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ABSTRACT 
We present rush as a recommendation-based interaction 
and visualization technique for repeated item selection from 
large data sets on mobile touch screen devices. Proposals 
and choices are intertwined in a continuous finger gesture 
navigating a two-dimensional canvas of recommended 
items. This provides users with more flexibility for the re-
sulting selections. Our design is based on a formative user 
study regarding orientation and occlusion aspects. Subse-
quently, we implemented a version of rush for music play-
list creation. In an experimental evaluation we compared 
different types of recommendations based on similarity, 
namely the top 5 most similar items, five random selections 
from the list of similar items and a hybrid version of the 
two. Participants had to create playlists using each condi-
tion. Our results show that top 5 was too restricting, while 
random and hybrid suggestions had comparable results.  

Author Keywords 
Interaction technique, mobile; recommender systems 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

General Terms 
Design, Experimentation, Human Factors 

INTRODUCTION 
Recommender Systems have come a long way [2]: while 
initially conceived as a way to handle email information 
overload by collaborative filtering [9], they soon were 
adapted by online retailers (most prominently Ama-
zon.com) to increase sales. With this history, recommender 
systems continued to be used mainly in web interfaces and 
for reducing large data sets to well-chosen subsets in order 
to conserve bandwidth and prevent information overload. 

Despite broadband internet connection and increased proc-
essing power in mobile devices, explicit research on user 

interfaces for mobile recommender systems is scarce: exist-
ing systems ([14],[18]) mostly rely on established desktop 
interaction metaphors (e.g., critique-based recommendation 
[21]) and examine issues of mobility such as loss of con-
nection ([19],[8]) and decentralization [13]. Peculiarities of 
mobile device interaction, such as occlusion problems [35], 
the influence of the reduced screen space [30] and possibly 
abrupt endings (e.g., when the bus arrives at the station) 
have mostly been ignored. 

 

Figure 1. Repeated selection from recommendation sets 

Ward et al. presented Dasher [36], a visual tool for text en-
try based on language models that has also been success-
fully ported to Pocket PCs. A continuous gesture allows 
selecting letters to form words and sentences. The underly-
ing language model is used to enlarge more probable items 
and make selecting the correct one easier. With up to 60 
words per minute in its original version, it is an efficient 
way to enter text. Despite being used in a variety of other 
ways (e.g., with an eye-tracker [37]), the original task of 
text entry has never been changed, though. 

In this paper, we present rush (see Figure 1), a variation on 
Dasher, as an interaction technique for mobile touch-screen 
devices for repeatedly selecting items from a set of recom-
mendations. 
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Figure 2. Rush overview: a) Starting from a seed item five 

recommendations are displayed. b) Touching the middle item 
causes a new set of recommendations tailored to this item to 

appear above. c) By completing the crossing gesture, the mid-
dle item is added to the selected set. 

Similar to Dasher, rush’s interaction takes place on a virtual 
two-dimensional canvas. Starting from a seed item, related 
items are selected by the underlying recommender engine 
and displayed close to it. The user can then select one of 
these suggestions, which in turn generates recommenda-
tions related to this item (see Figure 2). This iterative ex-
pansion of a recommendation tree continues until the user is 
satisfied with the set of selections. Navigation and selection 
happens with a single finger gesture: the canvas moves be-
low the finger depending on the distance and angle to the 
screen’s center. For example, the user’s finger in the upper 
right part of the screen causes the canvas to slide towards 
the lower left. To allow fluid gestures and prevent the need 
to lift a finger, we used crossing gestures [1] for the selec-
tion of items instead of pointing. Selecting an item in rush 
is performed by drawing a line through it. In theory, the 
user’s interaction thus limits itself to moving the finger on 
the screen: putting the finger down starts the process and 
lifting it again means the collection is finished. 

In the following, we discuss the issues of device and inter-
face orientation and a formative evaluation that led to rush's 
final design. We also present a user study where we exam-
ined a rush implementation for music playlists and the in-
fluence of the underlying recommendation on user satisfac-
tion. Finally, we discuss possible extensions. 

RELATED WORK 
Interaction for recommender systems is often combined 
with approaches from information retrieval and visualiza-
tion. O’Donovan et al. [22] built an interactive visualization 
as a way to provide users with explanations of the collabo-
rative filtering process and as a way to influence the results. 

Swearingen et al. [32] analyzed eleven online recommender 
systems and identified the importance of transparency, fa-
miliarity with items and providing details. The advantages 
of transparency and explanations in recommender systems 
and a design adapted towards them have been addressed by 
Pu et al. [27] and Tintarev et al. [33]. The longstanding 
GroupLens and MovieLens projects also analyzed how to 
gather information on users through different interface ad-
ditions (e.g., [34]).  

Conversational recommenders and mixed initiative systems 
[31] ask questions or make repeated suggestions to help the 
user understand an item set and ultimately make a choice. 
They are used to specify the requirements of the user and 
make more refined recommendations. Still, their goal is to 
recommend a single item and not multiple ones. The rec-
ommendation process is over if this item has been found. 

Recommending collections 
Hansen et al. discuss the challenges and present the design 
space of automatically recommending collections [11]: In 
addition to finding suitable items, such systems also have to 
consider how well these items fit together and in which 
order they should be presented. The music domain already 
provides multiple systems for recommending song collec-
tions, mostly commercially driven: Websites like Last.FM, 
imeem or Pandora let users listen to a dynamically gener-
ated web-radio based on a chosen seed song. Similarly, 
playlist generators like iTunes Genius or Microsoft’s Smart 
DJ produce playlists for desktop or mobile music players.  

The underlying method for generating such playlists is 
mostly based on collaborative filtering ([24], [17]), but 
there are also systems that analyze user interaction, such as 
skipping behavior [23], audio similarity [26] or patterns in 
authored streams (e.g., radio playlists) [28]. While auto-
matic playlist generation is fast and convenient, its results 
often lack variety or ignore the importance of song order. 

Apart from fully automatic processes, the user can be in-
volved to varying degrees: Aucouturier et al. [6] let the user 
define constraints and generate a playlist based on them. 
SatisFly [25] is an interface that is also based on con-
straints. Downsides of the constraint-based approach are: 
(1) it becomes complex if more elaborate constraints are 
used and (2) all constraints have to be known beforehand.  

Music on Mobile Devices 
Music has become mobile with the proliferation of hand-
held MP3-devices such as Apple’s iPod. But with the grow-
ing storage space on such devices the problem of accessing 
items became worse. Mobile visualization of music prom-
ises to make collections manageable: Mapping approaches 
such as Artist Map [40], PocketSOMPlayer [20] or Mobile 
Music Explorer [10] visualize music items using dimen-
sionality reduction techniques and provide an overview of 
the whole collection. Generating playlists in such visualiza-
tions is mostly done by drawing lines through the map [39], 
[10], thus causing the system to choose a list of songs fol-
lowing this trajectory. Due to the abstraction of the visuali-
zation, the user can influence the resulting playlist only on a 
very high level (mostly genre). 

FORMING RUSH 
In contrast to desktop user interfaces, mobile applications 
face additional problems such as readability issues due to 
the device’s orientation. As mobile devices mostly have 
rectangular shapes, there are two ways of holding them: (1) 
vertically and (2) horizontally. In the latter case, users can 
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either grip both sides with both hands and interact with their 
thumbs or hold one side with the non-dominant hand while 
interacting with the dominant one. One-handed interaction 
on the whole screen is only possible in the former case. 
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Table 1. Which interface directions are available depends on 
the interface orientation. The "forward" direction where new 

items appear is based on these two factors. 

Occlusion introduces a further problem when interacting 
with small screens: if important parts of the interface are 
regularly occluded by fingers, the performance drops [35]. 
Several solutions to this problem have been proposed: most 
of them require additional screen space (thus occluding 
other parts of the interface) [35] or special hardware [38]. 
One obvious solution is to re-arrange the interface content 
so that occlusion is minimized.  

In rush, the interaction happens mostly in one direction: 
forward movements show new suggestions for a specific 
item and select it. When moving backwards, users can undo 
a selection or receive recommendations for a different item. 
However, as the latter case is rare, the forward direction 
should be optimized. The four directions, namely up, down, 
left and right, are feasible candidates for forward move-
ment, leading to different kinds of occlusion: if new items 
appear to the right of an item, then right-handers will oc-
clude them, while left-handers have no problems. The bot-
tom-direction is mostly occluded with either hand, as the 
device is held there. The up-direction should not suffer 
from any occlusion-problems. 

Two solutions to the problem of occlusion thus are feasible, 
namely shaping interaction towards the upper side of the 
device or flipping the interface for left- and right-handers. 
This last solution should lead to no problems with nominal 
data such as products, which are typically found in recom-
mendation situations. For ordinal data such as letters (as in 
Dasher [36]), the reading direction might have an influence 
on the performance. This makes flipping for right-handers 
less attractive if they have a Western background (and thus 
a reading direction from left to right).  

In order to find an optimal design for rush, we wanted to 
clarify these uncertainties. Therefore, we performed a pre-
study to examine the influence of (1) device and interface 
orientation, (2) interface direction, (3) used hand and (4) 
handedness on the user’s performance. 

Method 
We implemented a version of rush that was focused on 
these interface attributes. We chose all selectable items to 
represent single digits (see Figure 3). We then generated 
sets that contained random numbers and orders and pre-
sented them to each participant.  

 

Figure 3. Two different conditions for the rush pre-study. 
Left: vertical device, horizontal interface, direction right. 

Right: horizontal device, horizontal interface, direction left 
(the "right" label in the background tells participants to use 

their right hand for interaction) 

This version of rush supported two different orientations for 
the device (horizontal and vertical). We divided the four 
possible movement directions into interface orientation 
(horizontal, i.e. sets of recommended items appear to the 
left or right of the current item (see Figure 3) and vertical, 
i.e. sets of recommended items appear above or below (see 
Figure 1)) and the two resulting interface directions (hori-
zontal interface orientation: either left or right direction, 
vertical interface orientation: either up or down direction, 
see Figure 3 for two examples). The available directions are 
dependent on the interface orientation, so we combined the 
up and right (up-right) and down and left (down-left) direc-
tions to turn interface direction into a variable with two 
states. In addition to that, participants were told to use ei-
ther their left or right hand for a task. The movement speed 
on the canvas depended on the finger’s distance to the cen-
ter of the screen, so that twice the distance resulted in twice 
the speed. Our test device was an Apple iPhone 3G, with a 
screen resolution of 320 × 480 pixels. To keep all orienta-
tions comparable, the movement speed was capped at a 
distance of 160 pixels to the center of the screen. Other-
wise, interaction in the longer direction would have allowed 
higher movement speeds and thus better results. 

Task and Study Design 
Participants had to select ten numbers using the rush inter-
face. For each item, five suggestions were given out of 
which only one item was the correct one. The location 
where new items appeared ("forward") depended on the 
interface orientation as well as the interaction direction (see 
Table 1). By forcing participants to use both of their hands, 
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we partially provoked occlusion and were able to measure 
its effects on performance.  

We measured task time and error rates for each trial. The 
task time began as soon as the participant put a finger on 
the screen and ended when the last item was selected. Er-
rors were counted for both selecting a wrong item as well as 
deselecting a correct one. All participants performed this 
task for every combination of display orientation, interface 
orientation, interface direction and used hand. The order of 
the tasks was randomized to counter learning effects. Be-
fore each task, participants performed a practice run with a 
different sequence of numbers using the identical interface 
condition.  

We used a within-subjects study design. We had a 2 Device 
Orientations (Horizontal, and Vertical) × 2 Interface Orien-
tations (Horizontal, and Vertical) × 2 Interface Directions 
(up-right, and down-left) × 2 Used Hand (Left, and Right) 
design. For each combination, participants had one practice 
block and one timed block. In each task, we measured task 
time and error rate. The resulting design was: 

2 Device Orientations (Horizontal, and Vertical) × 
2 Interface Orientations (Horizontal, and Vertical) ×  
2 Interface Directions (up-right, and down-left) ×  
2 Used Hand (Left, and Right) × 
2 Blocks (Training, and Timed) 

= 32 (16 timed) data points per participant.  

Participants 
We recruited 12 participants (3 female, 10 right-handed) 
from our institution with their age ranging from 21 to 32 
(average age was 27.4 years). All participants had at least 
some previous experience with touch screens. 
 

 

Figure 4. Task times from the pre-study 

Hypotheses 
Based on our understanding of performance of mobile inter-
faces we had three hypotheses: occlusion in general leads to 
higher task times as users have to adjust their hand's posi-
tion to identify items (H1). The dominant hand outperforms 
the non-dominant one in both task times and error rates 

(H2). The interface and device orientation correlate with 
faster task times (H3). 

Results 
We conducted a repeated measures ANOVA test on mean 
completion times (see Figure 4 for results) and error rates. 
To identify the nature of interaction effects, we performed 
additional tests on subsets of our data. All post hoc pair-
wise comparisons used Bonferroni corrected confidence 
intervals for comparisons against α = 0.05. 

We first analyzed whether the handedness of users had any 
influence on the results. The mean completion time of left-
handers was 24.12 seconds when they used their left hand 
and 26.46 when they used their right hand respectively. 
There was almost no difference for right-handers (26.34 
seconds for the right hand compared to 26.39 seconds for 
the left hand respectively). However, we did not find any 
significant main effects or interactions for this between-
subject factor on both task time and error rate. Thus, we 
excluded the handedness for sub-sequent analysis. This is 
contradictory to our hypothesis H2 as the handedness does 
not have any significant effects on task times or error rates. 

We found significant main effects on completion time for 
both Device Orientation (F1,10 = 13.056, p < 0.005) and 
Interface Orientation (F1,10 = 7.094, p < 0.024). There 
were no significant interaction effects in our data. Overall, 
the Vertical Device Orientation (M=24.49, SD=1.29) was 
faster than the Horizontal one (M=27.85, SD=1.28). The 
Vertical Interface Orientation (M=25.16, SD=1.23) was 
also faster than the Horizontal Orientation (M=27.17, 
SD=1.28). The combination of both vertical directions was 
the fastest one (M=23.13, SD=1.76) with an average im-
provement of 4.05 seconds (≈ 15%) compared to all other 
combinations of device and interface orientations.  

As there was no significant effect or interaction for Inter-
face Direction we decided to use bottom to top as it is the 
fastest one when both the device and the interface are ori-
ented vertically (M=21.23, SD=1.16). On average, partici-
pants were 4.7 seconds (≈ 18%) faster when using this di-
rection compared to horizontal movements. In general, H1 
is confirmed as the Vertical Device Orientation in combina-
tion with the Vertical Interface Orientation does not lead to 
occlusion effects. 

When analyzing the error rate we found a significant main 
effect for Device Orientation (F1,10 = 6.139, p < 0.033) but 
no significant interaction effects. Post-hoc multiple means 
comparisons revealed that the Vertical Device Orientation 
(M=0.53, SD=0.15) performs better than the Horizontal one 
(M=0.86, SD=0.l4). Considering low error rates and short 
task times, H3 is supported by our results. 

Discussion 
The higher error rates and task times for conditions where 
occlusion was a problem for participants can be explained 
as follows: (1) participants touched an item which caused 
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recommended items to appear beyond the display’s bounda-
ries and were thus invisible. (2) They put their finger to the 
far end of the screen to reach those as fast as possible. (3) 
Participants then had to precisely pick the moment when 
the items appeared, but sometimes still selected the wrong 
item, which increased the error rate. Furthermore, the task 
time got higher as they had to deselect the item and select 
the correct one. For the final design of rush, this implies 
separating interaction into getting recommendations for an 
item and selecting an item.  

Another effect we observed in the study was that partici-
pants were either not aware of all suggested items or had to 
pan orthogonally to the Interface Direction to see all of 
them. This caused frustration among our participants. 
Hence, in the final design of rush, we decided to restrict 
panning to one dimension and only show one set of recom-
mendations at one time. 

 
Figure 5. Representation of items 

RUSH: DESIGN 
The results of the pre-study led to the final design of the 
rush interaction technique (see Figures 1 and 2) with verti-
cal device and interface orientation and interaction direction 
from bottom to top.  

Touch interaction and Crossing-based interfaces 
In the final version, one finger is still sufficient for navigat-
ing the complete item set and select items. The distance 
from the screen's center determines the speed, the angle the 
direction of movement (but as mentioned above, only along 
the vertical dimension). This movement is indirect and 
caused by a sliding of the underlying canvas into the oppo-
site direction. After launching the application and choosing 
a seed item from a list or entering it manually, it is dis-
played in the center of the screen. 

 

 

Figure 6 Selecting multiple items with one stroke 

 

The visual representation of items is separated into two 
areas (see Figure 5): One area triggers the display of rec-
ommended items (“unfolds” the item) while the other one 
can be used to select the item for the result set. Also, the 
items are no longer squares but rectangles and aligned with 
the movement direction, making it harder to erroneously 
select them by drawing a complete line.  

As soon as the user touches an item, recommendations are 
presented, but the item is not selected until a full line is 
drawn through it. Accot and Zhai have shown in [1] that 
continuous crossing-based interaction is comparable in per-
formance to pointing-based alternatives. As the user’s fin-
ger is on the screen anyway, crossing-based selection is an 
obvious choice for rush: the finger on the touch-screen not 
only causes navigation on the item plane, but also produces 
an (invisible) line that can be used for selecting items. In 
addition to that, continuously drawing a line contains addi-
tional information: the user is, for example, able to select 
multiple items in a row by simply drawing a longer line 
through them instead of repeatedly lifting, aiming and low-
ering the finger (see Figure 6). Also, instead of just hitting a 
single (more or less random) point within an item, a cross-
ing line has an entering and exiting side which also can be 
used as a way for "richer semantics" [1]: We decided to 
minimize the number of erroneous de-selections by cou-
pling the interface direction with the crossing direction: 
Drawing a line from bottom to left, top or right (along the 
interface direction) selects an item, while drawing a line 
from top to bottom (against the interface direction) dese-
lects it. 

 

Figure 7. On-screen item layout while unfolding and selecting: 
a) initially, only row 1 is visible. b) After unfolding and select-
ing two songs from rows 1 and 2. c) After unfolding a different 
song from row 1 the recommendations in row 2 change. 

 
We found that while in theory a complete interaction proc-
ess can be started and ended by putting the finger down and 
up again, it is strenuous for users to keep their fingers 
pressed to the screen. To end the process, the user can al-
ternatively wait for a short time to allow a dialog to pop up 
asking him if he wants to quit or shake the device, which 
can be detected by the integrated accelerometers and is suf-
ficiently diametric to the regular interaction to not be trig-
gered unintentionally. 

95



 

As rush is intended for building collections of items, pro-
viding an overview of recently selected items is necessary 
to reduce the cognitive load and prevent the necessity to 
memorize recent decisions. The alternative of going back 
and following the trail of previous choices is time-
consuming, so we preferred the alternative of using a por-
tion of the screen space to display these recent choices. 
Similar to the version used for the pre-study, we used the 
top of the screen to display a textual representation of the 
last five selected items (see top of Figure 7). 

Recommendation sets 
By crossing either of the two areas with his finger, the item 
is unfolded and a set of recommended items is displayed. 
When thinking about the purpose of rush, the number of 
recommended items is crucial: As an information reduction 
technique, the number of items reflects the trade-off be-
tween freedom of choice and time spent deciding and 
browsing (cf. [29]). A small number of suggestions heavily 
restrict the possible choices, while a large one increases the 
time necessary for each decision. As every item has to be 
visually scanned, this time increases linearly with the num-
ber of items. The unsorted items allow no subdivision, so 
logarithmic decisions as in the Hick-Lyman Law cannot be 
applied [15]. Additionally, the available screen space is a 
restricting factor: To display many items they either have to 
become very small (and possibly unreadable) or disappear 
beyond the screen borders (making panning necessary to 
reach them). We decided for five items in our implementa-
tion as a compromise between choice and convenience. The 
participants of our second user study (see below) generally 
appreciated this choice (58% of them said that the number 
of suggestions was neither too high nor too low).  
The new set of suggestions appears in a row above the 
original item, using the available screen space as well as 
possible (see Figure 7).  

One additional decision was how to handle a change in se-
lection of the original item. With every row containing five 
items, five corresponding sets of recommendations are 
available. While in the regular case only one of these sets 
will be required (the one building on the selected item), the 
user is free to access the other sets as well. Displaying all 
25 available items would lead to a large panning overhead 
and make it almost impossible to gather which item origi-
nated from where, so only one set of recommendations is 
available at one time. If a different item is unfolded, all 
unselected items from the last visible set are hidden and 
available spots are filled with new recommendations (see 
Figure 7b) and c)). Already selected items from the old set 
stay put. Every time an item is touched its recommenda-
tions are displayed, which means that when selecting multi-
ple items using a single stroke only the last item’s recom-
mendations are visible afterwards. 

An additional issue is the arrangement of recommended 
items, as the horizontal dimension (i.e., the order of the five 
items) can be used to encode additional information. We 

used the similarity of the recommended items for that and 
placed in one setup (Hybrid, see user study) the most simi-
lar item in the middle of the screen, next to two items that 
were reasonably similar but not too much and finally two 
items with a very low similarity as a way to “break out” of 
a certain direction. With this layout, the user is able to rep-
licate the work of an automatic playlist creator based on 
similarity such as [26] by drawing a straight line up, thus 
always selecting the most similar item.  

Sorting the items based on the probability returned by the 
recommendation engine allows users to have a clear con-
ception about the relevance and changing their visual scan-
ning depending on the current task. We compared the hy-
brid layout to one displaying the top five items in our study 
and found that chances were high that users had no way to 
maneuver out of a certain direction with the latter. In the 
hybrid layout, we circumvent the common “more of the 
same” problem of recommender systems and allow seren-
dipity ([12], [5]) - but, of course, only if the user chooses to. 

IMPLEMENTATION 
For our second user study, we chose the domain of playlist 
creation. We implemented rush for the Apple iPhone 3G 
which has a 3.5” touch screen with a resolution of 320 x 
480 pixels. We used the iPhone SDK and Objective-C for 
the implementation and OpenGL ES 1.1 for drawing. All 
songs and their relations were saved in a 10 Megabyte 
SQLite database directly on the device. Also, album covers 
or, if not available, artist photos were deployed as JPEG 
images together with the application to increase the loading 
speed. We wanted to allow participants to listen in on songs 
to make it easier for them to decide whether they fit in the 
current context or to help them recall a song if cover, artist 
and title name are not enough. For this purpose, we 
streamed 30 second samples from a web server through the 
phone’s wireless LAN connection, which decreased the 
application’s performance slightly but was received favora-
bly by our study’s participants. 

USER STUDY 
Rush is in the middle of the spectrum between fully auto-
mated and manual. Naturally, this hybrid approach causes 
longer task times than a fully automatic one (which effec-
tively takes no time at all). We further assumed that the 
results were better in terms of quality. Our expectation for 
the manual approach, however, was that it produces the 
highest quality but is by far the slowest technique. 

In a user study we investigated whether our assumptions 
were correct. We wanted to examine how well rush per-
formed compared against automatic and manual playlist 
construction and what influence the choice of suggestion 
sets had on the user's satisfaction and performance.  

Song Set Used in the Study 
To give a realistic scenario and show that recommendation 
was indeed useful (i.e., browsing is not sufficient), we cre-
ated a data set of 3900 songs, including samples and repre-
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sentative images. Our goal for the data set was to create a 
collection that only includes songs which are commonly 
known. With this, participants were not confronted with 
completely unknown recommendations. The alternative of 
asking participants for sufficiently large song sets would 
have made the results less comparable. Therefore, we 
started with a manual selection of all time favorites from 
the genres rock, pop and R'n'B. Based on that, a script ex-
tracted similar songs from Last.FM1. We only considered 
songs that had been listened to at least 500,000 times, 
which made them sufficiently popular. For each song in the 
set, we created a list of similar songs (again based on 
Last.FM data). Songs with less than ten connections to 
songs by different artists were erased and we arrived at a 
final set of 3900 songs (from originally 4500). 

While the similarity was based on Last.FM data, we added 
two constraints to improve the quality of resulting playlists. 
First, songs that were already in the playlist were not sug-
gested again. Second, suggestions for a song did not have 
the same artist. Additional constraints on, for example, 
tempo or genre were not used. 

Conditions, Task and Study Design 
During the study, participants had to create four playlists: 
three using rush in different conditions and one manually. 
The three different versions of rush were identical regarding 
the interface, but the approach to recommendation changed: 
The Top 5 condition presented users with the five most 
similar songs for an item. The Random condition took five 
songs at random from the list of similar songs. The already 
mentioned Hybrid condition presented the top similar song, 
two songs from the middle of the similarity list and two 
songs from the bottom. In the manual condition, partici-
pants had access to a web browser on a desktop PC with a 
list of all 3900 available songs. In order to keep the results 
comparable, participants were able to see the (full) list of 
similar items for each song. They also had the option to 
listen to samples of those. The last set of conditions was 
automatic playlists, created out of the 3900 songs. The 
playlist generator replicated the user's choices in rush but 
picked a random song from the five suggestions. In the 
automatic condition, there were also three suggestion 
strategies (Top 5, Random, and Hybrid).  

In all conditions the task was the same: (1) participants ini-
tially chose a seed song which was the same in all condi-
tions. (2) Starting from this song, they had to construct a 
playlist with ten songs. We asked the participants to create 
a playlist for other people (e.g., a social event) to make 
them think about what constitutes a good playlist.  

We used a within-subject study design. Our independent 
variable was the used Tool with 7 factors: Manual, Rush 
                                                           
1 Last.FM is a platform for tracking listening behavior and 
based on this data, similarity values are created by collabo-
rative filtering. 

Top 5, Rush Random, Rush Hybrid, Automatic Top 5, 
Automatic Random, and Automatic Hybrid. Prior to the 
study, participants were allowed to get comfortable using 
the system. The order of the three rush conditions was 
counterbalanced across our participants and the automatic 
ones were created in the background during the study. 
When they completed the playlists using the rush condi-
tions, participants had to manually create another playlist. 
We measured the completion time for each of the rush tools 
and the time spent using the manual condition. 

In the beginning of the study, participants chose their seed 
song. They then created the playlists using each rush condi-
tion. However, after each constructed playlist, they had to 
fill out a questionnaire on how useful they rated the sugges-
tions and how random they appeared. They then built their 
final one manually. In the end, participants had to fill out a 
post-questionnaire with a modified set of the IBM Com-
puter Usability Satisfaction questions and statistical data. 
Also, they were asked to rank the rush and manual tools (as 
the automatic versions allowed no interaction) and the re-
sulting seven playlists. 

Participants 
We recruited 12 participants for our second user study (4 
female, 2 left-handed, 4 had participated in the pre-study). 
All participants declared they had experience with touch 
screens. Their age ranged from 24 to 35 (average: 28 years). 

Hypotheses 
We had three hypotheses: playlists can be constructed fast-
est using the automatic tools, the slowest using the manual 
version. Rush takes a time between the two (H1). The qual-
ity of the resulting playlists is higher with rush than the 
Automatic conditions (H2). And, Rush Hybrid gives better 
results and is preferred to Rush Random (H3). 

Results 
The creation time of automatic is, of course, always 0 sec-
onds. The average times for rush were 123.8 (Rush Top 5), 
142.1 (Rush Hybrid), and 162.3 seconds (Rush Random). 
The manual condition – as expected the slowest one – had 
an average time of 388.6 seconds. This supports our hy-
pothesis H1. 

The participants were overall satisfied with rush’s usability 
as the operation speed was the only point of criticism (aver-
age ranking of 2 on a 5-point Likert-scale where 1 translates 
into “too slow”). Analyzing the tool’s quality ranking using 
the Condorcet Ranked-Pairs system reveals the Manual as 
the winning candidate (3 wins), followed by Rush Hybrid (2 
wins, 1 loss), Rush Random (1 win, 2 losses) and Rush Top 
5 (3 losses). 

Measuring the quality of playlists is hard ([4],[3]), as the 
results are always personal and thus should be evaluated by 
their creators only. On the other hand, we would add a bias 
because participants are expected to rank the playlists they 
were involved with better and the automatic playlists worse. 

97



 

This “emotional bond” can be explained by the fact that 
participants would generally rank playlists better if they had 
spent time on their creation. The “novelty effect” could 
further explain this bias. Thus – to learn about the impartial 
playlist quality – we started an online questionnaire where 
everyone was asked to rank a random set of playlists from 
the study. We received 10 ranked sets of playlists. 

An analysis of the study participants' rankings using the 
Condorcet Ranked-Pairs system showed that playlists built 
manually were clearly favored (6 wins), followed by Rush 
Hybrid (5 wins, 1 loss), Rush Random (4 wins, 2 losses), 
Automatic Random (3 wins, 3 losses), Rush Top 5 (2 wins, 
4 losses), Automatic Top 5 (1 win, 5 losses), and Automatic 
Hybrid (6 losses). As expected, the online participants had 
different opinions: Rush Hybrid, Rush Random and Auto-
matic Hybrid are tied for first place (4 wins, 2 unresolved), 
followed by Automatic Random (3 wins, 3 losses), Manual 
(2 wins, 4 losses), Rush Top 5 (1 win, 5 losses), and at the 
last position Automatic Top 5 (6 losses).  

Our conclusion is that the participants were clearly biased 
towards their own playlists and thus ranked the automatic 
results negatively. The more independent online vote shows 
that the Hybrid and Random Automatic and Rush versions 
yielded better results than the Manual and Top 5 versions. 
We suppose these results stem from the participants' lack of 
experience in playlist building: Thus, adding recommenda-
tions helped to improve the quality of produced playlists, 
but only if the suggestions were not too restricting (as in the 
Top 5 versions). The freedom that participants gained from 
the manual version had the downside of reducing the qual-
ity. Restricting the participants' choices might decrease the 
tool’s satisfaction but actually helps them in producing (ob-
jectively) better results. Thus, Rush Hybrid and Rush Ran-
dom brought the overall best results in subjective and objec-
tive quality. Unfortunately, we were not able to confirm H3, 
which means that a random set of suggestions and the more 
elaborate hybrid set ranked equally well.  

DISCUSSION 
Rush's flexibility is inherently restricted: The convenience of 
only having to choose between five and not all items of a 
collection can also be seen as the limitation of only being 
able to choose between five items. As the second study 
showed, depending on the underlying recommendation en-
gine rush can yield very different results. In general, the sug-
gestions by rush can be local, i.e., personalized for the user 
with one of the various recommendation techniques like col-
laborative filtering (for an overview see [7]). Yet, with rush 
being an (interactive) recommendation technique itself, sug-
gestions can also be global (identical for each user) and thus 
based on, for example, a similarity metric. While we used the 
second approach in the user study to keep the results compa-
rable, we suppose that introducing personalized suggestions 
might improve the user experience. 

Shaping Recommendations 
Depending on the use case several adaptations of the recom-
mendation engine might be useful. First of all, chosen items 
can be interpreted as votes, thus adapting the user profile 
while he interacts with the system. Every item that is chosen 
receives a positive rating, while other items from the same set 
are downgraded, thus refining the adaptation to the user. The 
downside of this approach is the growing restriction in sug-
gestions, with diminishing serendipity being a common prob-
lem of recommender systems [12]. 

Second, constraints might be applied to the set of suggestions 
depending on the use case. In addition to the design space for 
recommending collections proposed by Hansen et al. [11] we 
suggest two main categories based on the time frame of con-
sumption: Items in a concurrent collection are consumed at 
the same time (e.g., apparel, extras for a car or a hotel room). 
Items in a sequential collection are consumed sequentially 
(e.g., a song playlist, travel plans, dinner courses). The type 
of collection leads to different constraints: For concurrent 
collections, order is not applicable but all items have to work 
together all the time. For sequential collections, internal con-
sistency is important as well, but can be alleviated by a clever 
use of sequence. This sequence, on the other hand, adds addi-
tional constraints in that sequential items have to work after 
one another. 

Finally, for certain user tasks and requirements, additional 
rule-based constraints might be added to the generation of 
suggestions. One such rule might be that a playlist should not 
contain songs twice or two songs by the same artist in a row. 
Also, constraints like "two sequential songs have to be simi-
lar in tempo or rhythm" might be applied. Such constraints 
can be used to minimize the number of inappropriate sugges-
tions that otherwise take up one of the five precious slots. But 
they can also help an inexperienced user (who does not know 
these rules that guarantee quality) produce suitable results. 

Steerable Recommendations 
Rush provides users with "steerable" recommendations: The 
choice of an item not only makes it part of the current selec-
tion but also shapes the form of the newly suggested set as 
these are related to it, thus guaranteeing a certain coherence 
of the resulting set. 

The major advantage of making recommendations interactive 
is the flexibility that it brings. First of all, the user is able to 
shape the results of the recommendation process to his liking 
at every step of the process. Items that the recommendation 
engine might find suitable but the user clearly knows he does 
not like can immediately be skipped and the recommenda-
tions can also be adapted to the current mood of the user - 
something that recommendations based on a user profile are 
not able to do without additional questioning. But flexibility 
is not only restricted to this local level: The sum of all these 
small decisions, the resulting collection, can also be actively 
adapted to the likings of the user: While other tools allow 
setting a general mood or tone of the items [25], rush adds a 
temporal flexibility to that: Depending on the underlying 
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recommendation strategy, musical playlists that start with a 
certain mood and change over time in a gradual buildup are 
possible. Also, there is no predefined length of the collection, 
which lets users add items as long as they like. Lastly, the 
user is also flexible in its interaction with the tool: Depending 
on temporal constraints, the user can quickly finish building a 
collection, spend some more time exploring the recommen-
dations and choosing more deliberately, or switch between 
the two whenever appropriate. 

In addition to flexibility, rush provides users with an easy 
way to generate collections: Constraint-based recommender 
systems might also be able to yield similarly complex results 
but demand more mental effort from users: All constraints 
have to be known beforehand and expressing, for example, a 
gradual buildup in mood in a music playlist might be hard to 
express in the underlying constraint language. Also, a spon-
taneous change of plan is only possible by repeating the 
complete process, while rush users have no problem with 
adapting their preferences in the middle of the process. Fi-
nally, rush has the “I know it when I see it” advantage: Users 
can decide what they want on the go and listen to their gut 
feeling instead of having to decide and rationalize beforehand 
(cf. [16]). 

Conclusion 
We have presented rush, an interaction technique for creating 
item collections on mobile devices. An underlying recom-
mendation algorithm decreases the user's options and thus 
makes it easier to build suitable collections. Still, compared 
to fully automatic recommendation, the user is able to influ-
ence the resulting set in a less complicated way than with 
constraint-based recommenders. One-touch and crossing-
based interaction makes rush suitable for mobile use. Our 
studies showed that the vertical orientation performed best 
for interface and device. We also found that the choice of 
suggestions had a strong influence on the user's liking of the 
system and the quality of the results. Too restricting sugges-
tions should be avoided in order not to frustrate the users (as 
one participant put it: "There are always the same songs!"). 
We evaluated rush in a playlist scenario but the technique 
itself is applicable to various recommendation tasks. 

An alternate use of rush might lead to a single item selection 
instead of that of a whole collection: Using a "navigation by 
proposing" [31] approach, each row of suggestions and suc-
ceeding choices can be interpreted as a vote, thus more and 
more restricting the search space. We plan to evaluate this 
version as well. 

It might also be interesting to see if a different type of inter-
action (e.g., panning by finger flicking, selection by tapping) 
has an influence on user performance. 

Lastly, we plan to evaluate rush in a real-world mobile con-
text and not just the laboratory.  
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