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Abstract
Automated cars will need to observe pedestrians and react
adequately to their behavior when driving in urban areas.
Judging pedestrian behavior, however, is hard. When ap-
proaching it by machine learning methods, large amounts
of training data is needed, which is costly and difficult to
obtain, especially for critical situations. In order to provide
such data, we have developed an online game inspired
by Frogger, in which players have to cross streets. Acci-
dents and critical situations are a natural part of the data
produced in such a way without anybody getting hurt in re-
ality. We present the design of our game and an analysis of
the resulting data and its match to real world behavior ob-
served in previous work. We found that behavior patterns
in real and virtual environments correlated and argue that
game data could be used to train machine learning algo-
rithms for predicting real pedestrians’ walking trajectories
when crossing a road. This approach could be used in fu-
ture automated vehicles to increase pedestrian safety.
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Introduction
Automated Vehicles will reduce the influence of human
drivers and hence the likeliness of accidents caused by hu-
man error. While this is expected to lead to increased road
safety [11], the technical capabilities of current automated
vehicle technology might be overrated [8].

Figure 1: TWD start panel.

Figure 2: TWD top view.

Figure 3: TWD ego-perspective.

For instance, as a consequence of overtrust in technology,
a driver died in 20181. In the same year, an automated ve-
hicle crash with a pedestrian ended deadly2, because even
a trained technical supervisor had overtrusted the system.
Recently, Tesla’s ’Summon’ feature lead to various dam-
ages close to areas with pedestrians, for instance, on park-
ing lots3. Such incidents could severely affect the accep-
tance of automated vehicles and hinder a transition from
manual driving to fully automated mobility [10].

In order to create trustworthy automated cars that can truly
replace human drivers, a human-like understanding of traf-
fic situations is inevitable [15]. Hence, an adequate model
of pedestrian behavior is a crucial aspect for automated ve-
hicles to safely navigate through urban environments [13].
However, we believe that such a model should include the
pedestrians’ perspective by design.

The training of future machine learning based auto pilot
systems requires large amounts of training data, both of
regular and of critical situations. However, collecting quan-
tified critical pedestrian behavior data remains an open
challenge [13, 17]. Crossing a street in the real world de-
pends on a wide range of potentially influencing factors,
for example, the time to arrival of vehicles and the gap size
between cars [3]. Previous research regarding pedestrian

1Tesla accident; last accessed: Nov 2019
2Uber’s fatal self-driving crash; last accessed: Nov 2019
3Tesla’s Smart Summon feature; last accessed: Nov 2019

behavior predictions is mainly based on computer vision ap-
proaches trained from dash-cam data (i.e., the driver’s per-
spective) [9]. However, this requires video capturing which
violates general data privacy regulations in many European
countries4. In order to overcome such legal issues and at
the same time also gather quantified data from a pedes-
trian perspective in a controlled environment, we propose a
crowd-sourcing approach.

In crowd-sourcing research, it has been shown that games
with a purpose can produce, for example, meaningful image
labels [20]. Our goal is to go beyond this type of tagging or
labeling by directly collecting critical behavioral data in a
simulated environment. We therefore implemented an on-
line game based on the console game Frogger. Our game
(called The Walking Data or TWD for short) is available on-
line5. TWD requires players to cross as many lanes and
roads as possible without causing a collision. Below, we
present TWD and an initial analysis of the gathered data.

Instead of microscopic behavior modeling, we deployed
the game in a pilot study on potential users, to investigate
whether real-world behavior can be modeled by the gam-
ing data. Then compared the outcome to findings of corre-
sponding macroscopic real world observations. Our theory-
driven analysis (as described in [1, 22]) suggests that the
observations in the real world correspond to the game be-
havior. Thus, we propose a methodology for accumulating
large-scale pedestrian behavior data, especially for the criti-
cal traffic situations that are difficult to capture otherwise.

Research Question & Hypotheses
The underlying question behind this work is: "Could real-
world behavior be replicated and extracted through an on-

4Dashcams - permissible or prohibited? last accessed: Nov 2019
5The Walking Data; last accessed: Jan 2020

https://www.tesla.com/de_DE/blog/update-last-week%E2%80%99s-accident
https://www.theverge.com/2019/11/6/20951385/uber-self-driving-crash-death-reason-ntsb-dcouments
https://www.theverge.com/2019/9/30/20891343/tesla-smart-summon-feature-videos-parking-accidents
https://www.adac.de/verkehr/recht/verkehrsvorschriften-deutschland/dashcam/
https://thewalkingdata.medien.ifi.lmu.de/


line game?". The basis for the comparison of the behavior
patterns are previous scientific observations of jaywalking.
Those findings inform the hypotheses of our work and we
investigate whether data from our game shows the same
phenomena as those real-world observations. For example,
Wang et al. [21] state that many people do not consider the
far-side gap and thus wait at the middle of two-lane roads.

Furthermore, we were interested in the effects of the player’s
perspective. Therefore, The Walking Data was initially pub-
lished with a top view (Figure 2), and later changed to a
pedestrian ego perspective (Figure 3). We investigate the
following hypotheses:

Data stored each time a gap
is accepted or not accepted,
a yellow block is collected, a
lane is crossed or a collision
occurs, or the player is facing
the seventh lane:

• Player name & ID
• Gender (f/m/o)
• Age (int)
• Score (int)
• City and country of

player
• Arrangement of roads

and lanes
• Player position (x/y/z)
• Velocity (x/y/z) of game

objects
• Position, distance and

speed of appr. car
• Width of appr. vehicle
• Waiting & walking

times of player
• Viewing angle of player
• Size and lane of gap
• Size and lane of far-

side gaps
• Distance, speed and

width of appr. vehicles
of far-side gaps

• Reason which trig-
gered saving data

H1: Crossing decisions (accepted gaps between vehicles)
depend on the distance of the vehicles rather than on
their speed [12,23].

H2: Pedestrians prefer safer over shorter paths and al-
ways look out for oncoming vehicles [24].

In addition to the real world observations, we also consider
the perspective and explore which one is more suitable to
gather realistic behavior.

Research Approach
Our independent variables are the environment (real-world /
game) and the view (ego perspective, top-view). We identi-
fied relevant dependent variables through a literature review
(see sidebar for all collected variables) [5, 14, 16, 19, 23].
Then, we developed design sketches on paper, and a test
version of the game with Unity6. We invited three volunteers
to a think-aloud test session. Afterwards, we adjusted the
game according to insights from the think-aloud protocol.
For example, we replaced the control keys for the game and
extended the duration of the initial tutorial mode.

6Unity 3-D Development Platform; last accessed: Nov 2019

Game Concept
The Walking Data is based on Frogger7 and Crossy Road8.
These games require players to move a virtual character
across road lanes on the screen without causing collisions.
This choice was made two main reasons: First, both games
are documented to be entertaining (Crossy Road has 4.3
million downloads and an average user rating of 4.6 / 58;
Frogger was sold over 20 million times9). An entertaining
gameplay in turn is an essential aspect for our game, be-
cause this is the only thing we offer volunteers for their par-
ticipation. Second, the concept of road crossings and the
mental model of the game behavior are comparable to their
counterparts in real world crossing scenarios. Our study
therefore matches the mapping principles [1,22].

The technical setup consists of an HTML / Javascript front-
end exported from Unity, and the game communicates to
a REST API server and stores the recorded behavior data
in a MySQL database on the back-end. The whole web
service is hosted on a publicly accessible server.

Game Design
At first, visitors of the website see a splash screen with the
logo of the game. Subsequently, players are asked to sub-
mit a unique user name, their age and gender. We opti-
mized the user interface design for speed and simplicity and
thus request only these three inputs to reduce decision time
and complexity [7]. The time needed to select a target cor-
relates with its distance and size [6]. Hence, buttons and
input fields are located close to each other in the middle of
the screen, see Figure 1. The game is preset to either a
top view or the ego-perspective. Each session starts with

7Frogger Arcade Game; last accessed: Nov 2019
8Crossy Road; last accessed: Nov 2019
9Konami’s Frogger; last accessed: Nov 2019

https://unity.com
https://www.arcade-museum.com/game_detail.php?game_id=7857
https://play.google.com/store/apps/details?id=com.yodo1.crossyroad
https://web.archive.org/web/20130202065907/http://www.gamespot.com/news/konamis-frogger-and-castlevania-nominated-for-walk-of-game-star-6135485


a tutorial mode which shows an overlay explaining the con-
trol and how to gain points. In the tutorial mode, a collision
has no consequences. Players can become familiar with
the controls and environment. The aforementioned game
Crossy Road inspired the graphical design of TWD. Ob-
jects are abstracted and colors appear with a bright, high
contrast look, which is common for this type of games.

TWD Settings

The width of each track and
green area unit is four me-
ters [4]. The resolution of
the game is 1200 × 600 px,
the horizontal field of view
is set to 50 degrees in ego-
perspective and 60 degrees
in top view to avoid perspec-
tive distortion. The size of
the vehicles is taken from
real valuesa, depending on
the vehicle type. The avatar
has a view height of 1.7m.
Players move continuously
and not in steps. The max-
imum speed of the avatar
is 1.42m s−1, (average
speed of men and women
for usual walking [2, p. 15]).
The pedestrian’s acceler-
ation is set to 1.69m s−1,
(average acceleration of
men and women for usual
walking [2, p. 21]). A dis-
placement of the cars relative
to the middle of the road-
way is set within ±0, 6 m via
normally distributed random
values.

aDimensions of Vehicles; last
accessed: Nov 2019

Through a think-aloud session we learned that the controls
should be as easy as possible while still allowing the game
character to move everywhere. Therefore, players select a
position with the mouse cursor and can walk with the ’w’-
key. When the key is released, the player stops. The goal
for players is to reach as many points as possible by cross-
ing roads and collecting yellow blocks.

The environment consists of roads, trees, green areas,
clouds, plants, and yellow blocks. Objects either serve as
reference points to ease speed estimations or to guide play-
ers. Yellow blocks yield extra points and represent points of
interest. The first three yellow blocks appear at fixed posi-
tions. Since we believe that in the real world, points of inter-
est affect crossing decisions, the idea of yellow blocks is to
influence the chosen path of a player with a precise goal.

When a player reaches 45 points in ’tutorial’ mode, it switches
to ’game’ with a seven seconds countdown. In ’game’ mode,
a collision leads to a full reset of the score and position.
Points can be earned by either crossing a lane successfully
(10 points) or by collecting yellow blocks (15 points). When-
ever seven lanes were crossed in game mode, the speed of
moving objects increases steadily, in order to increase the
difficulty and challenge for players.

Game Properties
Only the first six lanes are evaluated; all subsequent lanes
are only there to improve the game experience. The first

three roads always consist of one, two, and three lanes,
presented in random order. On each lane, vehicles can ap-
proach either from the right or from the left. The parameter
of direction is randomly configured when the game starts.
On two lane roads, driving directions are always opposing.

The driving characteristics of the cars differ, and neither the
acceleration nor the driving speed are static. After load-
ing the environment, vehicles are placed in the game world
and accelerated with a random value between 3.4m/s2 and
7m/s2 to a speed of about 8.33m/s(≈ 30km/h). The final
speed has a deviation of ±33% to be as realistic as pos-
sible. In addition, cars with different speeds and distances
are relevant for our data analysis.

The distance between cars is a random value between the
minimum braking distance of the car behind and 70m. The
distance is determined with a normally distributed random
function, and the braking distance is (0.1 · vc)2 where vc
is the current velocity. The Sidebar on this page contains
further environment settings and attributes.

User Study
A total of 78 participants contributed in 89 games (see
Table 1). The first three roads include one, two and three
lanes with differing lane arrangements (two lanes, followed
by one lane, followed by three lanes; three lanes first, fol-
lowed by one lane and then two lanes etc.). Games in
which less than six lanes were crossed were excluded from
analysis to automatically exclude erroneous behavior such
as walking in zig-zag paths, constant reciprocating, and
walking to the borders of the game world, which did not
serve the objective of the game. Players were recruited via
digital channels and accessed TWD from Germany, Austria,
France, Italy, and the Netherlands. We collected two main
data sets for the two perspectives during one week each.

https://de.automobiledimension.com/
https://de.automobiledimension.com/


Table 1: Distribution of Participants.

Ego-Perspective Top View

Games 58 31
Players 47 31
Women 31 % 24 %
Men 69 % 58.5 %
Other 0 17.5 %
Mean Age (SD) 27.2 (6.89) years 27.7 (13.52) years

Theory-driven Analysis & Discussion

Figure 4: Waiting behavior data
from ego-perspective (top) and top
view (bottom) recordings, showing
waiting positions (red circles) and
positions of yellow blocks (yellow
circles). The longer a player
waited, the bigger the circle. If
circles overlap, color saturation
increases. Gray bars represent
roads with one, two, or three lanes.

To answer H1, we performed a logistic regression. The logit
model includes a normally distributed random effect for
each player, to account for individual differences. Table 2
shows corresponding results from 58 games including 92
crossing decisions. Table 3 includes results from 31 games
including 62 crossing decisions.

Distance is the only significant impact factor of the para-
metric coefficients on the crossing decision with (Pr(>
|z|) = 0.006) (ego-perspective) and (Pr(> |z|) = 0.0002)
(top-view). Thus, we can accept H1 and state that cross-
ing decisions in TWD are rather based on the distance to
approaching vehicles than their speed, player’s gender,
or age. Hence, both perspectives are in line with related

Table 2: Analysis H1 | ego-perspective.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.378 2.156 -1.103 0.270
distance 0.052 0.019 2.761 0.006
velocity -0.164 0.163 -1.008 0.314
gender_m 0.415 0.517 0.803 0.422
age 0.089 0.047 1.914 0.056

Table 3: Analysis H1 | top view.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.483 2.509 0.000 0.999
distance 9.712 2.659 3.653 0.0002
velocity -1.769 2.251 -0.786 0.432
gender_f -2.507 2.509 0.000 0.999
gender_m -2.427 2.509 0.000 0.999
age -8.503 1.313 -0.647 0.517

work, considering the effect of distance [12, 23]. The ego-
perspective replicates age-related effects additionally.

Wang et al. [21] report:

“...we found that many pedestrians cross the
road regardless of the far-side gap, [...] result-
ing in the fact that such pedestrians wait at the
middle of the road for the next possible gaps
[...] to continue to cross the road.” [21, p. 4].

The authors observed a two-lane road. In comparison, on
two-lane streets in TWD, 35% of players waited with an
ego-perspective and 31% with a top view, which can be
argued to match ’many’ from the cited paper. Thus, the
ego-perspective leads to a higher percentage of people
waiting on the road. Interestingly, the more lanes there are,
the more people tend to wait on the street, see Figure 410.

According to Zhuang and Wu [24], pedestrians prefer safer
over shorter paths. Figure 5 shows a corresponding cate-
gorization of paths. Figure 6 shows chosen paths in TWD.
We can see that pedestrians also select safe routes and

10Due to the limited space the street layouts in presented margin fig-
ures consistently includes roads with successive one, two and three lanes.
Please contact the authors if you want to retrieve the results from all possi-
ble lane combinations (six data sets).



are highly influenced by artificial points of interest (yellow
blocks). In line with Zhuang and Wu [24], we observed that
all pedestrians looked for cars. A ’look’ was defined as a
camera rotation of >37 degrees from the walking direction.

Based on our results, we conclude that the ego-perspective
is better suited to reproduce real world behavior than the
top view. We suspect that an ego-perspective leads to a
stronger feeling of embodiment and thus provokes behavior
closer to reality. Additionally, the ego-perspective motivates
players to complete multiple rounds (ego-perspective: 47
players, 58 games; top view: 31 players, 31 games).

Limitations

Figure 5: Classification of
paths [24] as ’safe’ or ’short’.

Figure 6: Top: ego-perspective
paths (blue) and three yellow
blocks (yellow), bottom: top-view
paths. Gray bars represent roads
with one, two, and three lanes.

A limitation of our approach could be cultural differences.
Our hypotheses are inspired by observations from Greece [23],
Australia [12] and China [21,24]. However, via the database,
any desired location could be excluded for location specific
analysis. Another limitation might be the appearance of the
game. We did not try to implement a photo-realistic look
and feel. Other studies in the context of automated vehicles
also implemented an abstract look, for example in the work
of Siripanich [18]. For the future, we plan to run a compar-
ison study with a more realistic visual game design to vali-
date if there are significant differences in player behavior if
the game appearance changes.

The outcome of a collision in the real world is worse than in
TWD and therefore, the behavior might be different. We do
not claim that behavior which might result in injuries (real
world) matches perfectly with behavior resulting in a loss
of points (virtual environment). Nevertheless, the motiva-
tion to ’survive’ in the game follows a similar mental model
as crossing in the real world. In both environments people
aim to avoid vehicles to not face consequences. Other than
in some racing games, where players can simply continue

even after a high speed collision, TWD does not allow play-
ers so resume after a crash and resets all current achieve-
ments. The overlap of game and real life outputs can fur-
thermore only be stated within the scope of our hypotheses.
We do not know yet if real world observations overlay with
game trajectories. Our results are interpreted as an initial
indicator for some degree of matching outputs and will be
compared to real world observations in a next step.

Conclusion & Future Work
The goal of this study was to find out whether strategies
and behavior patterns in reality overlap with those demon-
strated in The Walking Data (TWD). Our theory-driven anal-
ysis (according to the paradigm described in [1, 22]) indi-
cates that both environments evoke similar behavior. Thus,
gathering accurate large-scale data on pedestrian behav-
ior could become less costly in terms of time and money
through a game based on real-world parameters. For a
wider evaluation of data we will include external measure-
ments, e.g., time on street. Such information can be ex-
tracted from our data set through recorded timestamps and
spatial position data (x-y-z coordinates) within TWD.

We are currently implementing an autoregressive model
with a recurrent neural network (e.g., attention-based mod-
els) based on data gathered through TWD. Afterwards, we
will perform a cross-validation of our data set. We plan to
verify whether our model successfully predicts pedestrian
trajectories in a data-driven approach. If this produces con-
vincing results relative to the game-based data, the pre-
dicted paths will be compared to observations in the wild to
finally assess the value of the outcome. We will also publish
an anonymized version of the data set.

Please feel free to try the game and support our research:
https://thewalkingdata.medien.ifi.lmu.de/.

https://thewalkingdata.medien.ifi.lmu.de/
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