
QUOGGLES: Query On Graphs -
a Graphical Largely Extensible System

Paul Holleis1 and Franz J. Brandenburg2

1 University of Munich, 80333 Munich, Germany
2 University of Passau, 94030 Passau, Germany

Abstract. We describe the query and data processing language
QUOGGLES which is particularly designed for the application on graphs.
It uses a pipeline-like technique known from command line processing,
and composes its queries as directed acyclic graphs. The main focus is on
the extensibility and the ease of use. The language permits queries that
select a distinguished subgraph, e.g., the set of all green nodes with de-
gree at least d or the set of edges whose endnodes have a neighbor which
has exactly one neighbor. It is SQL complete, however, it cannot describe
paths of arbitrary length; otherwise NP-hard problems like Hamilton
path could directly be expressed. QUOGGLES also enables the user to con-
catenate queries with algorithms, e.g. with graph drawing algorithms,
which are then applied to the selected subgraph.

1 Introduction

Graphs are frequently used to represent discrete data with objects as nodes and
(binary) relations represented as edges. A relational database can be seen as a
graph with n-ary relations, which can be modelled by hyperedges or by bipartite
graphs. Often, a user has a special view on the data. In terms of graphs this
means a distinguished subgraph, which is described by a collection of nodes,
edges and attributes. This is particularly true for huge graphs such as the WWW
or communication networks, from which the user selects a particular section.

This scenario coincides with the theme of Category C of the 10th Graph
Drawing Contest 2002 [1]. The initiator Joe Marks had posted example graphs
and wanted on-line answers on questions like “what is the largest wheel of green
and blue nodes”. At GD 2002, nobody could answer this question on-line. This
was the starting point for quoggles (“QUeries On Graphs: A Graphical Largely
Extensible System”), a plug-in for the graph visualization toolkit Gravisto de-
veloped at the University of Passau [2]. It is fully described in [3]. Gravisto
associates graph elements with a hierarchy of attributes. These are addressed
by queries and used for further computations like comparisons and sorting. The
query language is capable of simulating relational algebra and SQL. However, it
cannot express transitive closures and the existence of paths of arbitrary length.
QUOGGLES itself is fully graphical and composes its queries in terms of directed
acyclic graphs, which are automatically drawn by a simple algorithm.

Here we give a short description of the language and illustrate its use by
some examples. For details we refer to [3] and [2].



2 Description of the Language

The query language of QUOGGLES consists of a set of fundamental operations
which can be combined to form more complex operations. Every operation has
i inputs, p parameters and o outputs. For maximal generality these numbers
can depend on the values of the parameters. The resulting language has the full
power of relational algebra and SQL (the proof can be found in [3]); however it
cannot express paths of arbitrary length.

QUOGGLES is fully graphical. Every operation has a box as graphical repre-
sentation as shown in Fig. 1. The box includes the name of the operation, values
for its parameters and is numbered consecutively in the order of the creation
within the query. It has i incoming lines on the left hand side for the input and
o outgoing lines on the right for the output. These act as connection points to
other boxes.

��

����
�
��	�����

�

��� ���

�

�

� �

�

�

Fig. 1. Graphical representations of a general and a sample operation.

In the graphical representation, queries are composed from operations as
directed acyclic graphs, combining inputs and outputs of boxes of operations in
an appropriate way, possibly observing intermediate results using Output boxes.
See, e.g., Fig. 2 for an example which is explained later in more detail.

�����������	

��������	
��

����

��

�
��

�

��

�

����������������

�	
����
��

����������

���
��	
�

��

�
�

��

��

��

��

��
���

��
���
���

��
���

���

�

�

�

�

���� ���� ���� ����

Fig. 2. This query computes the average degree of the nodes of a graph.

For the evaluation of a query, the pipeline idea is used, which is well known
from Unix command line and batch file processing. QUOGGLES applies and ex-
tends this general approach in information processing to graphs.

The set of graph elements from a graph acts as a source for each query. Data
is processed as it flows through the pipelined operations. Since the notion of one
single linear pipeline is quite restrictive, a directed acyclic graph can be built
instead. It is constructed from operations with any finite number of inputs and
outputs. Data flows along the edges of such a query graph. A query can then
be evaluated using a topological ordering. A graphical user interface helps to
create, change, execute and debug query graphs.



2.1 Basic Operations

In this section we describe a set of basic operations necessary to generate a sensi-
ble range of queries. This includes input operations, filters, general purpose and
graph specific operations. Every operation receives one element or a collection of
elements as input, checks and transforms the element(s) and outputs its result.
Such elements can be nodes and edges, numbers and strings, e.g., nodes and
edge labels, or tuples of such elements. In the implementation a collection is a
list of Java objects. The following categories of operations are available:

Input Operations. Input boxes have no inputs and are used to create specific
constants, such as text labels or numerical values or access external information
like saved graphs.

Graph Specific Operations. For the navigation through graphs it suffices to
provide an operation that accesses the neighborhood of a graph element and one
that returns associated attribute(s):

The Neighborhood operation accesses elements in the graph theoretical
neighborhood from input graph elements. Possible parameter values include
neighbors, incoming or outgoing edges and source or target nodes.

The GetAttributeValue operation is used to retrieve attributed information
from graph elements, such as node and edge identifiers or their labels. Graphical
attributes like shape and size can also be queried.

General Query Operations. Most of the data processed by QUOGGLES is
present as lists of elements. Hence, operations on collections are common. These
include flatten, which converts a nested to a flat collection, reverse, which re-
verses lists and make distinct, which removes duplicates and sort for sorting a list
using a string representation of the objects. The union and intersection boxes
take two input lists and compute the set union and intersection, respectively.

Further general operations use the textual representation of elements in the
input collection, count elements, compute the average, do arithmetic, compar-
isons and boolean operations or check the type of an input. Figure 3 shows the
CompareTwoValues operation that compares its two inputs according to some
specified relation.

��������	�
����

��������������

���

����
����

��������	�
����

�����������

���

����
����

Fig. 3. Comparing two inputs using the <= relation and two different orders.

There is a special TwoSplitConnector operation that duplicates the input
and thus enables producing queries beyond that of simple linear pipelining.

Since it is not always clear that the sinks of the query graph are the (only)
places that should contribute to the query result, Output boxes specify which



part of the data present somewhere in the query pipeline should contribute to
its result. They can also be used to check intermediate results.

Figure 2 shows an example query. The table on the right shows its output if
the small graph displayed in Fig. 4 is used as input to the query. The data in
the first column is retrieved from the first output box (‘col 1’). It shows a list of
all nodes of the graph. The Neighborhood operation produces a list that holds
(lists of) all incident edges of the corresponding nodes. The third columns shows
the sizes of these edge lists in the second column, i.e., the number of incident
edges of each node. The Arithmetic box then computes the average degree of all
nodes of the input graph (‘col 4’). The selection of elements according to some

����

��

��

��

��

��

��
���	 ���	

���	


�	

Fig. 4. A small graph used as sample input to queries.

predicate is the most frequently used operation in database systems. Here, the
Filter operation retrieves those objects from an input collection of arbitrary
objects that meet the condition specified by a predicate subquery. The predicate
can be an arbitrary query. Its output will be interpreted as a boolean value.
Empty collections or the value zero will for example be converted to false.

Figure 5 shows a query that filters all graph elements that have an attribute
called value with value equal to good. The table on the right shows the result for
the example graph displayed in Fig. 4. Since edges do not have such an attribute,
column one displays a “-” for them. Nodes n1, n2, n4 match the criterium (which
can be verified by examining their attribute value in column three).

�������

������

���	
����� ��������	
�����
�

�������

���
�������

�	
�������������

���

�
���

�

��������	
�����
�

������� �

�

�

����

�

���

�

����������

���

�

�

����

����

�

����

����

����

�����

Fig. 5. Find all nodes from the small graph on the left that have outgoing edges.

To ensure reusability of queries and a reasonable size of queries, it is impor-
tant that any query or part thereof can be saved as a subquery for later use. This
is shown in Fig. 6 where the calculation of the average node degree of a graph is



saved. This subquery can then be used to get all nodes that have a degree larger
than average. The query and the result (‘col 3’) is shown in Fig. 7.

�����������	

��������	
��

����

����������������

�	
����
��

����������

���
��	
�

�������

����	��
	�

��

Fig. 6. The query on the left is saved and can later be used in a Subquery box.

��������	�
���

��������	
��

�������
������

�	��������

��������

����	���	����

�������

��
���

���	
����� ����������

���	���

���

�

���

�

���

�
��

�

�

�

����������

��

�����

Fig. 7. Using a Subquery box, nodes with high degree (n2 ) can easily be found.

3 Application in Graph Drawing

Good layouts of graphs can often not be achieved by generic graph drawing
algorithms alone. A certain degree of interactivity can be necessary or at least
helpful. However, tweaking algorithms for those special uses can be time con-
suming or even impossible if third-party programs are used. QUOGGLES enables
the user to layout different parts of the graph differently.

Subgraphs that should be drawn in some special way can be retrieved by using
queries. Then these sets can be further processed by applying layout algorithms
on them. This renders it extremely easy to, e.g., quickly test which type of
centrality best serves to find a good drawing. Nodes with a high centrality value
can be drawn, e.g., more central than others.

Figure 8 shows a generic example query that finds a certain set of ‘important’
nodes. This might be done, e.g., by using the query shown in Fig. 7 as a subquery.
This set is drawn using a spring embedder algorithm (‘spring’) with a small value
as parameter (‘10’) indicating that nodes will be close together. All other nodes
(retrieved using the set minus operation) are drawn using an algorithm that
places nodes on a circle with a rather large radius (‘75’). The algorithms directly
work on the data structure. The result of the query (as specified by the circular
box titled ‘col 1’) is the set of special nodes. This helps to manually adjust the
relative placement of the two layouted subgraphs. This query has been applied
to a random placement of nodes of a small graph producing the layout shown in
Fig. 8.



��������	

���������	
�

��������	

�����������


�����������

�������

��������

����������������

���

�

Fig. 8. A query used to apply two layout algorithms to different parts of the graph.

4 Conclusion

The QUOGGLES system is an implementation of a query language specifically
designed to retrieve information from graphs. It combines general and graph
specific operations using an extended pipeline principle. It can been shown that
the system is relational complete and even provides similar functionality as SQL
92. An intuitive user interface is provided. Its extensibility renders it especially
useful for semi-automatic graph processing. As an example, we showed how to
apply its feature to include algorithms in query processing to address layouting
and graph drawing problems. Fig. 9 shows a screen dump of the system.

Fig. 9. A screen dump of Gravisto with an example graph and the QUOGGLES system
after executing the introductory query: “Get the set of edges whose endnodes have a
neighbor which has exactly one neighbor”.

References

1. Brandenburg, F.J.: Graph-drawing contest report. Proceedings Graph Drawing
2002, LNCS 2528 (2002) 376–379

2. University of Passau: Gravisto. http://www.gravisto.org/ (2002)
3. Holleis, P.: Design and implementation of an extensible query language on graphs.

Diploma thesis (2004)


