
Teaching OOT Using a Framework and Both
Direct and Net-based Tutoring1

Birgit Demuth, Heinrich Hussmann, Steffen Zschaler
Department of Computer Science
Dresden University of Technology

01062 Dresden, Germany
{demuth, hussmann, zschaler}@inf.tu-dresden.de

Lothar Schmitz

Department of Computer Science
University of the Federal Armed Forces Munich

85577 Neubiberg, Germany
lothar@informatik.unibw-muenchen.de

Abstract: We report on experience from teaching OO project courses to undergraduate students.
Before they can successfully tackle projects they have to climb a rather steep qualification ladder:
pick up a working knowledge of some OO language, learn and practice OOA and OOD, and get
used to advanced ideas like patterns and frameworks. In order to relieve this heavy burden some-
what, we provide an object-oriented application framework as a common base for the projects. That
way, the students are given an architecture, which they have to adapt to their specific task instead
of doing all the design on their own. We also believe that this policy closely resembles the way be-
ginners are integrated into on-going projects in practice. We briefly describe the Java framework
we use and then concentrate on the organizational issues involved.

Introduction

Education in object-oriented (OO) technologies has become a core part of any modern education in software en-
gineering. A well-known problem with education in this field is the relatively long period of time that is required to
get accustomed to "OO thinking":

• First, learn to solve problems by building small communities of interacting objects. People with a strong back-
ground in classical structured-procedural programming may first have to unlearn their previous algorithm-cen-
tered approach.

• Second, adopt the habit of reusing existing classes instead of inventing new ones. This requires you to know
where to look for reusable components.

• Third, start to think flexibly about the organization of the software development process. Beginners have to be
taught the importance of a formal software life cycle and of a proper requirements analysis (see e.g. Wilkin-
son 1995, Wirfs-Brock, Wilkerson & Wiener 1990 and Rumbaugh, Booch & Jacobson 1997).

• The most advanced concepts we teach to our novices are patterns and frameworks (see Gamma, Helm,
Johnson & Vlissides 1994, Froehlich, Hoover, Liu & Sorenson 1998). Patterns describe concepts of proven
solutions for recurring problems: when, where and how to apply them. Frameworks are application skeletons
that can be turned into complete applications by providing parameters and/or subclasses of the framework’s
generic classes.

Here, we describe our current approach, which we have found very useful and which might be applied similarly

by other organizations as well. This approach was developed jointly between Dresden University of Technology and
the University of the Federal Armed Forces in Munich, and is applied at both universities. The central idea of our

1 Copyright 2000. Association of the Advancement of Computing in Education (AACE). Distributed via the Web by
permission of AACE.

approach is to first provide a rapid and dense education covering all topics mentioned above in an introductory
course, which immediately precedes the project course. The project course where student teams are assigned indi-
vidual tasks requires extensive practical work based on a given object-oriented application framework. This provides
valuable experience for programming assignments and advanced courses in the postgraduate phase of their studies.

A strong motivation for putting so much emphasis on using a framework stems from the following observation:
In academic as well as industrial settings beginners will often join projects that are already well in progress. Finding
out enough about the project’s structure to be able to do your job is similar to learning how to apply a framework.
Experience with this activity is likely to be reusable to some extent also in a non-object-oriented context. A practical
course based on one common framework even offers some more advantages:

• For the organizers it is easy to define a number of similar projects and to scale the projects’ complexity from
moderate to reasonably hard. Since they are based on the same framework, all the different tasks are still com-
parable.

• For the students it is simpler to extend the application architecture predefined by the framework than to design it
for each application from scratch. Also, the framework provides many domain-specific components that can be
used "off the shelf".

• Beginners get a chance to learn good design by example: Frameworks by definition are designed for change.
Therefore, they typically exhibit patterns that increase flexibility.

The rest of this paper is organized as follows. First we briefly describe the domain, components, adaptation inter-

face and documentation of our SalesPoint framework. The next section outlines the project organization: our
aims, the persons involved, the timetable and, most important, our tutoring concept. The final section gives some
statistics and recent experience.

The Framework

Our SalesPoint framework supports the development of point of sale simulations ranging from simple vend-
ing machines to big department stores. Typical applications include an exchange office where you can obtain foreign
currency as well as a post office offering stamps and a well-defined set of services. The simulations comprise both
business with customers (selling, buying, or renting goods) and administrative tasks (like accounting, refilling the
stores, removing slow-moving articles, and putting new kinds of items on sale). All applications from the Sales-
Point domain share the following characteristics: There is one single shop where customers are served at a number
of counters (or SalesPoints, in our terminology). At each counter there is a queue of customers. Every counter offers
articles from some fixed catalog. For each article, the catalog has an entry giving its name, price, and other relevant
properties. A stock is a bag of articles from the catalog. Examples of stocks are: the goods on an order form, the arti-
cles contained in a vending machine, in the shelves of a store, or in a customer’s shopping basket. Money fits into
this terminology as a special case: Here the catalog is called a currency. It describes the set of valid bank notes and
coins and their values. The contents of a personal purse or those of a cash register are called money bags. Sales-
Point customers have data baskets, which may contain a number of goods chosen by the customer. Thus data bas-
kets closely resemble the shopping baskets carried around by real customers in real shops. The contents of a data
basket represent the state of a customer’s current shopping transaction. Like other transactions, data baskets can be
committed (e.g. when the goods are paid for and taken out of the shop) or rolled back (i.e. the goods are restored to
the shelves they came from).

All SalesPoint applications have similar organizational and GUI requirements. Accordingly, the Sales-
Point framework supports the development of point of sale simulations by providing (among other things) similar
GUIs built from the same components including generic form and menu classes for user interaction. A shop is repre-
sented by a main window, which contains a set of subwindows, one for each customer at the currently visible
counter. Tabular form components are available for presenting catalogs and stocks. The common organizational part
comprises base classes for catalogs, stocks, currencies, and money bags, persistency management (on request the
state of the simulation can be stored in a file to be restored again later), user management (allowing users with pos-
sibly different capabilities to be created), time management (for controlling the simulation time), transaction support
including rollback, and a logging mechanism.

On a more technical level, framework users expect their framework’s software to be robust and flexible. Among
the robustness features of the SalesPoint Java implementation that require no activity on the part of the applica-

tion developers (and thus might even go unnoticed by them) are: SalesPoint data structures are thread safe, i.e.
they can be accessed concurrently from different threads. SalesPoint guarantees the referential integrity of
catalogs and stocks, i.e. you cannot add an item to a stock if there is no matching catalog item in the corresponding
catalog. And you cannot simply remove a catalog item without first removing all corresponding items from all
stocks based on this catalog. These properties are implemented using suitable Java Event and Listener objects. In
order to make the SalesPoint framework flexible suitable design patterns were applied, e.g. the Factory Method
pattern for creating stocks and the Bridge pattern for choosing between different time management implementations.

Like other frameworks, SalesPoint is adapted to its users’ needs in several ways: first, by supplying special-
ized subclasses; e.g. menu sheets are easily adapted using Java’s inner classes; second, by providing hook methods;
e.g. the presentation of tables is adapted with hook methods: redefining the method compare (x,y) that compares
table rows one can impose any sorting order one wishes; third, by providing parameters; e.g. when creating a new
stock object one of the constructor’s parameters describes which catalog to use, another chooses one of the algo-
rithms for building stocks with a given value.

The SalesPoint on-line documentation consists of three complementary descriptions: a top-down introduc-
tion to the purpose, architecture and components of the framework, a javadoc-generated detailed documentation of
all the framework’s classes and methods including all the predefined adaptation interfaces, and a tutorial describing
in a line-by-line fashion how the framework can be used for building a typical application: the simulation of a Fast
Food Restaurant.

For more details on the introductory course and the framework see (Demuth, Hussmann, Schmitz, Zschaler 1998)
and (Demuth, Hussmann, Schmitz, Zschaler 2000a). On the (English) SalesPoint homepage (Demuth, Huss-
mann, Schmitz, Zschaler 2000b) all the material for using the framework (code and on-line documentation) is acces-
sible.

Organization

The project course organization, which we describe in the following, is very similar at both universities. A few
differences come from varying conditions: the large number of students that participate in the project course every
year in Dresden; two semesters (Dresden) versus three terms (Munich) per year; and students living on campus in
Munich.

Aims

For the majority of students, the project course is the first hands-on experience in software engineering. Prior to
that, they were taught (among other things) structured programming and verification techniques, sorting algorithms
and data structures including hash tables and AVL trees. Programming tasks were defined precisely, small to mod-
erate in size and typically could be solved by one person in a few days. In order to succeed with their projects stu-
dents now have to develop a number of new ("soft" and auxiliary) skills:

• They have to learn to work in teams: assume different roles (team leader, developer, etc), communicate in a
professional way within the team and with customers, and work systematically for a period of three months
following some given method and a plan made by themselves.

• They have to find out what their task is: In contrast to the programming tasks they were given before the project
definition is rather sketchy. It is the students’ job to find out what to do and to negotiate with their "customers".

• They have to present their work: Both oral and WWW presentations are required. The presentations are aimed
at either customers or consultants and thus differ very much in the level of abstraction and amount of technical
detail.

• They have to acquire a working knowledge of the tools they need: In addition to some Java IDE they need a
CASE tool and some HTML and FTP background as required to set up their own small WWW site.

During the project course a written process outline, guidance by the tutors and feedback from the presentations

are available. With this background, the students are expected to develop the soft skills mainly by themselves.

Persons Involved

The students are asked to form teams of five or six persons each and to adopt a chief programmer team organiza-
tion, i.e. to assign chief, assistant, secretary and developers’ roles to the team members. The resulting teams are
coached by senior students who in turn are supervised by the project course leader. The senior students work as
tutors: They are both consultants for the younger students and clients for the software project. Technical questions
and requests for framework correction or extension are handled by senior students who have participated in the
framework development.

The situation resembles that of a start-up software company specialized in some domain (as represented by the
framework). The company’s technical staff consists of a technical director, four or five experienced developers (one
of whom is responsible for the framework) and a bunch of 50 to 150 beginners who are to be "trained on the job".
To avoid disaster, some strict discipline and a lot of communication is required:

• Teams have to adhere to a predefined timetable (see below). Otherwise, management cannot guarantee that pro-
jects will be completed in time.

• Development has to be founded on the framework. Beginners tend to do everything from scratch and “reinvent
the wheel” many times. Only by using the framework they will contribute to the company’s know-how and pro-
duce solutions that can be maintained easily.

• Guidance by management (i.e. the tutors) is impossible unless progress is documented extensively all the time.
The company’s work process description therefore lists what kind of documents have to be produced in which
phase.

Teams that will not stick to these rules are excluded from the project course.

Timetable

A rather rigid timetable is prescribed for project work. Once or twice during each phase, results (documents, pro-
grams) have to be presented to the tutors. Final delivery includes a formal oral presentation per team where the main
results including the working program have to be shown and questions to be answered. The timetable is as follows
(The number of weeks per phase is given for Dresden/Munich. A Dresden semester has approximately 13 weeks, a
Munich term only 11 weeks.):

Getting Started ... 3/3 weeks
OO Analysis ... 2/2 weeks
OO Design and Prototyping ... 2/2 weeks
Implementation and Test ... 3/2 weeks
Maintenance ... 3/2 weeks

Table 1: Project timetables

Alternatively, incremental development with several development cycles is allowed. This approach is adopted by
most teams. In the Start phase students establish their teamwork organization, obtain and install the development
and documentation tool sets as well as the SalesPoint framework software and documentation. During this
phase the students also have to study the framework and its tutorial. We experiment with different approaches to
learning the framework. For example, each Munich student has to implement the same and rather simple Sales-
Point application at the beginning of the project course. This takes time (3 weeks), but it helps the students to de-
velop their main application much faster than when learning the framework in parallel with the software develop-
ment. In the Analysis phase, students first identify the use cases of the system to be built. CRC card sessions are
then used to elaborate corresponding scenarios in order to better understand the dynamic behavior and the classes of
the target system with their responsibilities. OO modeling has to be documented in UML notation (Rumbaugh,
Booch & Jacobson 1997) using static, use case, state and sequence diagrams. In the Design phase, suitable frame-
work components are identified for implementing this model. The model is adapted accordingly and a first prototype
can be built. The Implementation and Test phase is devoted to growing and testing the prototype. The Maintenance
phase includes the removal of bugs and satisfying some minor clients' wishes. The latter serves as a test whether the
design is clean enough to allow for easy modification.

Net-Based and Direct Tutoring

All information is distributed via WWW: the framework, its documentation, the tutorial, and the project specifica-
tions. Using email help can be obtained all the time from the tutors, the frameworks specialists, from system
administrators, and from the course manager. Framework bugs and requests for new framework features can be en-
tered into a web-based list. A public electronic calendar is kept for booking presentation dates and rooms. Some
teams even install their own private electronic chat-rooms and bulletin boards for communication within teams. All
these communication channels are used rather heavily indicating that without net technology this kind of course
might not be possible - or at least take much more time for all persons involved.

The students are required to present their solutions on HTML pages. For this purpose, each team is given an ac-
count on one of the institute’s web servers. Student team web sites are the most important prerequisite for net-based
tutoring: therefore, the students are required to publish their results as early as possible and to update them on a
daily basis. That way, the tutors and the course manager can asynchronously observe student progress all the time.
This allows for instant (email) feedback and thus helps to avoid mistakes and too much time spent taking wrong
turns. For beginners this kind of continuous guidance is very important.

However, net-based tutoring alone does not suffice: In difficult situations, inexperienced developers cannot be
expected to even state their problems precisely. Some find it difficult to overcome the psychological barrier of ask-
ing an anonymous consultant for help. To get them started, tools and ways to work with the documentation have to
be shown them directly. Although student web sites are really helpful, not all mistakes show up there. And some-
times it is easier to give feedback when meeting in person.

At the end of every phase (Dresden) or every week (Munich) students have to present their progress orally. In a
short presentation of 15-30 minutes at most the teams demonstrate the latest version of their prototypes; each devel-
oper explains his or her contribution showing documentation and code fragments, and answering questions from the
tutors or course managers, respectively. This is a way of ensuring that all team members actively take part in the
development. Also, frequent presentations result in a more regular style of working. In the final presentation, we
also collect student feedback for improving the course organization.

Evolving the Framework-Based Project Course

Since winter 1997/98 when we first taught the framework-based project course we have improved both the used
framework and the project organization every year (Demuth, Hussmann, Schmitz & Zschaler 1998). A major step
was taken in winter 1999 (Munich) and summer 2000 (Dresden), when we upgraded successfully to version 2.0 of
the framework.

The overall results of the previous project courses are very encouraging. In Munich, there were no dropouts so
far. This is probably due to the fact that in Munich almost the same number of tutors are employed as in Dresden
while the student numbers are much smaller. Another advantage is that Munich students are paid by the armed
forces and live on campus. The table below specifies the number of teams and the total number of students for each
project course up to now.

 Dresden
Winter
97/98

Munich
Winter

98

Dresden
Winter
98/99

Dresden
Summer

99

Munich
Winter

99

Dresden
Summer

2000

Munich
Winter
2000

Success rate 90 % 100 % 91 % 70 % 100 % 88 % 100 %

Teams 22 6 25 2 7 21 9

Students 116 32 120 7 42 115 54

Table 2: Project success rates

During the whole process we had a lot of feedback: from the tutors, some students’ questions, many intermediate
documents, final presentations with discussions and the detailed questionnaires we requested from the students. We
learned that:

• studying the framework took more time than we had expected (about 25 % of the whole effort); in retrospect we
feel this justified since it covers a good deal of what would otherwise have been part of the design phase; stu-
dents rated the tutorial and the on-line support rather high;

• the time table was realistic, given the students’ tendency to postpone work towards the end; on an average, the
students spent about 10 to 12 hours per week on their projects; some additional time was needed to catch up on
missing OO and Java knowledge from the introductory course;

• students generally liked the tasks they were given; some teams even tried to find out real clients’ requirements
by doing field studies; a growing number of students, however, would prefer to develop real applications in-
stead of just simulations; students rated their own achievements rather high; for them, team work experience
was novel and important;

• in the tutors’ opinion, most students performed rather well, but there still seemed to be some who had hacked
their way without a true appreciation of OO technology; on the positive side, the framework proved practicable
and accommodated all kinds of students’ approaches: everyone felt they had learnt a lot.

In the summer 2000 (Dresden) project course another 20 students were sent to a software company to do "real"

projects there. Typically, more successful students applied for the external projects. The four teams were coached by
a former university colleague. On an average, they spent as much time on their projects as the framework-based
teams, but produced twice as much code. Also, they liked their projects very much.

So why not send all the students to industry instead of doing in-house projects? There are several problems: First
of all it is difficult to find enough software companies where beginners are systematically trained as opposed to be-
ing misused as cheap code hackers. Today, short-term profit appears to rank higher than long-sighted investments in
education. Because of the diversity of projects and companies it is difficult to offer equal opportunities to students;
also, the organization and necessary quality control would probably bind at least as many university resources as the
framework-based course.

On the other hand, our approach should carry over easily to frameworks in other domains and there provide the
same advantages for beginners: realistic professional activity is simulated and guidance in the form of a framework
is offered.

References

Demuth, B., Hussmann, H., Schmitz, L., Zschaler, St. (1998). OOPSLA’98, Educators’ Symposium. Using a Framework to Teach
OOT to Beginners.

Demuth, B., Hussmann, H., Schmitz, L., Zschaler, St. (2000a). 13th CSEET, Austin, Texas. A Framework-Based Approach to
Teaching OOT: Aims, Implementation, and Experience.

Demuth, B., Hussmann, H., Schmitz, L., Zschaler, St. (2000b). The SalesPoint Framework v2.0 Homepage. http://ist.unibw-
muenchen.de/Lectures/SalesPoint (Also for v3.0: http://www-st.inf.tu-dresden.de/SalesPoint/v3.0, German only)

Froehlich, G., Hoover, J., Liu, L., Sorenson, P. (1998). Designing object-oriented frameworks. In CRC Press (1998) CRC
Handbook of Object Technology.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns - Microarchitectures for Reusable Object-Oriented
Software. Reading: Addison-Wesley.

Rumbaugh, J., Booch, G., Jacobson, I. (1997). Unified Modeling Language Reference Guide. Reading: Addison-Wesley.

Wilkinson, N. (1995). Using CRC Cards. An Informal Approach to Object-Oriented Development. New York, NY: SIGS
Publications.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing Object-Oriented Software. Englewood Cliffs, NJ: Prentice-Hall.

