

Rush: Repeated Recommendations on Mobile Devices
Dominikus Baur

University of Munich
dominikus.baur@ifi.lmu.de

Sebastian Boring
University of Munich

sebastian.boring@ifi.lmu.de

Andreas Butz
University of Munich

andreas.butz@ifi.lmu.de

ABSTRACT
We present rush as a recommendation-based interaction
and visualization technique for repeated item selection from
large data sets on mobile touch screen devices. Proposals
and choices are intertwined in a continuous finger gesture
navigating a two-dimensional canvas of recommended
items. This provides users with more flexibility for the re-
sulting selections. Our design is based on a formative user
study regarding orientation and occlusion aspects. Subse-
quently, we implemented a version of rush for music play-
list creation. In an experimental evaluation we compared
different types of recommendations based on similarity,
namely the top 5 most similar items, five random selections
from the list of similar items and a hybrid version of the
two. Participants had to create playlists using each condi-
tion. Our results show that top 5 was too restricting, while
random and hybrid suggestions had comparable results.

Author Keywords
Interaction technique, mobile; recommender systems

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Design, Experimentation, Human Factors

INTRODUCTION
Recommender Systems have come a long way [2]: while
initially conceived as a way to handle email information
overload by collaborative filtering [9], they soon were
adapted by online retailers (most prominently Ama-
zon.com) to increase sales. With this history, recommender
systems continued to be used mainly in web interfaces and
for reducing large data sets to well-chosen subsets in order
to conserve bandwidth and prevent information overload.

Despite broadband internet connection and increased proc-
essing power in mobile devices, explicit research on user

interfaces for mobile recommender systems is scarce: exist-
ing systems ([14],[18]) mostly rely on established desktop
interaction metaphors (e.g., critique-based recommendation
[21]) and examine issues of mobility such as loss of con-
nection ([19],[8]) and decentralization [13]. Peculiarities of
mobile device interaction, such as occlusion problems [35],
the influence of the reduced screen space [30] and possibly
abrupt endings (e.g., when the bus arrives at the station)
have mostly been ignored.

Figure 1. Repeated selection from recommendation sets

Ward et al. presented Dasher [36], a visual tool for text en-
try based on language models that has also been success-
fully ported to Pocket PCs. A continuous gesture allows
selecting letters to form words and sentences. The underly-
ing language model is used to enlarge more probable items
and make selecting the correct one easier. With up to 60
words per minute in its original version, it is an efficient
way to enter text. Despite being used in a variety of other
ways (e.g., with an eye-tracker [37]), the original task of
text entry has never been changed, though.

In this paper, we present rush (see Figure 1), a variation on
Dasher, as an interaction technique for mobile touch-screen
devices for repeatedly selecting items from a set of recom-
mendations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’10, February 7–10, 2010, Hong Kong, China.
Copyright 2010 ACM 978-1-60558-515-4/10/02...$10.00.

91

Figure 2. Rush overview: a) Starting from a seed item five

recommendations are displayed. b) Touching the middle item
causes a new set of recommendations tailored to this item to

appear above. c) By completing the crossing gesture, the mid-
dle item is added to the selected set.

Similar to Dasher, rush’s interaction takes place on a virtual
two-dimensional canvas. Starting from a seed item, related
items are selected by the underlying recommender engine
and displayed close to it. The user can then select one of
these suggestions, which in turn generates recommenda-
tions related to this item (see Figure 2). This iterative ex-
pansion of a recommendation tree continues until the user is
satisfied with the set of selections. Navigation and selection
happens with a single finger gesture: the canvas moves be-
low the finger depending on the distance and angle to the
screen’s center. For example, the user’s finger in the upper
right part of the screen causes the canvas to slide towards
the lower left. To allow fluid gestures and prevent the need
to lift a finger, we used crossing gestures [1] for the selec-
tion of items instead of pointing. Selecting an item in rush
is performed by drawing a line through it. In theory, the
user’s interaction thus limits itself to moving the finger on
the screen: putting the finger down starts the process and
lifting it again means the collection is finished.

In the following, we discuss the issues of device and inter-
face orientation and a formative evaluation that led to rush's
final design. We also present a user study where we exam-
ined a rush implementation for music playlists and the in-
fluence of the underlying recommendation on user satisfac-
tion. Finally, we discuss possible extensions.

RELATED WORK
Interaction for recommender systems is often combined
with approaches from information retrieval and visualiza-
tion. O’Donovan et al. [22] built an interactive visualization
as a way to provide users with explanations of the collabo-
rative filtering process and as a way to influence the results.

Swearingen et al. [32] analyzed eleven online recommender
systems and identified the importance of transparency, fa-
miliarity with items and providing details. The advantages
of transparency and explanations in recommender systems
and a design adapted towards them have been addressed by
Pu et al. [27] and Tintarev et al. [33]. The longstanding
GroupLens and MovieLens projects also analyzed how to
gather information on users through different interface ad-
ditions (e.g., [34]).

Conversational recommenders and mixed initiative systems
[31] ask questions or make repeated suggestions to help the
user understand an item set and ultimately make a choice.
They are used to specify the requirements of the user and
make more refined recommendations. Still, their goal is to
recommend a single item and not multiple ones. The rec-
ommendation process is over if this item has been found.

Recommending collections
Hansen et al. discuss the challenges and present the design
space of automatically recommending collections [11]: In
addition to finding suitable items, such systems also have to
consider how well these items fit together and in which
order they should be presented. The music domain already
provides multiple systems for recommending song collec-
tions, mostly commercially driven: Websites like Last.FM,
imeem or Pandora let users listen to a dynamically gener-
ated web-radio based on a chosen seed song. Similarly,
playlist generators like iTunes Genius or Microsoft’s Smart
DJ produce playlists for desktop or mobile music players.

The underlying method for generating such playlists is
mostly based on collaborative filtering ([24], [17]), but
there are also systems that analyze user interaction, such as
skipping behavior [23], audio similarity [26] or patterns in
authored streams (e.g., radio playlists) [28]. While auto-
matic playlist generation is fast and convenient, its results
often lack variety or ignore the importance of song order.

Apart from fully automatic processes, the user can be in-
volved to varying degrees: Aucouturier et al. [6] let the user
define constraints and generate a playlist based on them.
SatisFly [25] is an interface that is also based on con-
straints. Downsides of the constraint-based approach are:
(1) it becomes complex if more elaborate constraints are
used and (2) all constraints have to be known beforehand.

Music on Mobile Devices
Music has become mobile with the proliferation of hand-
held MP3-devices such as Apple’s iPod. But with the grow-
ing storage space on such devices the problem of accessing
items became worse. Mobile visualization of music prom-
ises to make collections manageable: Mapping approaches
such as Artist Map [40], PocketSOMPlayer [20] or Mobile
Music Explorer [10] visualize music items using dimen-
sionality reduction techniques and provide an overview of
the whole collection. Generating playlists in such visualiza-
tions is mostly done by drawing lines through the map [39],
[10], thus causing the system to choose a list of songs fol-
lowing this trajectory. Due to the abstraction of the visuali-
zation, the user can influence the resulting playlist only on a
very high level (mostly genre).

FORMING RUSH
In contrast to desktop user interfaces, mobile applications
face additional problems such as readability issues due to
the device’s orientation. As mobile devices mostly have
rectangular shapes, there are two ways of holding them: (1)
vertically and (2) horizontally. In the latter case, users can

92

either grip both sides with both hands and interact with their
thumbs or hold one side with the non-dominant hand while
interacting with the dominant one. One-handed interaction
on the whole screen is only possible in the former case.

Interface Orientation

Vertical Horizontal

U
p-

R

ig
ht

Up Right

In
te

rf
ac

e
D

ir
ec

tio
n

D
ow

n-

Le
ft Down Left

Table 1. Which interface directions are available depends on
the interface orientation. The "forward" direction where new

items appear is based on these two factors.

Occlusion introduces a further problem when interacting
with small screens: if important parts of the interface are
regularly occluded by fingers, the performance drops [35].
Several solutions to this problem have been proposed: most
of them require additional screen space (thus occluding
other parts of the interface) [35] or special hardware [38].
One obvious solution is to re-arrange the interface content
so that occlusion is minimized.

In rush, the interaction happens mostly in one direction:
forward movements show new suggestions for a specific
item and select it. When moving backwards, users can undo
a selection or receive recommendations for a different item.
However, as the latter case is rare, the forward direction
should be optimized. The four directions, namely up, down,
left and right, are feasible candidates for forward move-
ment, leading to different kinds of occlusion: if new items
appear to the right of an item, then right-handers will oc-
clude them, while left-handers have no problems. The bot-
tom-direction is mostly occluded with either hand, as the
device is held there. The up-direction should not suffer
from any occlusion-problems.

Two solutions to the problem of occlusion thus are feasible,
namely shaping interaction towards the upper side of the
device or flipping the interface for left- and right-handers.
This last solution should lead to no problems with nominal
data such as products, which are typically found in recom-
mendation situations. For ordinal data such as letters (as in
Dasher [36]), the reading direction might have an influence
on the performance. This makes flipping for right-handers
less attractive if they have a Western background (and thus
a reading direction from left to right).

In order to find an optimal design for rush, we wanted to
clarify these uncertainties. Therefore, we performed a pre-
study to examine the influence of (1) device and interface
orientation, (2) interface direction, (3) used hand and (4)
handedness on the user’s performance.

Method
We implemented a version of rush that was focused on
these interface attributes. We chose all selectable items to
represent single digits (see Figure 3). We then generated
sets that contained random numbers and orders and pre-
sented them to each participant.

Figure 3. Two different conditions for the rush pre-study.
Left: vertical device, horizontal interface, direction right.

Right: horizontal device, horizontal interface, direction left
(the "right" label in the background tells participants to use

their right hand for interaction)

This version of rush supported two different orientations for
the device (horizontal and vertical). We divided the four
possible movement directions into interface orientation
(horizontal, i.e. sets of recommended items appear to the
left or right of the current item (see Figure 3) and vertical,
i.e. sets of recommended items appear above or below (see
Figure 1)) and the two resulting interface directions (hori-
zontal interface orientation: either left or right direction,
vertical interface orientation: either up or down direction,
see Figure 3 for two examples). The available directions are
dependent on the interface orientation, so we combined the
up and right (up-right) and down and left (down-left) direc-
tions to turn interface direction into a variable with two
states. In addition to that, participants were told to use ei-
ther their left or right hand for a task. The movement speed
on the canvas depended on the finger’s distance to the cen-
ter of the screen, so that twice the distance resulted in twice
the speed. Our test device was an Apple iPhone 3G, with a
screen resolution of 320 × 480 pixels. To keep all orienta-
tions comparable, the movement speed was capped at a
distance of 160 pixels to the center of the screen. Other-
wise, interaction in the longer direction would have allowed
higher movement speeds and thus better results.

Task and Study Design
Participants had to select ten numbers using the rush inter-
face. For each item, five suggestions were given out of
which only one item was the correct one. The location
where new items appeared ("forward") depended on the
interface orientation as well as the interaction direction (see
Table 1). By forcing participants to use both of their hands,

93

we partially provoked occlusion and were able to measure
its effects on performance.

We measured task time and error rates for each trial. The
task time began as soon as the participant put a finger on
the screen and ended when the last item was selected. Er-
rors were counted for both selecting a wrong item as well as
deselecting a correct one. All participants performed this
task for every combination of display orientation, interface
orientation, interface direction and used hand. The order of
the tasks was randomized to counter learning effects. Be-
fore each task, participants performed a practice run with a
different sequence of numbers using the identical interface
condition.

We used a within-subjects study design. We had a 2 Device
Orientations (Horizontal, and Vertical) × 2 Interface Orien-
tations (Horizontal, and Vertical) × 2 Interface Directions
(up-right, and down-left) × 2 Used Hand (Left, and Right)
design. For each combination, participants had one practice
block and one timed block. In each task, we measured task
time and error rate. The resulting design was:

2 Device Orientations (Horizontal, and Vertical) ×
2 Interface Orientations (Horizontal, and Vertical) ×
2 Interface Directions (up-right, and down-left) ×
2 Used Hand (Left, and Right) ×
2 Blocks (Training, and Timed)

= 32 (16 timed) data points per participant.

Participants
We recruited 12 participants (3 female, 10 right-handed)
from our institution with their age ranging from 21 to 32
(average age was 27.4 years). All participants had at least
some previous experience with touch screens.

Figure 4. Task times from the pre-study

Hypotheses
Based on our understanding of performance of mobile inter-
faces we had three hypotheses: occlusion in general leads to
higher task times as users have to adjust their hand's posi-
tion to identify items (H1). The dominant hand outperforms
the non-dominant one in both task times and error rates

(H2). The interface and device orientation correlate with
faster task times (H3).

Results
We conducted a repeated measures ANOVA test on mean
completion times (see Figure 4 for results) and error rates.
To identify the nature of interaction effects, we performed
additional tests on subsets of our data. All post hoc pair-
wise comparisons used Bonferroni corrected confidence
intervals for comparisons against α = 0.05.

We first analyzed whether the handedness of users had any
influence on the results. The mean completion time of left-
handers was 24.12 seconds when they used their left hand
and 26.46 when they used their right hand respectively.
There was almost no difference for right-handers (26.34
seconds for the right hand compared to 26.39 seconds for
the left hand respectively). However, we did not find any
significant main effects or interactions for this between-
subject factor on both task time and error rate. Thus, we
excluded the handedness for sub-sequent analysis. This is
contradictory to our hypothesis H2 as the handedness does
not have any significant effects on task times or error rates.

We found significant main effects on completion time for
both Device Orientation (F1,10 = 13.056, p < 0.005) and
Interface Orientation (F1,10 = 7.094, p < 0.024). There
were no significant interaction effects in our data. Overall,
the Vertical Device Orientation (M=24.49, SD=1.29) was
faster than the Horizontal one (M=27.85, SD=1.28). The
Vertical Interface Orientation (M=25.16, SD=1.23) was
also faster than the Horizontal Orientation (M=27.17,
SD=1.28). The combination of both vertical directions was
the fastest one (M=23.13, SD=1.76) with an average im-
provement of 4.05 seconds (≈ 15%) compared to all other
combinations of device and interface orientations.

As there was no significant effect or interaction for Inter-
face Direction we decided to use bottom to top as it is the
fastest one when both the device and the interface are ori-
ented vertically (M=21.23, SD=1.16). On average, partici-
pants were 4.7 seconds (≈ 18%) faster when using this di-
rection compared to horizontal movements. In general, H1
is confirmed as the Vertical Device Orientation in combina-
tion with the Vertical Interface Orientation does not lead to
occlusion effects.

When analyzing the error rate we found a significant main
effect for Device Orientation (F1,10 = 6.139, p < 0.033) but
no significant interaction effects. Post-hoc multiple means
comparisons revealed that the Vertical Device Orientation
(M=0.53, SD=0.15) performs better than the Horizontal one
(M=0.86, SD=0.l4). Considering low error rates and short
task times, H3 is supported by our results.

Discussion
The higher error rates and task times for conditions where
occlusion was a problem for participants can be explained
as follows: (1) participants touched an item which caused

94

recommended items to appear beyond the display’s bounda-
ries and were thus invisible. (2) They put their finger to the
far end of the screen to reach those as fast as possible. (3)
Participants then had to precisely pick the moment when
the items appeared, but sometimes still selected the wrong
item, which increased the error rate. Furthermore, the task
time got higher as they had to deselect the item and select
the correct one. For the final design of rush, this implies
separating interaction into getting recommendations for an
item and selecting an item.

Another effect we observed in the study was that partici-
pants were either not aware of all suggested items or had to
pan orthogonally to the Interface Direction to see all of
them. This caused frustration among our participants.
Hence, in the final design of rush, we decided to restrict
panning to one dimension and only show one set of recom-
mendations at one time.

Figure 5. Representation of items

RUSH: DESIGN
The results of the pre-study led to the final design of the
rush interaction technique (see Figures 1 and 2) with verti-
cal device and interface orientation and interaction direction
from bottom to top.

Touch interaction and Crossing-based interfaces
In the final version, one finger is still sufficient for navigat-
ing the complete item set and select items. The distance
from the screen's center determines the speed, the angle the
direction of movement (but as mentioned above, only along
the vertical dimension). This movement is indirect and
caused by a sliding of the underlying canvas into the oppo-
site direction. After launching the application and choosing
a seed item from a list or entering it manually, it is dis-
played in the center of the screen.

Figure 6 Selecting multiple items with one stroke

The visual representation of items is separated into two
areas (see Figure 5): One area triggers the display of rec-
ommended items (“unfolds” the item) while the other one
can be used to select the item for the result set. Also, the
items are no longer squares but rectangles and aligned with
the movement direction, making it harder to erroneously
select them by drawing a complete line.

As soon as the user touches an item, recommendations are
presented, but the item is not selected until a full line is
drawn through it. Accot and Zhai have shown in [1] that
continuous crossing-based interaction is comparable in per-
formance to pointing-based alternatives. As the user’s fin-
ger is on the screen anyway, crossing-based selection is an
obvious choice for rush: the finger on the touch-screen not
only causes navigation on the item plane, but also produces
an (invisible) line that can be used for selecting items. In
addition to that, continuously drawing a line contains addi-
tional information: the user is, for example, able to select
multiple items in a row by simply drawing a longer line
through them instead of repeatedly lifting, aiming and low-
ering the finger (see Figure 6). Also, instead of just hitting a
single (more or less random) point within an item, a cross-
ing line has an entering and exiting side which also can be
used as a way for "richer semantics" [1]: We decided to
minimize the number of erroneous de-selections by cou-
pling the interface direction with the crossing direction:
Drawing a line from bottom to left, top or right (along the
interface direction) selects an item, while drawing a line
from top to bottom (against the interface direction) dese-
lects it.

Figure 7. On-screen item layout while unfolding and selecting:
a) initially, only row 1 is visible. b) After unfolding and select-
ing two songs from rows 1 and 2. c) After unfolding a different
song from row 1 the recommendations in row 2 change.

We found that while in theory a complete interaction proc-
ess can be started and ended by putting the finger down and
up again, it is strenuous for users to keep their fingers
pressed to the screen. To end the process, the user can al-
ternatively wait for a short time to allow a dialog to pop up
asking him if he wants to quit or shake the device, which
can be detected by the integrated accelerometers and is suf-
ficiently diametric to the regular interaction to not be trig-
gered unintentionally.

95

As rush is intended for building collections of items, pro-
viding an overview of recently selected items is necessary
to reduce the cognitive load and prevent the necessity to
memorize recent decisions. The alternative of going back
and following the trail of previous choices is time-
consuming, so we preferred the alternative of using a por-
tion of the screen space to display these recent choices.
Similar to the version used for the pre-study, we used the
top of the screen to display a textual representation of the
last five selected items (see top of Figure 7).

Recommendation sets
By crossing either of the two areas with his finger, the item
is unfolded and a set of recommended items is displayed.
When thinking about the purpose of rush, the number of
recommended items is crucial: As an information reduction
technique, the number of items reflects the trade-off be-
tween freedom of choice and time spent deciding and
browsing (cf. [29]). A small number of suggestions heavily
restrict the possible choices, while a large one increases the
time necessary for each decision. As every item has to be
visually scanned, this time increases linearly with the num-
ber of items. The unsorted items allow no subdivision, so
logarithmic decisions as in the Hick-Lyman Law cannot be
applied [15]. Additionally, the available screen space is a
restricting factor: To display many items they either have to
become very small (and possibly unreadable) or disappear
beyond the screen borders (making panning necessary to
reach them). We decided for five items in our implementa-
tion as a compromise between choice and convenience. The
participants of our second user study (see below) generally
appreciated this choice (58% of them said that the number
of suggestions was neither too high nor too low).
The new set of suggestions appears in a row above the
original item, using the available screen space as well as
possible (see Figure 7).

One additional decision was how to handle a change in se-
lection of the original item. With every row containing five
items, five corresponding sets of recommendations are
available. While in the regular case only one of these sets
will be required (the one building on the selected item), the
user is free to access the other sets as well. Displaying all
25 available items would lead to a large panning overhead
and make it almost impossible to gather which item origi-
nated from where, so only one set of recommendations is
available at one time. If a different item is unfolded, all
unselected items from the last visible set are hidden and
available spots are filled with new recommendations (see
Figure 7b) and c)). Already selected items from the old set
stay put. Every time an item is touched its recommenda-
tions are displayed, which means that when selecting multi-
ple items using a single stroke only the last item’s recom-
mendations are visible afterwards.

An additional issue is the arrangement of recommended
items, as the horizontal dimension (i.e., the order of the five
items) can be used to encode additional information. We

used the similarity of the recommended items for that and
placed in one setup (Hybrid, see user study) the most simi-
lar item in the middle of the screen, next to two items that
were reasonably similar but not too much and finally two
items with a very low similarity as a way to “break out” of
a certain direction. With this layout, the user is able to rep-
licate the work of an automatic playlist creator based on
similarity such as [26] by drawing a straight line up, thus
always selecting the most similar item.

Sorting the items based on the probability returned by the
recommendation engine allows users to have a clear con-
ception about the relevance and changing their visual scan-
ning depending on the current task. We compared the hy-
brid layout to one displaying the top five items in our study
and found that chances were high that users had no way to
maneuver out of a certain direction with the latter. In the
hybrid layout, we circumvent the common “more of the
same” problem of recommender systems and allow seren-
dipity ([12], [5]) - but, of course, only if the user chooses to.

IMPLEMENTATION
For our second user study, we chose the domain of playlist
creation. We implemented rush for the Apple iPhone 3G
which has a 3.5” touch screen with a resolution of 320 x
480 pixels. We used the iPhone SDK and Objective-C for
the implementation and OpenGL ES 1.1 for drawing. All
songs and their relations were saved in a 10 Megabyte
SQLite database directly on the device. Also, album covers
or, if not available, artist photos were deployed as JPEG
images together with the application to increase the loading
speed. We wanted to allow participants to listen in on songs
to make it easier for them to decide whether they fit in the
current context or to help them recall a song if cover, artist
and title name are not enough. For this purpose, we
streamed 30 second samples from a web server through the
phone’s wireless LAN connection, which decreased the
application’s performance slightly but was received favora-
bly by our study’s participants.

USER STUDY
Rush is in the middle of the spectrum between fully auto-
mated and manual. Naturally, this hybrid approach causes
longer task times than a fully automatic one (which effec-
tively takes no time at all). We further assumed that the
results were better in terms of quality. Our expectation for
the manual approach, however, was that it produces the
highest quality but is by far the slowest technique.

In a user study we investigated whether our assumptions
were correct. We wanted to examine how well rush per-
formed compared against automatic and manual playlist
construction and what influence the choice of suggestion
sets had on the user's satisfaction and performance.

Song Set Used in the Study
To give a realistic scenario and show that recommendation
was indeed useful (i.e., browsing is not sufficient), we cre-
ated a data set of 3900 songs, including samples and repre-

96

sentative images. Our goal for the data set was to create a
collection that only includes songs which are commonly
known. With this, participants were not confronted with
completely unknown recommendations. The alternative of
asking participants for sufficiently large song sets would
have made the results less comparable. Therefore, we
started with a manual selection of all time favorites from
the genres rock, pop and R'n'B. Based on that, a script ex-
tracted similar songs from Last.FM1. We only considered
songs that had been listened to at least 500,000 times,
which made them sufficiently popular. For each song in the
set, we created a list of similar songs (again based on
Last.FM data). Songs with less than ten connections to
songs by different artists were erased and we arrived at a
final set of 3900 songs (from originally 4500).

While the similarity was based on Last.FM data, we added
two constraints to improve the quality of resulting playlists.
First, songs that were already in the playlist were not sug-
gested again. Second, suggestions for a song did not have
the same artist. Additional constraints on, for example,
tempo or genre were not used.

Conditions, Task and Study Design
During the study, participants had to create four playlists:
three using rush in different conditions and one manually.
The three different versions of rush were identical regarding
the interface, but the approach to recommendation changed:
The Top 5 condition presented users with the five most
similar songs for an item. The Random condition took five
songs at random from the list of similar songs. The already
mentioned Hybrid condition presented the top similar song,
two songs from the middle of the similarity list and two
songs from the bottom. In the manual condition, partici-
pants had access to a web browser on a desktop PC with a
list of all 3900 available songs. In order to keep the results
comparable, participants were able to see the (full) list of
similar items for each song. They also had the option to
listen to samples of those. The last set of conditions was
automatic playlists, created out of the 3900 songs. The
playlist generator replicated the user's choices in rush but
picked a random song from the five suggestions. In the
automatic condition, there were also three suggestion
strategies (Top 5, Random, and Hybrid).

In all conditions the task was the same: (1) participants ini-
tially chose a seed song which was the same in all condi-
tions. (2) Starting from this song, they had to construct a
playlist with ten songs. We asked the participants to create
a playlist for other people (e.g., a social event) to make
them think about what constitutes a good playlist.

We used a within-subject study design. Our independent
variable was the used Tool with 7 factors: Manual, Rush

1 Last.FM is a platform for tracking listening behavior and
based on this data, similarity values are created by collabo-
rative filtering.

Top 5, Rush Random, Rush Hybrid, Automatic Top 5,
Automatic Random, and Automatic Hybrid. Prior to the
study, participants were allowed to get comfortable using
the system. The order of the three rush conditions was
counterbalanced across our participants and the automatic
ones were created in the background during the study.
When they completed the playlists using the rush condi-
tions, participants had to manually create another playlist.
We measured the completion time for each of the rush tools
and the time spent using the manual condition.

In the beginning of the study, participants chose their seed
song. They then created the playlists using each rush condi-
tion. However, after each constructed playlist, they had to
fill out a questionnaire on how useful they rated the sugges-
tions and how random they appeared. They then built their
final one manually. In the end, participants had to fill out a
post-questionnaire with a modified set of the IBM Com-
puter Usability Satisfaction questions and statistical data.
Also, they were asked to rank the rush and manual tools (as
the automatic versions allowed no interaction) and the re-
sulting seven playlists.

Participants
We recruited 12 participants for our second user study (4
female, 2 left-handed, 4 had participated in the pre-study).
All participants declared they had experience with touch
screens. Their age ranged from 24 to 35 (average: 28 years).

Hypotheses
We had three hypotheses: playlists can be constructed fast-
est using the automatic tools, the slowest using the manual
version. Rush takes a time between the two (H1). The qual-
ity of the resulting playlists is higher with rush than the
Automatic conditions (H2). And, Rush Hybrid gives better
results and is preferred to Rush Random (H3).

Results
The creation time of automatic is, of course, always 0 sec-
onds. The average times for rush were 123.8 (Rush Top 5),
142.1 (Rush Hybrid), and 162.3 seconds (Rush Random).
The manual condition – as expected the slowest one – had
an average time of 388.6 seconds. This supports our hy-
pothesis H1.

The participants were overall satisfied with rush’s usability
as the operation speed was the only point of criticism (aver-
age ranking of 2 on a 5-point Likert-scale where 1 translates
into “too slow”). Analyzing the tool’s quality ranking using
the Condorcet Ranked-Pairs system reveals the Manual as
the winning candidate (3 wins), followed by Rush Hybrid (2
wins, 1 loss), Rush Random (1 win, 2 losses) and Rush Top
5 (3 losses).

Measuring the quality of playlists is hard ([4],[3]), as the
results are always personal and thus should be evaluated by
their creators only. On the other hand, we would add a bias
because participants are expected to rank the playlists they
were involved with better and the automatic playlists worse.

97

This “emotional bond” can be explained by the fact that
participants would generally rank playlists better if they had
spent time on their creation. The “novelty effect” could
further explain this bias. Thus – to learn about the impartial
playlist quality – we started an online questionnaire where
everyone was asked to rank a random set of playlists from
the study. We received 10 ranked sets of playlists.

An analysis of the study participants' rankings using the
Condorcet Ranked-Pairs system showed that playlists built
manually were clearly favored (6 wins), followed by Rush
Hybrid (5 wins, 1 loss), Rush Random (4 wins, 2 losses),
Automatic Random (3 wins, 3 losses), Rush Top 5 (2 wins,
4 losses), Automatic Top 5 (1 win, 5 losses), and Automatic
Hybrid (6 losses). As expected, the online participants had
different opinions: Rush Hybrid, Rush Random and Auto-
matic Hybrid are tied for first place (4 wins, 2 unresolved),
followed by Automatic Random (3 wins, 3 losses), Manual
(2 wins, 4 losses), Rush Top 5 (1 win, 5 losses), and at the
last position Automatic Top 5 (6 losses).

Our conclusion is that the participants were clearly biased
towards their own playlists and thus ranked the automatic
results negatively. The more independent online vote shows
that the Hybrid and Random Automatic and Rush versions
yielded better results than the Manual and Top 5 versions.
We suppose these results stem from the participants' lack of
experience in playlist building: Thus, adding recommenda-
tions helped to improve the quality of produced playlists,
but only if the suggestions were not too restricting (as in the
Top 5 versions). The freedom that participants gained from
the manual version had the downside of reducing the qual-
ity. Restricting the participants' choices might decrease the
tool’s satisfaction but actually helps them in producing (ob-
jectively) better results. Thus, Rush Hybrid and Rush Ran-
dom brought the overall best results in subjective and objec-
tive quality. Unfortunately, we were not able to confirm H3,
which means that a random set of suggestions and the more
elaborate hybrid set ranked equally well.

DISCUSSION
Rush's flexibility is inherently restricted: The convenience of
only having to choose between five and not all items of a
collection can also be seen as the limitation of only being
able to choose between five items. As the second study
showed, depending on the underlying recommendation en-
gine rush can yield very different results. In general, the sug-
gestions by rush can be local, i.e., personalized for the user
with one of the various recommendation techniques like col-
laborative filtering (for an overview see [7]). Yet, with rush
being an (interactive) recommendation technique itself, sug-
gestions can also be global (identical for each user) and thus
based on, for example, a similarity metric. While we used the
second approach in the user study to keep the results compa-
rable, we suppose that introducing personalized suggestions
might improve the user experience.

Shaping Recommendations
Depending on the use case several adaptations of the recom-
mendation engine might be useful. First of all, chosen items
can be interpreted as votes, thus adapting the user profile
while he interacts with the system. Every item that is chosen
receives a positive rating, while other items from the same set
are downgraded, thus refining the adaptation to the user. The
downside of this approach is the growing restriction in sug-
gestions, with diminishing serendipity being a common prob-
lem of recommender systems [12].

Second, constraints might be applied to the set of suggestions
depending on the use case. In addition to the design space for
recommending collections proposed by Hansen et al. [11] we
suggest two main categories based on the time frame of con-
sumption: Items in a concurrent collection are consumed at
the same time (e.g., apparel, extras for a car or a hotel room).
Items in a sequential collection are consumed sequentially
(e.g., a song playlist, travel plans, dinner courses). The type
of collection leads to different constraints: For concurrent
collections, order is not applicable but all items have to work
together all the time. For sequential collections, internal con-
sistency is important as well, but can be alleviated by a clever
use of sequence. This sequence, on the other hand, adds addi-
tional constraints in that sequential items have to work after
one another.

Finally, for certain user tasks and requirements, additional
rule-based constraints might be added to the generation of
suggestions. One such rule might be that a playlist should not
contain songs twice or two songs by the same artist in a row.
Also, constraints like "two sequential songs have to be simi-
lar in tempo or rhythm" might be applied. Such constraints
can be used to minimize the number of inappropriate sugges-
tions that otherwise take up one of the five precious slots. But
they can also help an inexperienced user (who does not know
these rules that guarantee quality) produce suitable results.

Steerable Recommendations
Rush provides users with "steerable" recommendations: The
choice of an item not only makes it part of the current selec-
tion but also shapes the form of the newly suggested set as
these are related to it, thus guaranteeing a certain coherence
of the resulting set.

The major advantage of making recommendations interactive
is the flexibility that it brings. First of all, the user is able to
shape the results of the recommendation process to his liking
at every step of the process. Items that the recommendation
engine might find suitable but the user clearly knows he does
not like can immediately be skipped and the recommenda-
tions can also be adapted to the current mood of the user -
something that recommendations based on a user profile are
not able to do without additional questioning. But flexibility
is not only restricted to this local level: The sum of all these
small decisions, the resulting collection, can also be actively
adapted to the likings of the user: While other tools allow
setting a general mood or tone of the items [25], rush adds a
temporal flexibility to that: Depending on the underlying

98

recommendation strategy, musical playlists that start with a
certain mood and change over time in a gradual buildup are
possible. Also, there is no predefined length of the collection,
which lets users add items as long as they like. Lastly, the
user is also flexible in its interaction with the tool: Depending
on temporal constraints, the user can quickly finish building a
collection, spend some more time exploring the recommen-
dations and choosing more deliberately, or switch between
the two whenever appropriate.

In addition to flexibility, rush provides users with an easy
way to generate collections: Constraint-based recommender
systems might also be able to yield similarly complex results
but demand more mental effort from users: All constraints
have to be known beforehand and expressing, for example, a
gradual buildup in mood in a music playlist might be hard to
express in the underlying constraint language. Also, a spon-
taneous change of plan is only possible by repeating the
complete process, while rush users have no problem with
adapting their preferences in the middle of the process. Fi-
nally, rush has the “I know it when I see it” advantage: Users
can decide what they want on the go and listen to their gut
feeling instead of having to decide and rationalize beforehand
(cf. [16]).

Conclusion
We have presented rush, an interaction technique for creating
item collections on mobile devices. An underlying recom-
mendation algorithm decreases the user's options and thus
makes it easier to build suitable collections. Still, compared
to fully automatic recommendation, the user is able to influ-
ence the resulting set in a less complicated way than with
constraint-based recommenders. One-touch and crossing-
based interaction makes rush suitable for mobile use. Our
studies showed that the vertical orientation performed best
for interface and device. We also found that the choice of
suggestions had a strong influence on the user's liking of the
system and the quality of the results. Too restricting sugges-
tions should be avoided in order not to frustrate the users (as
one participant put it: "There are always the same songs!").
We evaluated rush in a playlist scenario but the technique
itself is applicable to various recommendation tasks.

An alternate use of rush might lead to a single item selection
instead of that of a whole collection: Using a "navigation by
proposing" [31] approach, each row of suggestions and suc-
ceeding choices can be interpreted as a vote, thus more and
more restricting the search space. We plan to evaluate this
version as well.

It might also be interesting to see if a different type of inter-
action (e.g., panning by finger flicking, selection by tapping)
has an influence on user performance.

Lastly, we plan to evaluate rush in a real-world mobile con-
text and not just the laboratory.

ACKNOWLEDGMENTS
We thank the state of Bavaria for funding. We would also
like to thank the participants of our studies, Alexander De
Luca for helping with the evaluation and Petteri Nurmi for
valuable feedback on the paper.

REFERENCES
1. Accot, J. and Zhai, S. More than dotting the i's - founda-

tions for crossing-based interfaces. Proc. SIGCHI confer-
ence on Human factors in computing systems, (2002), 73-
80.

2. Adomavicius, G. and Tuzhilin, a. Toward the next gen-
eration of recommender systems: a survey of the state-of-
the-art and possible extensions. IEEE Transactions on
Knowledge and Data Engineering 17, 6 (2005), 734-749.

3. Andric, A. and Haus, G. Estimating Quality of Playlists by
Sight. First International Conference on Automated Pro-
duction of Cross Media Content for Multi-Channel Dis-
tribution (AXMEDIS'05), (2005), 68-74.

4. Andric, A. and Haus, G. Automatic playlist generation
based on tracking user’s listening habits. Multimedia Tools
and Applications 29, 2 (2006), 127-151.

5. André, P., Teevan, J., and Dumais, S. From x-rays to silly
putty via Uranus: serendipity and its role in web search.
Proc. 27th international conference on Human fac-tors in
computing systems, ACM (2009), 2033–2036.

6. Aucouturier, J. and Pachet, F. Scaling up music playlist
generation. Proc. IEEE International Conference on
Multi-media and Expo, IEEE (2002), 105–108.

7. Burke, R. Hybrid recommender systems: Survey and ex-
periments. User Modeling and User-Adapted Interaction
12, 4 (2002), 331–370.

8. Cöster, R. and Svensson, M. Incremental collaborative
filtering for mobile devices. Proc. 2005 ACM symposium
on Applied computing - SAC '05, ACM Press (2005),
1102.

9. Goldberg, D., Nichols, D., Oki, B., and Terry, D. Using
collaborative filtering to weave an information tapestry.
Communications of the ACM 61, 10 (1992), 1-10.

10. Goussevskaia, O., Kuhn, M., and Wattenhofer, R. Ex-
ploring Music Collections on Mobile Devices. Proc. 10th
international conference on Human computer interaction
with mobile devices and services, ACM (2008), 359-362.

11. Hansen, D.L. and Golbeck, J. Mixing It Up: Recom-
mending Collections of Items. Proc. 27th international
con-ference on Human factors in computing systems,
ACM (2009), 1217-1226.

12. Herlocker, J.L., Konstan, J.A., Terveen, L.G., and Riedl,
J.T. Evaluating Collaborative Filtering Recom-mender
Systems. Transactions on Information Systems (TOIS)
22, 1 (2004), 5-53.

99

13. Jacobsson, M., Rost, M., and Holmquist, L.E. When Me-
dia Gets Wise: Collaborative Filtering with Mobile Me-
dia Agents. World Wide Web Internet And Web Informa-
tion Systems, (2006).

14. Kim, C.Y., Lee, J.K., Cho, Y.H., and Kim, D.H.
VISCORS: A Visual-Content Recommender for the Mo-
bile Web. IEEE Intelligent Systems 19, 06 (2004), 32-39.

15. Landauer, T. and Nachbar, D. Selection from alphabetic
and numeric menu trees using a touch screen: breadth,
depth, and width. Proceedings of the SIGCHI conference
on Human factors in computing systems, ACM New
York, NY, USA (1985), 73–78.

16. Lehrer, J. How We Decide. Houghton Mifflin, New
York, 2009.

17. Lehtiniemi, A. and Seppänen, J. Evaluation of Auto-
matic Mobile Playlist Generator. Proc. Mobility, (2007),
452-459.

18. Miller, B., Konstan, J., and Riedl, J. Pocketlens: Toward
a personal recommender system. ACM Transactions on
Information Systems 22, 3 (2004), 437–476.

19. Miller, B.N., Albert, I., Lam, S.K., Konstan, J.A., and
Riedl, J. MovieLens Unplugged: Experiences with an
Oc-casionally Connected Recommender System. Proc.
IUI, (2000), 263-266.

20. Neumayer, R., Dittenbach, M., and Rauber, A. Playsom
and pocketsomplayer, alternative interfaces to large mu-
sic collections. Proc. ISMIR, (2005), 618–623.

21. Nguyen, Q. and Ricci, F. Long-term and session-specific
user preferences in a mobile recommender system. Proc.
13th international conference on Intelligent user inter-
faces, ACM New York, NY, USA (2008), 381–384.

22. O'Donovan, J., Smyth, B., Gretarsson, B., Bostandjiev,
S., and Höllerer, T. PeerChooser: Visual Interactive Rec-
ommendation. Proc. twenty-sixth annual SIGCHI con-
ference on Human factors in computing systems, (2008),
1085-1088.

23. Pampalk, E., Pohle, T., and Widmer, G. Dynamic Play-
list Generation Based on Skipping Behaviour. Proc.
ISMIR, (2005), 634-637.

24. Pauws, S. and Eggen, B. PATS: Realization and user
evaluation of an automatic playlist generator. Proc. 3rd
International Conference on Music Information Re-
trieval, (2002), 222–230.

25. Pauws, S. and Wijdeven, S.V. User evaluation of a new
interactive playlist generation concept. Proc. ISMIR,
(2005).

26. Pohle, T., Pampalk, E., and Widmer, G. Generating simi-
larity-based playlists using traveling salesman algo-

rithms. Proc. 8th International Conference on Digital
Au-dio Effects (DAFx-05), (2005), 1-6.

27. Pu, P. and Chen, L. Trust building with explanation inter-
faces. Proc. 11th international conference on Intelli-gent
user interfaces, ACM Press (2006), 93.

28. Ragno, R., Burges, C.J., and Herley, C. Inferring simi-
larity between music objects with application to playlist
generation. Proc. 7th ACM SIGMM international work-
shop on Multimedia information retrieval, ACM Press
New York, NY, USA (2005), 73-80.

29. Schwartz, B. The paradox of choice: Why more is less.
Harper Perennial, New York, 2005.

30. Smyth, B. and Cotter, P. Personalized adaptive naviga-
tion for mobile portals. Proc. ECAI, (2002), 608–612.

31. Smyth, B. Case-based recommendation. In Lecture Notes
in Computer Science. Springer, Berlin / Heidelberg,
2007, 342-376.

32. Swearingen, K. and Sinha, R. Interaction design for re-
commender systems. Proc. of Designing Interactive Sys-
tems, ACM (2002).

33. Tintarev, N. and Masthoff, J. Effective explanations of
recommendations: user-centered design. Proc. 2007
ACM conference on Recommender systems, ACM New
York, NY, USA (2007), 153–156.

34. Vig, J., Sen, S., and Riedl, J. Tagsplanations: explaining
recommendations using tags. Proc. 13th international
conference on Intelligent User Interfaces, ACM (2009),
47-56.

35. Vogel, D. and Baudisch, P. Shift: a technique for oper-
ating pen-based interfaces using touch. Proc. SIGCHI
conference on Human factors in computing systems,
ACM (2007), 657-666.

36. Ward, D.J. and Blackwell, A.F. Dasher---a data entry
interface using continuous gestures and language models.
Proc. 13th annual ACM symposium on User interface
software and technology - UIST '00, ACM Press (2000),
129-137.

37. Ward, D.J. and MacKay, D. Fast Hands-free Writing by
Gaze Direction. Nature 838, August (2002), 4-6.

38. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., and
Shen, C. Lucid touch: a see-through mobile device. Proc.
20th annual ACM symposium on User interface software
and technology, ACM (2007), 269-278.

39. van Gulik, R. and Vignoli, F. Visual playlist generation
on the artist map. Proc. ISMIR, (2005), 520-523.

40. van Gulik, R., Vignoli, F., and van De Wetering, H.
Mapping music in the palm of your hand, explore and
dis-cover your collection. Proc. ISMIR, (2004).

100

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

