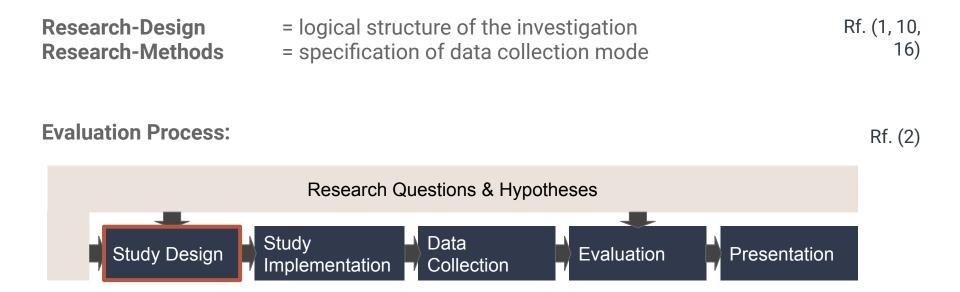

Study Design

08.12.21


Astrid Johannsen, Nina Wüst

Seminar wissenschaftliches Arbeiten und Lehren, WS 2021/22

Research-Design

Research-Design

General Terms

Independent Variables

- manipulated / changed by the experimenter
- is assumed to have direct effects on dependent variable
- in well-designed studies:
 IV as only relevant difference between experimental and control groups

A<mark>ND</mark>

Dependent Variables

= "Responsive Variable"

- Variable being tested and measured in an experiment
- "dependent" on independent variable

Rf. (7, 8, 9)

Independent Variables

- manipulated / changed by the experimenter
- is assumed to have direct effects on dependent variable
- in well-designed studies:
 IV as only relevant difference between experimental and control groups

A<mark>ND</mark>

Dependent Variables

= "Response Variable"

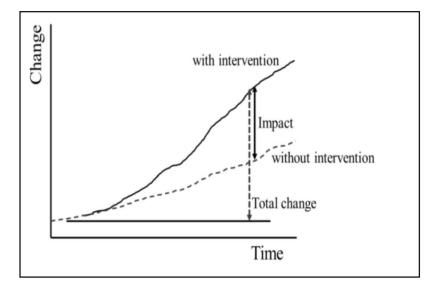
- Variable being tested and measured in an experiment
- "dependent" on independent variable

Example – Independent vs. Dependent Variable

"In an experiment, we want to investigate how different teaching methods affect students' grades at the end of a semester at university."

Example – Independent vs. Dependent Variable

independent variable



"In an experiment, we want to investigate how **different teaching methods** affect **students' grades** at the end of a semester at university."

Causality

- fundamental part of result measurement
- shows impact of specific intervention on target population
- "Problem of attribution": Is it possible to attribute observed improvement to activities performed?

Causality and attribution

Rf. (1)

Validity

- Results show what they are supposed to show
- valid measurement is generally reliable
- do results correspond well with previous research?

Reliability

- Results can be reproduced in repeated research
- reliable research not always valid

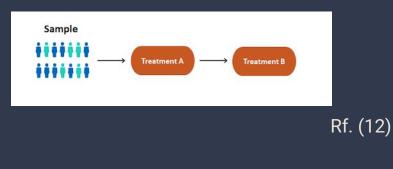
are results consistent?

Rf. (11)

Internal Validity

- Cause-effect relationship between variables *within* the study
- event / manipulation of event
 → change in behaviour
- achieved, if no other factors influence change

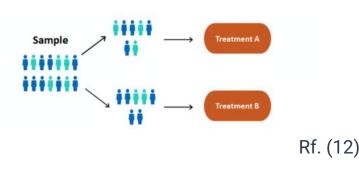
External Validity


- general applicability *outside* of the study
- avoid artificial situation, unusual or too small group of participants

Within-Subject-Design

Rf. (2)

VS


- each subject has to perform all given conditions
 / treatments
- analysis of the results of all conditions tested from the same participant

Between-Subject-Design

Rf. (2)

- each subject has to perform **only one specific condition**
- comparison of results across these different groups previously defined

Within-Subject-Design

- Advantages

- Internal validity not dependent on random assignment
- In many cases: considerable increase in statistical power

- Disadvantages

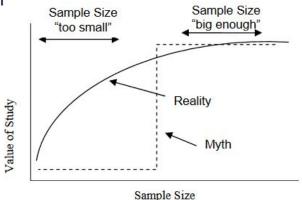
- Confounding factors in identification, due to exposure of subjects to multiple treatments
- Order of exposure influences reference and classification of treatments

Between-Subject-Design

- Advantages

- Higher external validity (in settings where individual has only one decision to make)
- Statistically easy to perform as long as groups are randomly assigned.
- Disadvantages
 - usually no natural anchor → Results can inherently miss important and real patterns.
 - have severe limitations in terms of testing large parameter sets
 - Necessary: trade-off between statistical power and the number of variants we can test Rf. (1)

/S


Methods of sampling

Goal: external validity \rightarrow *representative* sample of the population

Sample size: the more, the more valid, but no clear threshold Goal: statistically usable data

Demographic data: age, gender, occupation,...

target population → sampling frame → random/non-random? → sample size (e.g. through power analysis, saturation, ROI) → select sampling units

Rf. (4)

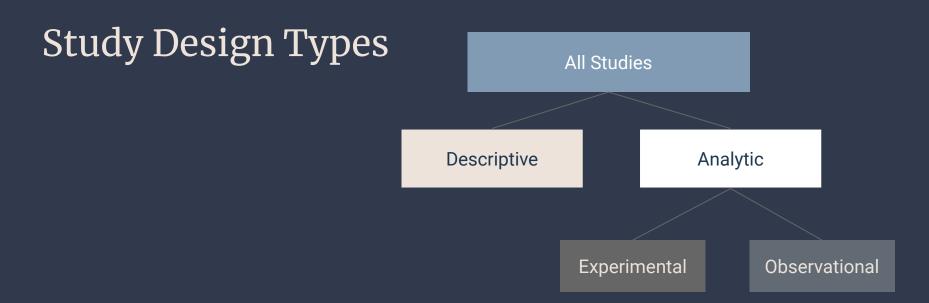
Random Sampling

every unit in population has a chance of being surveyed

Simple random samples Systematic random sample Stratified random sample

- impractical
- random != probabilistic

VS


Non-random Sampling

some have no chance of selection

Convenience samples Referral sample Judgement sample

- can be less statistically representative

Rf. (1)

Rf. (13)

Analytical "Why?"

VS

Relationship between Cause and Effect

answers why and how is an effect caused

e.g. crossover, cohort

finds causation

confirms/denies a hypothesis

Picture of an **existing situation**: describes, measures and classifies data

answers what, who, where,...

e.g. surveys, case reports

correlation does not imply causation

information to develop a hypothesis

Rf. (14)

Experimental Studies

Conditions:

- 1. (at least) two experimental groups \rightarrow treatment & control group
- 2. random assignment of subjects to experimental groups (randomization)
- 3. "manipulation" of independent variable by the researcher (experimental stimulus)

Examples:

- Parallel Group / Randomised Control Trial
- Crossover Design

Rf. (1, 13)

True-Experimental vs. Quasi-Experimental

	True experimental design	Quasi-experimental design	
Assignment to treatment	The researcher randomly assigns subjects to control and treatment groups.	Some other, non-random method is used to assign subjects to groups.	
Control over treatment	The researcher usually designs the treatment .	The researcher often does not have control over the treatment , but instead studies pre-existing groups that received different treatments after the fact.	
Use of control groups	Requires the use of control and treatment groups.	Control groups are not required (although they are commonly used).	Rf. (18)

Astrid Johannsen, Nina Wüst

Study Design

Field Study

= conducted in the real world or a natural setting

- resemble situations encounter in daily living
- preserve naturalness of the setting
- participants know / may know that they take place in a study

Controlled Laboratory Research

= conducted in a specific setting designed for research

- controlled investigation
- particular factors / variables manipulated by the researcher to determine changes in the subjects

Rf. (14)

VS

Field Study

- Advantages

- suits for survey
- generalizability to real-life contexts
- represent greater variety of situations and environments

- Disadvantages

- subjects not always aware of participating
- less experimental
- lack of control
- impossibility of precisely characterizing the study

Controlled Laboratory Research

- Advantages

- subjects can be selected / placed in conditions more systematically
- subjects usually know they are participating (disadvantage as well)
- represent true experimental design
- reproducibility
- Disadvantages
 - may represent an "artificial" environment
 - may influence manner in which subjects behave, and therefore alter results

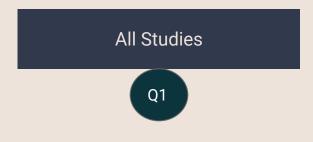
Rf. (14)

VS

Observational Studies

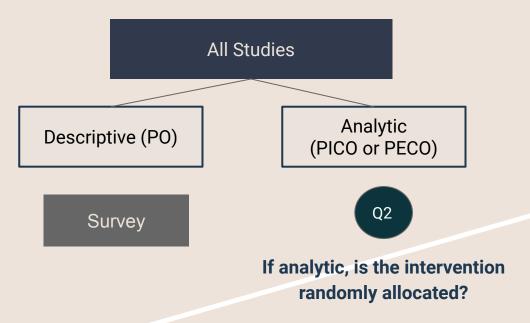
Conditions:

- **observation** of processes **without** controlling or intervening
- **no separation** between dependent and independent variables
- no clear causality

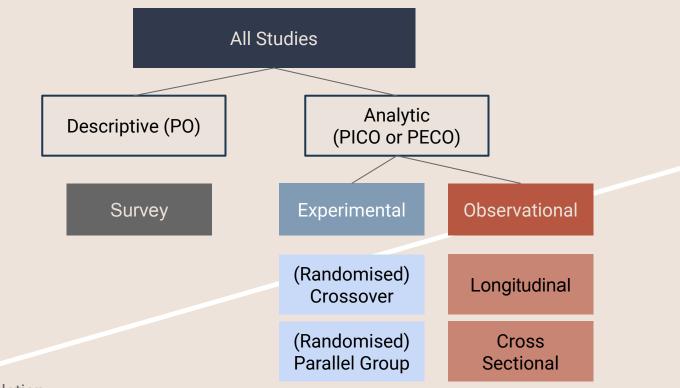

Types:

- Longitudinal Study (Cohort Study)
- Cross-sectional

Observational Studies – Examples


	21		Q			С	Cohort	
Longitudinal	20	L	L, Q	L	L, C	L		
	19		Q	С			•	
	18		Q, C				•	
	17	С	Q					
	Alter/ Jahr	2017	2018	2019	2020	2021		
Cross-sectional								

Rf. (14)


What is the aim of the study?

Rf. (13)

- **P** = defined population
- **I/E** = Interventions / Exposures applied to different groups
- **C** = Comparison, main alternative to the intervention
- **0** = measured outcome, accomplishments, improvements

Rf. (13)

- **P** = defined population
- **I/E** = Interventions / Exposures applied to different groups
- **C** = Comparison, main alternative to the intervention
- **0** = measured outcome, accomplishments, improvements

Rf. (13)

Discussion

What could this Study be built?

Research Question:

Do online classes (in general) in elementary schools have negative effects on the students' mental health?

Break-Out-Rooms

Questions:

- Which study design would you use?
 Describe advantages and disadvantages?
- What are independent / dependent variables?
- What confounding variables might emerge (impact on causality)?
- How can you ensure internal validity?
- How can you ensure external validity?
- Best option: within-subjects-design or between-subjects-design?

Thank you very much for your Attention !

References

- Jalil, Mohammad Muaz, Practical Guidelines for Conducting Research Summarising Good Research Practice in Line with the DCED Standard (February 2013). Available at SSRN: <u>https://ssrn.com/abstract=2591803</u> or <u>http://dx.doi.org/10.2139/ssrn.2591803</u>
- 2. Andreas Butz, Antonio Krüger: Mensch-Maschine-Interaktion, (2014). Taschenbuch. ca. 220 S. Paperback, De Gruyter, Oldenbourg Verlag, ISBN 978-3-486-71621-4
- 3. Gary Charness, Uri Gneezy, Michael A. Kuhn, Experimental methods: Between-subject and within-subject design, Journal of Economic Behavior & Organization, Volume 81, Issue 1, 2012
- 4. Kelly Caine: Local Standards for Sample Size at CHI (2016), Clemson University https://tigerprints.clemson.edu/computing_pubs
- 5. Mark L. Mitchell, Janina M. Jolley: Research Design Explained, 2010
- 17. Aziz, Hassan: Comparison between Field Research and Controlled Laboratory Research, 2017 Archives of Clinical and Biomedical Research. 1. 101-104. 10.26502/acbr.50170011.

References – Web Pages

- 6. <u>Guides: Organizing Academic Research Papers: Types of Research Designs</u>
- 7. <u>Definition Abhängige Variable</u>
- 8. <u>Definition Unabhängige Variable</u>
- 9. Independent and Dependent Variables | Definitions & Examples
- 10. <u>Research design</u>
- 11. <u>Reliability vs Validity in Research | Differences, Types and Examples</u>
- 12. <u>Within-Subjects Design | Explanation, Approaches, Examples</u>
- 13. <u>Study designs Centre for Evidence-Based Medicine (CEBM), University of Oxford</u>
- 14. Längsschnittstudie
- 15. <u>Descriptive and Analytic Studies</u>
- 16. <u>Research Methods | Definitions, Types, Examples</u>
- 18. <u>Quasi-Experimental Design | Definition, Types & Examples</u>