Scroll, Tilt or Move It

Using Mobile Phones to Continuously Control Pointers on Large Public Displays

Sebastian Boring¹, Marko Jurmu², Andreas Butz¹

¹ University of Munich, Germany ² University of Oulu, Finland

Deutsche Forschungsgemeinschaft

LUDWIG-MAXIMILIANS[,] UNIVERSITÄT MÜNCHEN

motivation

motivation

how to interact?

How can we use mobile phones as pointing device?

related work

Boring, et al. (Mobility 2007)

Madhavapeddy, et al. (Ubicomp 2004)

related work

Jiang, et al. (CHI 2006)

Miyaoku, et al. (UIST 2004)

nuous & solute http://www.energy.org/linearies

Pears, et al. (VisApp 2008)

related work

Window Help

0

Fri 9:32 PM

Macintosh HD

the best?

Silfverberg, et al. (GI 2001)

Ballagas, et al. (IEEE Pervasive Computing 2006)

Vajk, et al. (Computer Games Technology 2008)

relative pointing

scroll

Movement Ratio: 200 px within 1 second

Speed: dependent on tilting angle

move

Speed: dependent on phone movement

evaluation

Select Targets on a Remote Display

task

Click Start Button

Move to Target

Hover on Target

target sizes

target distances

target directions

apparatus

Screen Size:

50" (16:9) 1106 x 622 mm

Resolution

1366 x 768 pixels

Viewer Distance: 1.5 m

study design

- [3 Techniques ×
- 3 Target Sizes ×
- 2 Target Distances ×
- **8** Target Directions] = 144 combinations

3 Repetitions for each combination
→432 data points per participant

12 participants in our study

hypotheses

H1: Move performs better than Tilt for all sizes, directions and distances

- H2: Move performs better than Scroll for larger targets and high distances
- H3: Move and Tilt have higher error rates than Scroll for small targets (regardless of the target's distance)

results: task time

results: task time

Target Size (in pixels)

Target Size (in pixels)

discussion

All hypotheses were supported!

Move and Tilt both suffered from slight phone movement during selection

Tilt introduced "skill" component

Fatigue was highest for Move!

conclusions

Three relative pointing techniques: Scroll, Tilt and Move

Tilt and Move are faster but introduce several errors \rightarrow need to be improved

Overshooting effect needs to be addressed to decrease error rates!

future steps

Improve the techniques: Use snapping to prevent overshooting.

Use the winning candidate to compare personal versus public control placements.

acknowledgments

People:

Otmar Hilliges, Bettina Conradi, Dominikus Baur and all OzCHI reviewers

Funding: DFG, Ubi Program and the participating companies, GETA, TES and the German state of Bavaria

Questions?

Sebastian Boring sebastian.boring@ifi.lmu.de