge of the device while stabilizing the device with fingers on
the left edge as shown in Figure 1a. Since we use the palm
of the same hand that is holding the smartphone, we refer to
this movement as a same-side palm touch. During two-handed
interaction, PalmTouch can be used by placing the flat hand
(see Figure 1b) or by forming a fist on the touchscreen (see
Figure 1c). Since we use the opposite hand to the one holding
the device, we refer to this movement as an opposite-side palm
touch based on the terminology used by Kerber et al. [29]. In
the following, we present four use cases and discuss further
input dimensions that extend the PalmTouch input modality.

Improving Reachability during One-Handed Interaction
Large smartphones pose challenges in reachability since they
require changing the hand grip when used one-handed. With
PalmTouch, users can stretch the thumb towards the top as if
they would tap the target. This action implicitly places the
palm on the touchscreen and can be used by PalmTouch to shift
down the screen by half its size. A screen shift is exemplarily
shown in Figure 2a and is similar to the iPhone’s Reachability
feature that can be activated by a double tap on the home but-
ton. Similarly, instead of dragging down the notification bar
2www.samsung.com/global/galaxy/galaxy-note5/spen

(a) (b) (c)
Figure 2. Use cases for PalmTouch. Figure (a) demonstrates how Palm-
Touch improves reachability by moving down the screen by half its size;
Figure (b) shows the pie menu for application launching and Figure (c)
shows the pie menu for clipboard management.

which poses the same reachability challenge on large smartp-
hones, PalmTouch can be used to open the notification drawer.
Further difficult to reach UI elements include toolbars (e.g.,
ActionBar3), URL bars in most browsers, search bars, menu
buttons, and tabs.

Custom Actions and Applications
Smartphone manufacturers recently integrated simple and bi-
nary input modalities such as an extra button (Bixby button
on the Samsung Galaxy S8) or a squeeze on the device’s edge
(Edge Sense on the HTC U11) to launch pre-defined appli-
cations. While these features require additional hardware,
PalmTouch can be readily deployed onto recent and older off-
the-shelf smartphones, e.g., through software updates. Moreo-
ver, with the emergence of edge-to-edge displays on devices
such as the iPhone X and Samsung Galaxy S8, the lack of a
home button can be compensated with PalmTouch.

Instead of launching a single pre-defined action or application,
a pie menu as shown in Figure 2b can be used to provide
multiple options. The arrangement of buttons in a pie menu
further benefits one-handed interaction. Previous work [6,
34] showed that the range of the thumb on a touchscreen is
parabolic around the carpometacarpal joint (CMC) of the
thumb. The CMC is located in the lower part of the palm.
Since the palm is placed on the touchscreen to launch the
pie menu, the thumb is already in a suitable position to tap
the menu items. PalmTouch can also be used for application-
dependent functions. For example, a palm touch could send
away a message in a messaging application, while it accepts a
call in the phone application or switch layers in Maps or CAD
application. Since PalmTouch can be used eyes-free similar
to a hardware button or squeeze, actions such turning off the
screen or accepting a call can be mapped to a palm touch.

Clipboard Management
Copying and pasting from the clipboard are common actions
in text editing tasks. While computer keyboards provide sim-
ple shortcuts, touch-based operating systems such as Android
3developer.android.com/design/patterns/actionbar.html
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(a) Tapping task (b) Dragging task (c) Scrolling task (d) Pinching task (e) Rotating task (f) Palm task
Figure 3. All six tasks performed by participants in the data collection study.

and iOS handle the access through context menus or buttons
in the toolbar. A context menu requires a long press that ta-
kes between 500ms and 1000ms and could further move the
caret to another location unintentionally due to the fat-finger
problem [4]. Toolbar buttons require additional screen space.
Therefore, we propose PalmTouch as a shortcut to the clipbo-
ard menu which avoids long-pressing and altering the caret
position. To paste text, PalmTouch can open a menu which
offers the function without a long-press. For text selection and
copy/cut, users can perform a palm touch to start text selection
and then use the menu as soon as the selection via finger was
done to avoid a long-press. Figure 2c shows an example where
users can select between copy, paste and cut after placing the
palm on the touchscreen.

Unlocking the Device
PalmTouch can be used to unlock the smartphone by placing
the palm on the touchscreen. This action can be done with a
same-side palm touch while holding the device, or with one
of the opposite-side variants when the device is, e.g., lying
on a table. In addition to the palm detection, PalmTouch can
be extended to use the biometric features presented in Body-
Print [25] for authentication based on the capacitive images.

Additional Input Dimensions
In addition to a binary action, PalmTouch offers further di-
mensions that can be used for interaction. The contact area’s
centroid can be used as a proxy for the palm touch location.
This enables the implementation of directional gestures, such
as swiping up with the opposite hand’s palm to exit an app and
swiping left or right to switch between apps. The location of
the opposite hand’s palm can also be used to map functions
to different locations of the touchscreen. For example, a palm
touching the top half of the display skips to the next music
title while a touch on the lower half plays the previous title.
The location can also be used for a same-side palm touch (e.g.,
x-position describes the used hand) to launch different actions
depending on the hand that performed the palm touch.

DATA COLLECTION STUDY
To implement the use cases presented in the previous section,
the touchscreen needs to differentiate between finger and palm
touches. Previous work used the 2D touch location provided
by the touchscreen which is either limited through latency [36,
43] or requires at least two touch points (pen and palm) [43,
47]. In contrast, we use capacitive images provided by the
touchscreen which contain low-resolution fingerprints of the

touch (e.g., finger or palm). Since we apply machine learning
to classify the touch, we conducted a user study to collect
labeled touch data of fingers and the palm while participants
perform representative touch actions. With this data, we train
and evaluate a palm detection model to differentiate between
touches from fingers and palms.

Study Design & Tasks
The purpose of this study is to collect a wide variety of finger
and palm touch input. We designed six different tasks which
instruct each participant to perform a total number of 240
representative touch actions. The first five tasks in Figure 3
(finger tasks) require participants to use their fingers whereas
the rightmost task (palm task) instructs participants to place
their palm on the screen (see Figure 1). The order of the finger
tasks was randomized, and a palm task was performed after
each finger task in an alternating order. Each finger task was
performed 15 times.

Participants performed these tasks in two conditions, ONE-
HANDED with the thumb as the main input finger and TWO-
HANDED with the index finger as the main input finger. We
conducted these tasks to capture different finger and palm
touches in our data set. In both conditions, participants had
to perform tapping, dragging, and scrolling movements. The
TWO-HANDED condition also cover zooming and pinching
movements. After each task, participants placed their palm
on the touchscreen until they were told to remove it by the
apparatus. We counterbalanced the variant of the opposite-side
palm touch between participants (flat hand and forming a fist).
We instructed participants to place their palm as if that would
activate an function, such as launching the application drawer.

Participants & Study Procedure
We recruited 22 participants (5 female) between the ages of
21 and 34 (M = 25.1, SD = 3.2). All participants were right-
handed. The average hand size was measured from the wrist
crease to the middle fingertip, and ranged from 17.0cm to
21.9cm (M = 19.2cm, SD = 1.6cm). Our collected data com-
prise samples from the 5th and 95th percentile of the anthro-
pometric data reported in prior work [40]. Thus, the sample
can be considered as representative.

After participants signed the consent form, we measured their
hand size. We then explained the procedure including the
palm input modality as shown in Figure 1 and handed them
an instruction sheet which explains all tasks of the study. We
asked participants to repeatedly try out the movements until



they felt comfortable to repeat a palm touch at any given
moment. Participants performed all tasks in 20 minutes on
average and were rewarded with sweets for their participation.

Apparatus
We used an LG Nexus 5 running Android 5.1.1 with a modified
kernel to access the 15×27 raw capacitive image of the Syn-
aptics ClearPad 3350 touch sensor (see Figure 4). Each image
pixel corresponds to a 4.1mm× 4.1mm square on the 4.95′′
touchscreen. The pixel values represent the differences in elec-
trical capacitance (in pF) between the baseline measurement
and the current measurement. We developed an application
for the tasks described above which logs a capacitive image
every 50ms (20 fps). Each image is logged with the respective
task name so that every touch is automatically labeled.

PALMTOUCH MODEL AND IMPLEMENTATION
Based on the collected data set, we train a model to classify
touches as being made by a finger or a palm. We will first
show simple approaches based on feature engineering and
established machine learning algorithms known from previous
HCI work. Afterwards, we show that representation learning
techniques such as Neural Networks (NNs) and Convolutional
Neural Networks (CNNs) outperform the simpler approaches
regarding the classification accuracy. Models and test results
are summarized in Table 1.

Data Set & Preprocessing
After filtering empty (due to not touching) and erroneous
images (which do not contain the expected number of tou-
ches) to avoid wrong labeling, we have a data set comprising
138,223 capacitive images which represent blobs of valid tou-
ches. We extended the data set with flipped versions (vertical,
horizontal, and both) of all remaining capacitive images to
train the model for different device orientations. To train a
position-invariant model and enable classification of multiple
blobs within one capacitive image, we performed a blob de-
tection, cropped the results and pasted each blob into an empty
15×27 matrix (referred to as blob image). The blob detection
omitted all blobs that were not larger than one pixel of the
image (4.1mm×4.1mm) as these can be considered as noise

(a) (b) (c)
Figure 4. Exemplary raw capacitive images from the data collection
study. Figure (a) shows the finger of participant 5 during the dragging
task; (b) shows the palm of participant 19 in the one-handed condition
and (c) shows the palm of participant 9 in the two-handed condition.

of the capacitive touchscreen. In total, our data set consists of
552,892 blob images. We trained and tested all models with a
participant-wise split of 80% to 20% (18:4) to avoid samples
of the same participant being in both training and test set.

Overview of Basic Machine Learning Approaches
Due to their prominence in previous HCI work (e.g., [22,
46, 51]), we trained and evaluated palm touch models based
on Support Vector Machines (SVMs), k-nearest neighbors
(kNNs), Decision Trees (DTs) and Random Forests (RFs).
In contrast to representation learning approaches [5], these
algorithms require the training data to be processed into fe-
atures (i.e., feature engineering). Using scikit-learn 0.18.24,
we trained different models and performed a grid search as
proposed by Hsu et al. [26] to determine the most suitable
hyperparameters. If we did not report a hyperparameter, we
applied the standard value as reported in scikit-learn’s do-
cumentation. Since the palm’s average contact area on the
touchscreen (M = 932.06mm2, SD = 503.17mm2) is larger
than the finger’s (M = 164.86mm2, SD = 50.77mm2), we first
used the blob area as a single feature to classify the touch. We
determined the blob area by fitting an ellipse around the blob5.
With an accuracy of 96.80% (prec = 97.66%; rec = 92.05%),
the DT (with max_depth = 4 to avoid overfitting) achieved
the highest accuracy of the aforementioned algorithms. After
experimenting with a wide range of additional features inclu-
ding the ellipse parameters and the capacitance represented
by the blob, we found that a feature set comprising the ellipse
(area, width and height) and the capacitance (mean and sum)
achieved the highest accuracy of 98.17% (prec = 96.10%, rec
= 98.18%) using an RF.

Representation learning algorithms learn features in part with
the labeled input data and have been shown to be more success-
ful than manual feature engineering for image data [5]. Thus,
we implemented a multilayer feedforward neural network
using TensorFlow6 and performed a grid search over diffe-
rent network configurations, including the number of neurons
in steps of 50, layers in steps of 1, activation functions, and op-
timizers provided by TensorFlow. Our final network architec-
ture is shown in Table 1. Training was done with a batch size
of 100 using the Adaptive Gradient Algorithm (AdaGrad) [15]
with an adaptive learning rate starting from 0.001. We ini-
tialized the network weights using the Xavier initialization
scheme [17]. While we experimented with L2 Regularization
and batch normalization [27], this did not improve the overall
accuracy. We achieved an accuracy of 98.74% (prec = 97.49%,
rec = 98.46%) with this network configuration.

PalmTouch using a Convolutional Neural Network
CNNs are the recent state-of-the-art method for image clas-
sification [30]. As blobs are represented by low-resolution
images, we implemented a CNNs using TensorFlow. We per-
formed a grid search over the number of layers, filters and
their sizes in steps of 1, the number of neurons in the fully

4scikit-learn.org/0.18/documentation.html
52D least squares estimator for ellipses: scikit-image.org/docs/
dev/api/skimage.measure.html#skimage.measure.EllipseModel
6www.tensorflow.org/

http://scikit-learn.org/0.18/documentation.html
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.EllipseModel
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.EllipseModel
http://www.tensorflow.org/


connected layer in steps of 50, as well as activation functions
and optimizers provided by TensorFlow. Our final network
architecture is shown in Table 1. We trained the CNN using
AdaGrad as the optimizer with a batch size of 100 and used the
Xavier initialization scheme to initialize the network weights.
We initialized the biases with random values from a normal
distribution. An exponential decay (rate = 0.2 in 1000 steps)
was used to decrease the initial learning rate of 0.009. We used
L2 Regularization to compensate overfitting by adding 0.01 of
the weights to the cost function. Moreover, we used an early
stopping approach as proposed by Caruana et al. [12] to further
avoid overfitting. While we experimented with batch norma-
lization [27], this did not improve the overall accuracy. Our
CNN achieved an accuracy of 99.58% (prec = 99.38%, rec =
99.28%) which is the highest of all presented approaches.

Mobile Implementation
After freezing the CNN to a protocol buffer file, we used
TensorFlow Mobile7 for Android to run the CNN on an LG
Nexus 5 that provides the same capacitive images as in the data
collection study. Classifying one capacitive image including
the blob detection takes 7.5ms on average (min = 4ms, max
= 11ms, SD = 1.6ms) over 1000 runs. As this is faster than
the sampling rate for the capacitive images, it can be used to
classify each sample when running in the background. With
processor manufacturers recently starting to optimize their
processors for machine learning (e.g., Snapdragon 835), the
classification can be sped up significantly8. The model can be
further optimized for mobile devices with techniques such as
quantization [20] and pruning [1] for a small loss of accuracy.

Discussion
We presented an overview of machine learning algorithms
which we used to train a palm classifier and showed that a
CNN achieved the highest classification accuracy of 99.58%.
This improves the baseline accuracy by 31.0%. While our
grid search already yields reasonable results for the basic
machine learning approaches, further optimizing accuracy
and especially precision is necessary as the palm classifier is
supposed to run in the background to classify a large number
of input frames over time (i.e., 20 frames per second). As
fingers are used most of the time to perform input on the
touchscreen while a detected palm triggers a defined action,
false positives (affecting the precision score) lead to a visible
unexpected behavior. In contrast, a lower recall score (and
thus a higher false negative rate) could be partly compensated
by the UI through, e.g., recovering previous wrongly classified
palm touches as soon as the palm is correctly detected. Thus,
we prioritized precision over recall in the training process.
While the SVM with ellipse and capacitance properties as
features achieved the highest precision of all approaches, the
trade-off is by far the lowest recall and also accuracy. In total,
the CNN achieved the best results while the preparation and
classification are feasible to perform on an off-the-shelf mobile
device. We will refer to this model as CNN-PalmTouch.
7www.tensorflow.org/mobile/
8www.qualcomm.com/news/onq/2017/01/09/tensorflow-machine
-learning-now-optimized-snapdragon-835-and-hexagon-682-d
sp

features algorithm parameters / layers prec rec acc

− Baseline
(ZeroR)

Always predicting Finger as
this is the majority class.

- 0.0 68.54

finger blob kNN k (neighbors) = 197 97.90 91.78 96.80
size DT max depth = 4 97.66 92.05 96.80

RF estimators = 1; max depth = 1 97.64 92.06 96.80
SVM C = .1; linear kernel 98.99 90.54 96.73

ellipse & kNN k (neighbors) = 9 98.40 94.34 97.73
capacitance DT max depth = 6 97.10 96.70 98.05

RF estimators = 16; max depth = 10 96.10 98.18 98.17
SVM C = 10; linear kernel 99.96 79.06 93.40

raw data NN Input: 405 97.49 98.46 98.74
(RL) Hidden Layer 1: 500 (ReLU)

Hidden Layer 2: 300 (ReLU)
Softmax (output): 2

CNN Input: 27×15×1 99.38 99.28 99.58
Convolution: 7×7×16 (ReLU)
Max Pooling: 2×2 (stride = 2)
Convolution: 7×7×36 (ReLU)
Max Pooling: 2×2 (stride = 2)
FC Layer 1: 350 (ReLU)
FC Layer 2: 350 (ReLU)
Softmax (output): 2

Table 1. Performance of the trained models with the hyperparameters
after a grid search for the highest accuracy. Results (in percent) were
calculated using the test set described above.

EVALUATION OF PALMTOUCH
We conducted a study to evaluate PalmTouch and the model
accuracy in realistic scenarios. Specifically, we focus on the
following three aspects: 1) classification accuracy of CNN-
PalmTouch in realistic scenarios, 2) qualitative feedback after
using PalmTouch, and 3) a quantitative evaluation of the re-
achability use case. We used a Nexus 5 running the mobile
version of CNN-PalmTouch described above and custom appli-
cations to record and implement the study scenarios.

Study Procedure & Design
We designed four tasks to evaluate the three aspects described
above. We measured the participants’ hand and finger sizes
after we obtained informed consent and then handed them an
instruction sheet that explained all parts of the study so that
participants could refer to the instructions at any time.

Part 1 (Realistic Scenario for Evaluating False Positives)
In a counterbalanced order, we instructed participants to per-
form tasks one-handed and two-handed which we refer to as
realistic scenarios. While participants used the smartphones,
we collected the classifier output in the background to test
the model on false positives as palms are not expected in this
part. We designed the realistic scenarios to cover commonly
used touch input gestures including tapping, dragging, scrol-
ling, and additionally pinching and rotating for two-handed
use. To keep the scenarios as realistic as possible, participants
performed this part on a pure Android system using common
applications such as the onboard SMS messenger, Google
Chrome, and Maps.

We handed the Nexus 5 in standby mode to the participant
who received a (simulated) notification after unlocking the
device. Tapping the message in the notification drawer then
opens a text message with questions that the participant needs
to answer by using Google searches or Maps. We further
provided an instruction sheet that describes each step that the

http://www.tensorflow.org/mobile/
http://www.qualcomm.com/news/onq/2017/01/09/tensorflow-machine-learning-now-optimized-snapdragon-835-and-hexagon-682-dsp
http://www.qualcomm.com/news/onq/2017/01/09/tensorflow-machine-learning-now-optimized-snapdragon-835-and-hexagon-682-dsp
http://www.qualcomm.com/news/onq/2017/01/09/tensorflow-machine-learning-now-optimized-snapdragon-835-and-hexagon-682-dsp


participant is required to do. The gestures described above
were used especially using the system (tapping and scrolling),
selecting text on a website (long press and dragging), and navi-
gating in Google Maps in the two-handed scenario (pinching
and rotating). Each of the two scenarios ended with replying
to the initial SMS message with the search results. In total,
this part took 10 minutes per participant.

Part 2 (Realistic Scenario for Qualitative Feedback)
We introduced and demonstrated PalmTouch to the participants
and let them practice the same-side and one of the opposite-
side palm touches using a demo application. Afterwards, par-
ticipants performed a modified version of the Part 1 scenarios.
Instead of pulling down the notification bar, participants now
use the palm to access the notifications. Further, we replaced
all application switching actions with the pie menu containing
the messaging, browser and maps application. After comple-
tion, participants filled out a questionnaire and we interviewed
them about their impression of PalmTouch. In total, this part
took around 15 minutes per participant.

Part 3 (Reachability Task)
We evaluated the reachability use case regarding the task com-
pletion time (TCT) and qualitative feedback. Specifically, we
compared accessing notifications supported by PalmTouch
with dragging down the notification bar manually. We used
a 2× 2 within-subjects design with the independent varia-
bles being the number of hands (ONE-HANDED and TWO-
HANDED) and the access method (PALM and DRAG). Each
condition comprised 20 repetitions of opening the notification
drawer to click on a notification displayed at a random height.
Between these repetitions, participants completed 2 - 5 Fitts’
Law tasks as shown in Figure 5b to ensure that they returned
to their usual hand grip after clicking the notification. We mea-
sured the TCT for opening the notification drawer and clicking
on the notification. We further collected qualitative feedback
about the perceived easiness, speed, success, accuracy and
comfort using a 7-point Likert scale.

The apparatus simulates a notification bar (see Figure 5a) for
the respective conditions. To simulate the DRAG condition
as realistic as possible, the notification drawer can also be
opened with a fling downwards. By rooting the Nexus 5, we
disabled Android’s notification bar and navigation bar to avoid
any disruptions during this part. This part took 10 minutes.

Part 4 (Palm Touch Input for Evaluating False Negatives)
We tested the model on false negatives. Our study application
instructed participants to repeatedly place their palm on the
screen for one second and remove it afterward (see Figure 5c).
The duration ensures that participants contribute a similar
number of samples and avoids palm touches being done too
quickly or slowly. Both same-side and opposite-side palm
touches were performed 20 times each in a counterbalanced
order. We collected the classifier output during this part to test
the model on false negatives as fingers are not expected in this
part. We let participants perform this part at the end of the
study since repeatedly placing the palm on the touchscreen
and waiting could lead to fatigue and therefore influence the
other parts. This part took 5 minutes.

(a) (b) (c)
Figure 5. Screenshots of (a) the notification drawer in Part 3; (b) Fitts’
Law task as a distraction task in Part 3; and (c) a prompt to place the
palm on the touchscreen until the progressbar on top is full (Part 4).

Participants
We recruited 22 participants (6 female) with an average age
of 21.9 (SD = 2.1) who had not participated in the previ-
ous study. All except two participants were right-handed.
The average hand size measured from the wrist crease to the
middle fingertip ranged from 17.2cm to 20.5cm (M = 18.6cm,
SD = 0.9cm). Three participants preferred to use their smartp-
hone two-handed, while 14 preferred to use it one-handed and
five use both variants in everyday life.

RESULTS
We present the results of the evaluation study which covers mo-
del accuracy, evaluation of the reachability use case, heatmaps
of how PalmTouch was used, and qualitative feedback.

Model Accuracy in Realistic Scenarios
We obtained labeled capacitive images of touch input in a rea-
listic scenario. With the labels providing us with the number
of false positives and true negatives (Task 1), and true positives
and false negatives (Task 4), we derived the precision, recall,
and accuracy of the classifiers. After calculating all three
metrics for each participant, the mean accuracy yielded by
CNN-PalmTouch is 99.53% (SD = 0.71%). The mean preci-
sion is 99.35% (SD = 2.53%) and the mean recall is 97.94%
(SD = 2.87%). The false positive rate which describes the
likelihood of unintentionally triggering a palm input is 0.09%.

Reachability Use Case Evaluation
For the ONE-HANDED condition, the average time for DRAG to
open the notification drawer is 1689.62ms (SD = 700.32ms)
while the total time including tapping the notification is
2352.74ms on average (SD = 817.14ms). In contrast,
the average time for PALM to open the notification dra-
wer is 1396.31ms (SD = 449.75ms) and 2114.73ms (SD =
647.14ms) including tapping the notification. A two-tailed
paired t-Test revealed a significant difference in TCT to open
the notification drawer in the PALM and DRAG condition
(t329 = 6.71, p < .001) and in TCT including tapping the
notification (t329 = 4.40, p < .001). We used a Wilcoxon
signed-rank test to analyze the Likert scores as shown in Ta-
ble 2 for the ONE-HANDED condition and found a statistically



significant difference between PALM and DRAG in perceived
easiness (Z =−2.201, p = .028), speed (Z =−1.985, p = .047),
success (Z = −2.069, p = .039) and accuracy (Z = −2.087, p
= .037). No statistically significant difference was found for
the perceived comfort (Z = −.508, p = .612).

For the TWO-HANDED condition, the average time for DRAG
to open the notification drawer is 1462.54ms (SD = 873.14ms)
while the total time including tapping the notification is
2103.94ms on average (SD = 1049.05ms). In contrast,
the average time for PALM to open the notification dra-
wer is 1394.29ms (SD = 588.76ms) and 2110.40ms (SD =
742.37ms) including tapping the notification. A two-tailed
paired t-Test showed neither a significant difference in TCT
between the PALM and DRAG condition to open the notifica-
tion drawer (t329 = 1.19, p = .236) nor in the TCT including
tapping the notification (t329 = −0.09, p = .925). We used a
Wilcoxon signed-rank test to analyze the Likert scores for the
TWO-HANDED condition and did not find a statistically signifi-
cant difference between PALM and DRAG neither in perceived
easiness (Z = −.626, p = .531), speed (Z = −.019, p = .985),
success (Z = −1.562, p = .118), accuracy (Z = −.894, p =
.371), nor comfort (Z = −1.326, p = .185).

Type and Location of Palm Placement
Figure 6 shows heatmaps of the locations at which participants
performed palm touches in task 4, and indicate the touches’
average position. All three images represent the average ca-
pacitive images over each participant. We separated the ca-
pacitive images into three palm input types that we showed
in Figure 1: same-side (as shown in Figure 1a), opposite-side
using the flat hand (Figure 1b), and opposite-side by forming a
fist (Figure 1c). Nine participants decided to use the flat hand
for opposite-side palm touch and 13 participants the fist.

Qualitative Feedback in Realistic Scenarios
Participants filled out a SUS questionnaire [9] about Palm-
Touch as an additional input modality in the two realistic sce-
narios. SUS scores range between 0 to 100 whereas any score
above 68 is considered to be above average in terms of usa-
bility [10]. The SUS score for PalmTouch ranged from 52.5
to 95.5 with an average of 80.1 (SD = 10.0). With this, the

(a) (b) (c)
Figure 6. Average capacitive images representing the location of the
palm touches for (a) same-side, (b) opposite-side using the flat hand, and
(c) opposite-side by forming a fist. All images describe the average capa-
citive images over each participant.

One-Handed Two-Handed

Perception Palm Drag Palm Drag

Easiness ∗ 5.7 (1.1) 4.8 (1.6) 6.0 (1.2) 5.6 (1.7)
Speed ∗ 5.6 (1.2) 4.6 (1.8) 5.4 (1.6) 5.2 (1.8)
Success ∗ 6.0 (1.4) 5.1 (1.6) 6.2 (1.0) 5.5 (1.6)
Accuracy ∗ 5.7 (0.9) 5.0 (1.4) 5.9 (1.0) 5.4 (1.6)
Comfort 4.5 (1.6) 4.5 (1.9) 6.1 (1.0) 5.4 (1.5)

Table 2. Subjective perceptions (7-point Likert scale) to open the noti-
fication drawer in both conditions. Values in brackets indicate the SD,
an asterisk (∗) indicate a statistically significant difference between one-
handed PALM and DRAG (p < .05).

average score lies between “good” and “excellent” in the ad-
jective rating of Bangor et al. [3]. Realistic scenarios without
PalmTouch yielded an SUS score of M = 74.0 (SD = 16.1).

When asked about the first impression after using PalmTouch
in realistic scenarios, the majority (18) were positive about
using the palm as an additional input modality. Especially
when used one-handed, participants found using the palm
intuitive and natural (P7, P10, P11, P12, P13, P14, P20),
comfortable (P3, P6, P9) and convenient (P2, P3, P13). While
participants needed a short period of time to get familiar with
the input modality, they (P12, P13, P15, P21) appreciate that it
helps them to use the system faster than before (“It felt strange
for a short while, but then I became familiar with it really fast.
After that, it feels intuitive, and I am faster than without it. ”
- P21). Moreover, they were surprised about the stability of
the system (“I was surprised that the system worked really
well, especially for app switching.” - P13; “It worked well” -
P9). In contrast, four participants reportedly had concerns to
perform a palm touch (“I was afraid to drop the phone” - P22)
or “had the feeling that [they] touch something on the screen
unintentionally” when used the first time (P17).

When asked about advantages of PalmTouch, eight partici-
pants reportedly find the provided shortcuts useful. They
identified that these shortcuts provide faster access to apps
(P9, P11, P12, P17, P18, P19) and improve reachability, espe-
cially when using the device one-handed (P7, P10, P20). As
an example for the faster access, P16 explained that the most
important apps are “always available when placing the palm
onto the touchscreen”. Further, P7 suggested that “systems
could use palm input to [allow users to] access the app dra-
wer from every screen” to make launching apps faster. Three
participants (P7, P10, P20) argued that PalmTouch saves grip
changes as “shortcuts help to reach buttons on the top side of
the touchscreen” (P20).

We asked participants about perceived disadvantages of Palm-
Touch. For PalmTouch in the one-handed condition, only two
participants (P3, P7) reported that when “tapping something
on the upper left edge of the device, one could accidentally
place the palm on the screen” (P3) which could be solved with
the reachability use case. In general, participants see more
advantages than disadvantages for PalmTouch when they use
the device one-handed. In contrast, they reported more disad-
vantages after the two-handed scenarios. Holding the device
with one hand and placing the palm of the second hand on the
touchscreen feels unintuitive (P2, P12, P16) and unnatural (P5,
P6, P7, P11). As an example, P12 explained that “switching



from index finger to the palm requires either moving the hand
or turning it” which makes it inconvenient. Further, three par-
ticipants (P3, P20, P22) argued that it is faster to use the index
finger of the second hand to reach targets on the top side of the
touchscreen instead of the palm. Since two-handed interaction
does not pose reachability challenges, participants found that
PalmTouch was less useful in the two-handed scenarios.

We asked participants for further scenarios in which Palm-
Touch can be useful. They preferred and suggested the pos-
sibility to start custom applications and actions (P2, P3, P6,
P11, P14, P15, P17, P18), such as the camera (P2, P6), set-
tings within an application (P11, P17) or splitting the screen
(P18) which is shipped with Android 7.0. P1 and P22 even
suggested mapping more critical functions since they find it
unlikely to trigger a function mapped to the palm accidentally.
These functions include closing the foreground application
(P1), accepting a call (P20), or stopping the music (P22).

DISCUSSION
We implemented PalmTouch and deployed it on an off-the-
shelf smartphone to enable users to trigger specific functions
by placing the palm on the touchscreen. The palm as an addi-
tional input modality received a SUS score of 80.1 which is
considered above average in terms of usability [10]. The SUS
score conforms with subjective feedback of participants who
found PalmTouch intuitive and natural as a way to improve
reachability and as a shortcut. Using the notification bar as an
abstract scenario of the reachability problem, we found that
participants perceive PalmTouch as significantly easier, faster
and more accurate than changing the grip which could lead to
dropping the device. For the one-handed scenarios, an analysis
of the task completion time (TCT) revealed that PalmTouch
is indeed significantly faster than a grip change to open the
notification drawer manually. This finding can be transferred
to other interface elements such as toolbars, the application’s
menu button, and URL bars in most browsers. Further, with
the emergence of edge-to-edge displays on devices such as
the iPhone X and Samsung Galaxy S8, the lack of a dedicated
home button can be compensated with PalmTouch.

Participants gave more positive feedback for PalmTouch du-
ring the one-handed scenario. The reason is that two-handed
interaction does not pose any reachability challenges since
the interacting hand can move freely over the whole display.
Moreover, placing the other hand’s palm on the display feels
reportedly less subtle and thus can feel unusual. In both sce-
narios, all except two participants had no difficulties to place
their palms on the touchscreen after a short practice phase.
Due to small hand sizes (17cm), two participants lack a stable
grip while holding the device one-handed. Moreover, bending
the thenar muscles9 to place the palm on the touchscreen cau-
ses the hand to bend. Thus, all other fingers move towards
the palm which leads to an unstable grip while the device is
tilted. In this situation, a controllable input is not possible
since the device needs to be balanced. However, this also
applies to stretching the thumb or changing the grip. Thus, we
recommend PalmTouch as an additional input modality while
9Thenar muscles refers to a group of muscles located at the base of
the thumb [28].

still providing alternative touch input in case the user cannot
ensure a stable hand grip.

We implemented PalmTouch using capacitive images of the
touchscreen and trained a CNN which achieves a high accu-
racy in detecting the palm. Compared to basic machine lear-
ning approaches and neural networks, the CNN achieved the
highest accuracy with an applicable classification time when
deployed on an off-the-shelf LG Nexus 5. We showed that
our model classifies touches reliably during realistic scenarios
with an accuracy of 99.53%. With a precision of 99.35%, the
likelihood of unintended triggers either through classification
errors or unwanted palm input is neglectable. With a recall of
97.94%, our classifier also recognized the palm reliably when
users placed them on the screen. False negatives were caused
by capacitive images in which the palm was about to be placed
on the screen (in Task 4), and can be corrected by recovering
previous wrongly classified palm touches as soon as the palm
is correctly detected. The accuracy can be further improved
by taking the average locations of palm input as shown in
Figure 6 into account. Since accuracies in offline validation
and realistic scenarios are similar, this shows that our model is
generalizing well and does not overfit. In summary, this shows
that using the palm to activate functions is feasible with a high
accuracy while perceived as natural and fast by users.

LIMITATIONS
While we observed that all touches which are larger than a
usual finger are rejected on the touchscreen of the LG Nexus
5, we did not modify its palm rejection algorithm to use the
results of our classifier. Thus, there were palm touches that
are correctly classified by our model but were not rejected by
the touch controller. However, this effect was not disruptive
in our realistic scenarios as non-rejected touches only slightly
scrolled the shown website or moved the map.

While we showed a neglectable likelihood of unintended trig-
gers, the existence of low-level palm rejection algorithms
might suggest that unintended touches occur more frequently,
e.g., in in-the-wild scenarios. Palm rejection algorithms are
designed to omit unintended touches whereas our PalmTouch
model is trained to detect intended palm touches as performed
in the data collection study. When the device is used normally,
activations through unintended palm touches are unlikely as
we showed in the evaluation. However, it is left to future work
to further investigate this aspect in scenarios where all kind of
different touches might happen, such as while walking, being
encumbered, and being in crowded places.

CONCLUSION
We presented PalmTouch, an additional input modality on
smartphones using the palm to perform input. We proposed
four use cases and evaluated PalmTouch in a user study. Parti-
cipants perceived PalmTouch as a natural and intuitive gesture
for a wide range of use cases, including the use as a short-
cut and to improve reachability in one-handed scenarios. We
investigated an abstract scenario in which we addressed re-
achability issues during one-handed smartphone interaction
and found that PalmTouch was perceived as an easier, faster
and more accurate solution than a grip change which could



drop the device. While a quantitative analysis revealed that
participants were indeed faster with PalmTouch, they apprecia-
ted its short learning curve. Especially on recent devices with
an edge-to-edge display (e.g., iPhone X), PalmTouch provides
an alternative to the removed home button.

We implemented PalmTouch using capacitive images collected
in a controlled study, and a convolutional neural network to
differentiate between touches being made by fingers and palms.
In contrast to previous work, our approach uses low-resolution
fingerprints instead of heuristics that only work with multiple
touch points (i.e., pen and palm) or that would introduce la-
tency through temporal features. This enables us to build a
model with an accuracy of 99.53% in a realistic scenario evalu-
ation. Since we only modified the software of an off-the-shelf
Nexus 5 smartphone, PalmTouch could be readily deployed
onto recent smartphones, e.g., through software updates.

We focused on the feasibility and usability of PalmTouch as an
input modality on smartphones. With a precision of 99.35%,
we showed a neglectable likelihood of unintended triggers
either through classification errors or unintended palm tou-
ches. Future work could evaluate PalmTouch in the wild and
investigate unintended palm touches. The palm detection mo-
del could be extended to differentiate between unintended and
intended palm touches to support the device’s native palm re-
jection and to improve the accuracy of intended palm touches.

PALMTOUCH DATASET AND MODEL
One outcome of the studies is a labeled dataset that consists of
capacitive images representing touches from fingers and palms.
We are publicly releasing the data set together with Python 3.6
scripts to preprocess the data as well as train and test the model
as described in this paper. We further provide the trained
model as a protocol buffer file, the software to run PalmTouch,
and implementations of the use cases readily deployable on
Android. These enable the community to run PalmTouch on
their devices: http://github.com/interactionlab/PalmTouch.
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