

Who Needs Interaction Anyway? Exploring Mobile Playlist
Creation from Manual to Automatic

Dominikus Baur1, Bernhard Hering2, Sebastian Boring1, Andreas Butz1

Human-Computer Interaction Group, University of Munich (LMU), Munich, Germany
1 {dominikus.baur, sebastian.boring, andreas.butz}@ifi.lmu.de, 2 heringb@cip.ifi.lmu.de

ABSTRACT
Currently available user interfaces for playlist generation
allow creating playlists in various ways, within a spectrum
from fully automatic to fully manual. However, it is not
entirely clear how users interact with such systems in the
field and whether different situations actually demand
different interfaces. In this paper we describe Rush 2, a
music interface for mobile touch-screen devices that
incorporates three interaction modes with varying degrees
of automation: Adding songs manually, in quick succession
using the rush interaction technique or filling the playlist
automatically. For all techniques various filters can be set.
In a two-week diary study (with in-depth interaction
logging) we gained insight into how people interact with
music in their everyday lives and how much automation
and interactivity are really necessary.

Author Keywords
Music, mobile, recommendation, automation, interaction.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Design, Human Factors.

INTRODUCTION
Personal media collections on mobile devices have grown
substantially in recent years, which makes finding relevant
items a daunting task. In addition, mobile devices still have
limited input and output capabilities further complicating
this task. Recommender systems can support users with
accessing their music collections by suggesting suitable
items. At the moment, however, it is unclear how to best
integrate recommendations into mobile interfaces: Ideas
range from purely automatic (e.g., Apple's iTunes Genius
playlists), via semi-automatic methods (e.g., repeated
recommendations in rush [1] or constraint-based generation
in SatisFly [7]) to direct selection (e.g., on map-based

representations of the whole collection [4]). Unfortunately,
existing evaluations are mostly lab studies and only cover
an artificial subsection of the music’s place in everyday use
(cf. [9]). Furthermore, it remains unclear whether one type
of interaction is sufficient for all situations or if different
situations demand different ways of accessing one's music.

In this paper we present Rush 2 (see Figure 1), a mobile
interface for music consumption that – in contrast to
existing systems that restrict the user to a single style of
access – lets users freely configure their style of interaction
from automatic to manual. We conducted a two-week diary
study with extensive interaction logging and observed how
music was consumed in real life situations. The results give
insight into what aspects might be important for an intended
usage scenario and inform future music interface designs.

Figure 1 – Creating playlists with Rush 2 on a mobile device.

RELATED WORK
Most research on recommender systems focuses on the so-
called "single shot" approach – recommending the one item
that fits best. Suggestions for more than one item (e.g.,
complete playlists) are rare ([5,8] and cf. [2]). It is more
common in commercial music services such as Last.fm,
MOG or Play.me, that provide web radio based on a given
seed artist, tag or a user's listening history. Non-automatic
music selection is either done in lists or on abstract,
similarity-based maps (e.g., [4]), thus with either too little
automatic support by the system (alphabetic lists) or too
much abstraction (no direct access to songs). Commercial
mobile systems are mostly list-based, but some also feature

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI 2011, February 13–16, 2011, Palo Alto, California, USA.
Copyright 2011 ACM 978-1-4503-0419-1/11/02...$10.00..

automatic, artist- or tag-based playlists (Pandora1,
Grooveshark2). Slice3 is one example that provides a
graphical representation of related artists for creating (non-
interactive) radio. All of the mentioned systems, however,
only provide one way of accessing songs and feature no
ways to switch between different strategies.

SIMILARITY-BASED MUSIC INTERACTION
When designing Rush 2 we had two goals in mind: first, the
system should support an arbitrarily sized music collection
and still keep it manageable. Second, the user should be
flexible enough to create various types of playlists.
Therefore, we considered user tasks that lay on the
spectrum between fully automatic and fully manual: With
fully automatic solutions, choices are restricted to picking a
seed song and the length of the playlist (e.g., Apple
Genius). This simply leaves users with the resulting playlist
and little ways of adapting it. On the other end of the
spectrum, list-based interfaces that often make use of the
inherent musical hierarchy of songs, albums, artists and
genres leave users with little more than their intuition and a
lot of tapping when trying to create an interesting playlist.

To bridge this gap, we decided to equip the interface with
various filters and other tools for accessing one’s music, but
including similarity measures and falling back to automatic
playlist creation whenever possible. Also, we wanted all of
this to happen on the level of songs, so users had maximum
control over the results.

Interaction and display
The first step of interacting with Rush 2 is choosing a seed
song. As succeeding songs should fit together style-wise, all
interaction is based on receiving follow-up suggestions for
the last item. The resulting interface is based on so-called
‘attribute wheels’ (see Figure 2): The current seed item is
displayed in the middle of the wheel, while similar songs
group around it. Each wheel represents a certain musical
category (e.g., tempo) and its spokes stand for different
values (e.g., 80-100 beats/minute) and contain

1 http://www.pandora.com
2 http://www.grooveshark.com
3 http://www.slicestation.com

corresponding songs. A song is represented by its album
cover art with artist and title name overlaid. Four wheels
are available: Similar songs without categorization, songs
categorized by genre, by tempo and other songs from the
seed song's artist by albums. Choosing a wheel as the
central display metaphor lets us easily represent different
categories and display more items at once than in a (non-
scrollable) list, further allowing direct comparison between
items.

Figure 3 – The playlist (left) and the controls (right) in Rush 2.

As Rush 2 is targeted at mobile touch-screen devices, most
user interaction is based on tapping and dragging with one
finger. Controls for listening to music are shown at the
bottom of the interface (see Figure 3 (right)). Dragging a
song has two meanings: first, releasing it at the bottom of
the screen adds it to the playlist (see Figure 3 (left)).
Second, dropping it in the center of the wheel turns it into
the new seed song. The user can further activate filters for
genre and tempo on all wheels, to combine multiple
attributes. Active filters are shown in the upper right corner
of the interface and can be adjusted by tapping on the
button (see Figure 2e). A tempo filter can also be set by
shaking the device in the corresponding rhythm (e.g., while
jogging) (see [5] for a more elaborate solution).

To focus on a single spoke with more detail, users can
perform a double-tap on it (see Figure 4). The application
zooms in and displays up to ten songs. Furthermore, we
employed the rush interaction technique [1] for quickly
adding relevant songs to the current playlist. By touching
and holding on an empty area of the screen, the application
zooms in. When the finger is moved, the song canvas
moves in the opposite direction. To select a song, users
cross it with their fingers. New songs appear beyond the
wheels borders. To end the interaction, users simply lift
their fingers.

The important aspect of Rush 2 is combining automation
with manually set filters. All displayed songs are similar to
the current seed item. To prevent user frustration with too

Figure 2 – Similar songs (a), similar songs filtered by genre (b), tempo (c), other songs from the same artist (d), setting filters (e).

similar songs (cf. [1]), we decided to take random similar
songs instead of only showing the most similar ones. When
the system reaches the end of a playlist (i.e., the last item
has been played or skipped), additional songs are taken
automatically from the active wheel/filter combination.
Thus, users can simply choose a seed item (and optionally a
wheel according to their current mood) to be able to listen
to suitable music with minimal interaction.

Figure 4. Users can perform a double-tap on a spoke of

interest (a) in order to get more detail (b). The shaded area in
(a) denotes the enlarged region shown in (b).

Implementation
Rush 2 was implemented in iOS 4 for the Apple iPhone and
iPod Touch. The underlying graphics are based on OpenGL
ES and music, cover art and metadata (i.e., artist, title and
genre) are taken directly from the device’s iTunes library.
To find similar items for all songs we use the Last.fm web-
service4, which has a library of millions of songs. The lists
of similar items are created by (1) filtering the library for
the currently set wheel/filters and (2) finding the most
similar songs based on the Last.fm data. If this process does
not produce enough relevant items, we fill the display with
songs that are similar regarding other, non-filter criteria
(genre, tempo). Automatically extracting the tempo from a
piece of audio content is non-trivial, so we take this
information from The Echo Nest web-service5.

EVALUATION
Existing music interface evaluations focus on single-
strategy applications and are mostly lab studies. Work from
sociomusicology highlights various contexts in which
music is used (e.g., [9]), but naturally ignores the relevant
interface requirements. Therefore, the goal of our
evaluation was to see how people really interact with an
interface as flexible as Rush 2 in their everyday lives and
what features are relevant for what usage context.

4 http://www.last.fm/api
5 http://developer.echonest.com

Setup
To learn about Rush 2 we conducted a two-week diary
study. Participants were asked to use their own devices and
music collections to gather realistic results. We asked our
participants to fill out a short questionnaire every day they
used the system and tell us how satisfied they were and in
what contexts they had used it. This usage context was very
important, as it showed which parts of the interface were
helpful for a given task. In addition, the application logged
all relevant interactions (e.g., adding a song to the playlist
or switching the wheel) and sent it back via email. After
two weeks, participants were asked to fill out a more
extensive questionnaire and could keep the application on
their mobile devices in exchange. The high overhead
required for the study only allowed us to recruit 4
participants (all male, avg. age: 23.5 years, avg. library size:
1263 songs).

Results
Despite the few participants, the in-depth data gave us deep
insight into the participants’ interaction with music and our
application. The participants used the application in 15
listening sessions with an average length of 65.9 minutes
and listened to a total of 303 songs. We extracted four
classes of usage scenarios from the results:

1. Background music (4 sessions by 2 users): In this
scenario, the user's intentions for listening to music
were either for entertainment (e.g., while playing a
board game) or for setting a certain mood (e.g., playing
comfy music), but not as a primary occupation. This
scenario was characterized by a low involvement on
the user's side and a resulting heavy use of automatic
filling of the playlist (95% versus 5% for drag-and-
drop). Typical sessions had the user choose a seed
song, keeping the similar wheel and letting the music
play without interaction (one participant set a tempo
filter for choosing more mellow music).

2. Active listening (5 sessions by 3 users): Here, the user
was much more involved in interacting with the
application and used it for exploring his or her
collection while creating a playlist. Interactive
techniques like drag-and-drop and rush slightly
outweighed autofill (54.2% to 45.8%). The default
similar wheel was the preferred one (35.9%), while the
use of the other wheels was equally distributed.

3. Exercising (1 session by 1 user): We only had a single
participant using Rush 2 while exercising. As expected,
he made exclusive use of the tempo filter and autofill.

4. Other/Non-categorized (5 sessions by 2 users): For
these sessions, we were unable to find a category as
participants had forgotten to mention them in their
diary entries (we collected the diaries after the study
and could not expect them to still remember their
intentions). Based on their characteristics, they are very
similar to background music (90.2% autofill) which
might explain why participants forgot about them.

Table 1 summarizes all scenarios, the number of songs
added with different techniques and the wheels. We found
that automatic suggestions played an important role in any
scenario (79% of all songs were added automatically), but
users also relied on choosing the right wheel and filters
beforehand: Wheels were switched on average 4.5 times per
session, filters set 1.4 times. Also, skipping songs seemed
to depend more on whether users were actively listening to
music than whether they liked a song: active listeners
skipped 25% of all songs (in addition to having selected
manually more than half of them), while background
listeners skipped only 17% of the almost exclusively
automatically added songs. This is relevant for
recommender systems that rely on skipping a song being an
expression of disliking it (e.g., [6]). One thing to keep in
mind is that users sometimes switched between usage
scenarios in one session (which might also explain the non-
categorized sessions). In one example, a user added three
songs and then relied on autofill while driving. After getting
into a traffic jam, he again started to interact with the app.

 Auto Drag Rush S G T A Skip

BGD 117 6 0 10 0 1 3 21
ACT 44 39 13 14 9 7 9 24
EXC 23 1 0 1 0 0 0 1
OTH 55 6 0 8 1 1 4 22

Table 1 - How were songs added, which wheels were used (S =
Similar, G = Genre, T = Tempo, A = Artist), and how many

songs were skipped in the four usage scenarios.

With autofill being the main way of adding songs to a
playlist, the quality of the recommended items was an
important factor. The post-study questionnaire showed that
the participants had different opinions regarding this point:
While two agreed that Rush 2 suggested songs they would
expect, two disagreed. The free-form textual feedback
showed that recommendations unsurprisingly failed for
uncommon or classical music, where the underlying,
collaborative filtering-based data from Last.fm is narrow
(we had a recall of 85.6% on average). The lack of data was
worse regarding the tempo, as The Echo Nest's database did
only contain on average 56.7% of the users' songs that often
left the tempo wheel scarcely populated (we decided against
uploading songs for analysis as it would have strained the
network connections of the participants' devices too much).

Regarding Rush 2's usability, the post-study questionnaire
was quite revealing. We used a modified version of IBM’s
usability satisfaction questionnaire [3] and the participants'
answers were mostly neutral only slightly tending towards
positive. While they were satisfied with the number of
items displayed and the operation speed and were confident
that they could become productive using Rush 2, the rest of
the questions showed that participants had problems with
the general ease of use. A subsequent formative evaluation
could improve the application in this regard.

CONCLUSION AND FUTURE WORK
In this paper we presented Rush 2, an application for mobile
devices that allows music access in several ways with
different levels of user involvement. With our two-week
diary study we identified some typical usage scenarios as
well as their influence on the interaction. We also
confirmed the value of being able to select a set of songs
either through explicit filters or by setting an attribute
wheel. The central result of the study is that both
automation and manual interaction have their places: if
users just want to listen to music they are glad to have a
reliable recommender that produces reasonable results (and
does not distract them from what they are actually doing by,
e.g., forcing them to skip a song). When they want to
actively explore their collections or look for specific music
they use all tools available. They might also switch between
the two cases in mid-session, so music-centric applications
should support all these tasks and not restrict themselves to
one of them. To learn more about the connections between
usage scenarios and interaction we plan to make a version
of Rush 2 available online to attract a larger number of
users. This would also give us a platform for subsequent
improvement of interaction and automation techniques.

REFERENCES
1. Baur, D., Boring, S., Butz, A. Rush: Repeated

Recommendations on Mobile Devices. Proc. IUI ’10,
ACM (2010), 91-100.

2. Hansen, D.L., Golbeck, J. Mixing It Up: Recommending
Collections of Items. Proc. CHI ’09, ACM (2009),
1217-1226.

3. Lewis, J. IBM computer usability satisfaction
questionnaires: psychometric evaluation and instructions
for use. Intl. Journal of Human Computer Interaction 7,
1 (1995).

4. Neumayer, R., Dittenbach, M., Rauber, A. Playsom and
pocketsomplayer, alternative interfaces to large music
collections, Proc. ISMIR ’05, (2005), 618-623.

5. Oliver, N., Flores-Mangas, F. MPTrain: A Mobile,
Music and Physiology-Based Personal Trainer. Proc.
MobileHCI ’06, ACM (2006), 21-28.

6. Pampalk, E., Pohle, T., Widmer, G. Dynamic playlist
generation based on skipping behaviour. Proc. ISMIR
’05, (2005), 634-637.

7. Pauws, S., Wijdeven, S.V. User evaluation of a new
interactive playlist generation concept. Proc. ISMIR ’05,
(2005), 638-643.

8. Ragno, R., Burges, C.J.C., Herley, C. Inferring
Similarity Between Music Objects with Application to
Playlist Generation. Proc. MIR ’05, ACM (2005), 73-
80.

9. Rentfrow, P.J., Gosling, S.D. The do re mi’s of
everyday life: The structure and personality correlates of
music preferences. Journal of Personality and Social
Psychology 84, 6 (2003), 1236-1256

