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ABSTRACT 
Currently available user interfaces for playlist generation 
allow creating playlists in various ways, within a spectrum 
from fully automatic to fully manual. However, it is not 
entirely clear how users interact with such systems in the 
field and whether different situations actually demand 
different interfaces. In this paper we describe Rush 2, a 
music interface for mobile touch-screen devices that 
incorporates three interaction modes with varying degrees 
of automation: Adding songs manually, in quick succession 
using the rush interaction technique or filling the playlist 
automatically. For all techniques various filters can be set. 
In a two-week diary study (with in-depth interaction 
logging) we gained insight into how people interact with 
music in their everyday lives and how much automation 
and interactivity are really necessary. 
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INTRODUCTION 
Personal media collections on mobile devices have grown 
substantially in recent years, which makes finding relevant 
items a daunting task. In addition, mobile devices still have 
limited input and output capabilities further complicating 
this task. Recommender systems can support users with 
accessing their music collections by suggesting suitable 
items. At the moment, however, it is unclear how to best 
integrate recommendations into mobile interfaces: Ideas 
range from purely automatic (e.g., Apple's iTunes Genius 
playlists), via semi-automatic methods (e.g., repeated 
recommendations in rush [1] or constraint-based generation 
in SatisFly [7]) to direct selection (e.g., on map-based 

representations of the whole collection [4]). Unfortunately, 
existing evaluations are mostly lab studies and only cover 
an artificial subsection of the music’s place in everyday use 
(cf. [9]). Furthermore, it remains unclear whether one type 
of interaction is sufficient for all situations or if different 
situations demand different ways of accessing one's music.  

In this paper we present Rush 2 (see Figure 1), a mobile 
interface for music consumption that – in contrast to 
existing systems that restrict the user to a single style of 
access – lets users freely configure their style of interaction 
from automatic to manual. We conducted a two-week diary 
study with extensive interaction logging and observed how 
music was consumed in real life situations. The results give 
insight into what aspects might be important for an intended 
usage scenario and inform future music interface designs.  

 
Figure 1 – Creating playlists with Rush 2 on a mobile device. 

RELATED WORK 
Most research on recommender systems focuses on the so-
called "single shot" approach – recommending the one item 
that fits best. Suggestions for more than one item (e.g., 
complete playlists) are rare ([5,8] and cf. [2]). It is more 
common in commercial music services such as Last.fm, 
MOG or Play.me, that provide web radio based on a given 
seed artist, tag or a user's listening history. Non-automatic 
music selection is either done in lists or on abstract, 
similarity-based maps (e.g., [4]), thus with either too little 
automatic support by the system (alphabetic lists) or too 
much abstraction (no direct access to songs). Commercial 
mobile systems are mostly list-based, but some also feature 
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automatic, artist- or tag-based playlists (Pandora1, 
Grooveshark2). Slice3 is one example that provides a 
graphical representation of related artists for creating (non-
interactive) radio. All of the mentioned systems, however, 
only provide one way of accessing songs and feature no 
ways to switch between different strategies. 

SIMILARITY-BASED MUSIC INTERACTION 
When designing Rush 2 we had two goals in mind: first, the 
system should support an arbitrarily sized music collection 
and still keep it manageable. Second, the user should be 
flexible enough to create various types of playlists. 
Therefore, we considered user tasks that lay on the 
spectrum between fully automatic and fully manual: With 
fully automatic solutions, choices are restricted to picking a 
seed song and the length of the playlist (e.g., Apple 
Genius). This simply leaves users with the resulting playlist 
and little ways of adapting it. On the other end of the 
spectrum, list-based interfaces that often make use of the 
inherent musical hierarchy of songs, albums, artists and 
genres leave users with little more than their intuition and a 
lot of tapping when trying to create an interesting playlist.  

To bridge this gap, we decided to equip the interface with 
various filters and other tools for accessing one’s music, but 
including similarity measures and falling back to automatic 
playlist creation whenever possible. Also, we wanted all of 
this to happen on the level of songs, so users had maximum 
control over the results.  

Interaction and display 
The first step of interacting with Rush 2 is choosing a seed 
song. As succeeding songs should fit together style-wise, all 
interaction is based on receiving follow-up suggestions for 
the last item. The resulting interface is based on so-called 
‘attribute wheels’ (see Figure 2): The current seed item is 
displayed in the middle of the wheel, while similar songs 
group around it. Each wheel represents a certain musical 
category (e.g., tempo) and its spokes stand for different 
values (e.g., 80-100 beats/minute) and contain 
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corresponding songs. A song is represented by its album 
cover art with artist and title name overlaid. Four wheels 
are available: Similar songs without categorization, songs 
categorized by genre, by tempo and other songs from the 
seed song's artist by albums. Choosing a wheel as the 
central display metaphor lets us easily represent different 
categories and display more items at once than in a (non-
scrollable) list, further allowing direct comparison between 
items.  

 
Figure 3 – The playlist (left) and the controls (right) in Rush 2. 

As Rush 2 is targeted at mobile touch-screen devices, most 
user interaction is based on tapping and dragging with one 
finger. Controls for listening to music are shown at the 
bottom of the interface (see Figure 3 (right)). Dragging a 
song has two meanings: first, releasing it at the bottom of 
the screen adds it to the playlist (see Figure 3 (left)). 
Second, dropping it in the center of the wheel turns it into 
the new seed song. The user can further activate filters for 
genre and tempo on all wheels, to combine multiple 
attributes. Active filters are shown in the upper right corner 
of the interface and can be adjusted by tapping on the 
button (see Figure 2e). A tempo filter can also be set by 
shaking the device in the corresponding rhythm (e.g., while 
jogging) (see [5] for a more elaborate solution). 

To focus on a single spoke with more detail, users can 
perform a double-tap on it (see Figure 4). The application 
zooms in and displays up to ten songs. Furthermore, we 
employed the rush interaction technique [1] for quickly 
adding relevant songs to the current playlist. By touching 
and holding on an empty area of the screen, the application 
zooms in. When the finger is moved, the song canvas 
moves in the opposite direction. To select a song, users 
cross it with their fingers. New songs appear beyond the 
wheels borders. To end the interaction, users simply lift 
their fingers. 

The important aspect of Rush 2 is combining automation 
with manually set filters. All displayed songs are similar to 
the current seed item. To prevent user frustration with too 

Figure 2 – Similar songs (a), similar songs filtered by genre (b), tempo (c), other songs from the same artist (d), setting filters (e). 



 

similar songs (cf. [1]), we decided to take random similar 
songs instead of only showing the most similar ones. When 
the system reaches the end of a playlist (i.e., the last item 
has been played or skipped), additional songs are taken 
automatically from the active wheel/filter combination. 
Thus, users can simply choose a seed item (and optionally a 
wheel according to their current mood) to be able to listen 
to suitable music with minimal interaction. 

 
Figure 4. Users can perform a double-tap on a spoke of 

interest (a) in order to get more detail (b). The shaded area in 
(a) denotes the enlarged region shown in (b). 

Implementation 
Rush 2 was implemented in iOS 4 for the Apple iPhone and 
iPod Touch. The underlying graphics are based on OpenGL 
ES and music, cover art and metadata (i.e., artist, title and 
genre) are taken directly from the device’s iTunes library. 
To find similar items for all songs we use the Last.fm web-
service4, which has a library of millions of songs. The lists 
of similar items are created by (1) filtering the library for 
the currently set wheel/filters and (2) finding the most 
similar songs based on the Last.fm data. If this process does 
not produce enough relevant items, we fill the display with 
songs that are similar regarding other, non-filter criteria 
(genre, tempo). Automatically extracting the tempo from a 
piece of audio content is non-trivial, so we take this 
information from The Echo Nest web-service5. 

EVALUATION 
Existing music interface evaluations focus on single-
strategy applications and are mostly lab studies. Work from 
sociomusicology highlights various contexts in which 
music is used (e.g., [9]), but naturally ignores the relevant 
interface requirements. Therefore, the goal of our 
evaluation was to see how people really interact with an 
interface as flexible as Rush 2 in their everyday lives and 
what features are relevant for what usage context.  
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Setup 
To learn about Rush 2 we conducted a two-week diary 
study. Participants were asked to use their own devices and 
music collections to gather realistic results. We asked our 
participants to fill out a short questionnaire every day they 
used the system and tell us how satisfied they were and in 
what contexts they had used it. This usage context was very 
important, as it showed which parts of the interface were 
helpful for a given task. In addition, the application logged 
all relevant interactions (e.g., adding a song to the playlist 
or switching the wheel) and sent it back via email. After 
two weeks, participants were asked to fill out a more 
extensive questionnaire and could keep the application on 
their mobile devices in exchange. The high overhead 
required for the study only allowed us to recruit 4 
participants (all male, avg. age: 23.5 years, avg. library size: 
1263 songs). 

Results 
Despite the few participants, the in-depth data gave us deep 
insight into the participants’ interaction with music and our 
application. The participants used the application in 15 
listening sessions with an average length of 65.9 minutes 
and listened to a total of 303 songs. We extracted four 
classes of usage scenarios from the results: 

1. Background music (4 sessions by 2 users): In this 
scenario, the user's intentions for listening to music 
were either for entertainment (e.g., while playing a 
board game) or for setting a certain mood (e.g., playing 
comfy music), but not as a primary occupation. This 
scenario was characterized by a low involvement on 
the user's side and a resulting heavy use of automatic 
filling of the playlist (95% versus 5% for drag-and-
drop). Typical sessions had the user choose a seed 
song, keeping the similar wheel and letting the music 
play without interaction (one participant set a tempo 
filter for choosing more mellow music). 

2. Active listening (5 sessions by 3 users): Here, the user 
was much more involved in interacting with the 
application and used it for exploring his or her 
collection while creating a playlist. Interactive 
techniques like drag-and-drop and rush slightly 
outweighed autofill (54.2% to 45.8%). The default 
similar wheel was the preferred one (35.9%), while the 
use of the other wheels was equally distributed.  

3. Exercising (1 session by 1 user): We only had a single 
participant using Rush 2 while exercising. As expected, 
he made exclusive use of the tempo filter and autofill.  

4. Other/Non-categorized (5 sessions by 2 users): For 
these sessions, we were unable to find a category as 
participants had forgotten to mention them in their 
diary entries (we collected the diaries after the study 
and could not expect them to still remember their 
intentions). Based on their characteristics, they are very 
similar to background music (90.2% autofill) which 
might explain why participants forgot about them. 



 

Table 1 summarizes all scenarios, the number of songs 
added with different techniques and the wheels. We found 
that automatic suggestions played an important role in any 
scenario (79% of all songs were added automatically), but 
users also relied on choosing the right wheel and filters 
beforehand: Wheels were switched on average 4.5 times per 
session, filters set 1.4 times. Also, skipping songs seemed 
to depend more on whether users were actively listening to 
music than whether they liked a song: active listeners 
skipped 25% of all songs (in addition to having selected 
manually more than half of them), while background 
listeners skipped only 17% of the almost exclusively 
automatically added songs. This is relevant for 
recommender systems that rely on skipping a song being an 
expression of disliking it (e.g., [6]). One thing to keep in 
mind is that users sometimes switched between usage 
scenarios in one session (which might also explain the non-
categorized sessions). In one example, a user added three 
songs and then relied on autofill while driving. After getting 
into a traffic jam, he again started to interact with the app.  

 Auto Drag Rush S G T A Skip 

BGD 117 6 0 10 0 1 3 21 
ACT 44 39 13 14 9 7 9 24 
EXC 23 1 0 1 0 0 0 1 
OTH 55 6 0 8 1 1 4 22 

Table 1 - How were songs added, which wheels were used (S = 
Similar, G = Genre, T = Tempo, A = Artist), and how many 

songs were skipped in the four usage scenarios.  

With autofill being the main way of adding songs to a 
playlist, the quality of the recommended items was an 
important factor. The post-study questionnaire showed that 
the participants had different opinions regarding this point: 
While two agreed that Rush 2 suggested songs they would 
expect, two disagreed. The free-form textual feedback 
showed that recommendations unsurprisingly failed for 
uncommon or classical music, where the underlying, 
collaborative filtering-based data from Last.fm is narrow 
(we had a recall of 85.6% on average). The lack of data was 
worse regarding the tempo, as The Echo Nest's database did 
only contain on average 56.7% of the users' songs that often 
left the tempo wheel scarcely populated (we decided against 
uploading songs for analysis as it would have strained the 
network connections of the participants' devices too much).  

Regarding Rush 2's usability, the post-study questionnaire 
was quite revealing. We used a modified version of IBM’s 
usability satisfaction questionnaire [3] and the participants' 
answers were mostly neutral only slightly tending towards 
positive. While they were satisfied with the number of 
items displayed and the operation speed and were confident 
that they could become productive using Rush 2, the rest of 
the questions showed that participants had problems with 
the general ease of use. A subsequent formative evaluation 
could improve the application in this regard.  

CONCLUSION AND FUTURE WORK 
In this paper we presented Rush 2, an application for mobile 
devices that allows music access in several ways with 
different levels of user involvement. With our two-week 
diary study we identified some typical usage scenarios as 
well as their influence on the interaction. We also 
confirmed the value of being able to select a set of songs 
either through explicit filters or by setting an attribute 
wheel. The central result of the study is that both 
automation and manual interaction have their places: if 
users just want to listen to music they are glad to have a 
reliable recommender that produces reasonable results (and 
does not distract them from what they are actually doing by, 
e.g., forcing them to skip a song). When they want to 
actively explore their collections or look for specific music 
they use all tools available. They might also switch between 
the two cases in mid-session, so music-centric applications 
should support all these tasks and not restrict themselves to 
one of them. To learn more about the connections between 
usage scenarios and interaction we plan to make a version 
of Rush 2 available online to attract a larger number of 
users. This would also give us a platform for subsequent 
improvement of interaction and automation techniques. 
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