Geometry Processing

8 Data-driven Approach

(Part 2)

Ludwig-Maximilians-Universitat Minchen

Changkun Ou, Prof. Butz | Universitat Minchen | mimuc.de/gp



Session 8: Data-driven Approach (Part 2)

e Automatic Differentiation and PyTorch

e From Graphs to Manifolds

o Permutation Invariant and Equivariant
o General Tasks and Layers

o Laplacian (revisited)

e Differentiable Rendering and PyTorch3D

e Summary and Outlook

Changkun Ou, Prof. Butz | Universitat Minchen | mimuc.de/gp 2



Computational Graph

Computational graph presents a general

abstraction of a transformation function. Y3 = wsy1 + weyz = ws (w11 + wsTa) + we(war1 + wazs)

Given an input, the output is determined

by the graph.

Neural network represents a set of
non-linear transformation functions that
maps a given input to an output, and can

be represented by a computational graph.

When the weights are determined, the

network represents a unique function.

This network is a linear transformation because it does
not include any non linear activation function
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Automatic Differentiation, Forward Pass, and Loss

Automatic differentiation can determining

Y3 = wsy1 + wey2 = ws(w1T1 + wsze) + we(wex1 + wazsa)

the weights of a computational graph.

To employee AutoDiff, one has to define a

criteria, the loss function, to compare the
graph output in a forward pass to an

expected target.

L(ys,y)
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Backward Pass

With a computed loss, one can conduct a

Y3 = wsy1 + wey2 = ws(w1T1 + wsze) + we(wex1 + wazsa)

8L/ 0y1

differentiation on the graph, and compute

the gradient of a weight in a backward

pass, or back propagation.

The gradient conveys information for
future weight adjustments, which requires

L(ys,y)

an optimizer.
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Optimizer

An optimizer minimizes the loss of a computational graph. The most frequent optimizer is the stochastic gradient descent

(SGD). SGD is both efficient and numerically stable.

For a given weight W), and computed gradient A L, SGD consists of a hyperparameter learning rate 77, and update rule:

A’wi

Other frequently used optimizers:

Adam, Rmsprop, ...

The selection of optimizers is domain specific,

but SGD is the one that theoretically sound.

Changkun Ou, Prof. Butz | Universitat Minchen | mimuc.de/gp

w; = w; + Aw;

nVL = —ndL/0w;

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

- SGD
= Momentum
- NAG

— Adagrad
s

a1 Adadelta
A
il
0';’,"0’,';;;’,';;,’,’,';,’,‘4 Rmsprop
e
K TRTRT R ITTT
2 W’%f% 0
R o 0,
S I
on 2 o e s 0
%Y

L
Wiy,
Yt
S
ety
!

%
%



PyTorch

PyTorch is one of the frameworks in machine learning that offers automatic differentiation.

It is popular due to the friendly designed APIs and stability (compare to TensorFlow, which often breaks the APIs).
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PyTorch: Dataset

Dataset is an abstraction that defines how to access inputs and expected outputs of a computational graph.
PyTorch offers predefined dataset, but mostly we have to define our own dataset hence require to implement the
__init__, __getitem__,and __len__ methods. The __getitem__ returns both an input instance tensor, and

the expected output.

Reference: https://pytorch.org/docs/stable/data.htmli?highlight=dataset#torch.utils.data.Dataset

from torch.utils.data import Dataset
class ThisIsDataset(Dataset):
def __1init__(self):
return
def __getitem__(self, 1idx):
return X, y
def __len__(self):

return 0
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https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.Dataset

PyTorch: DatalLoader

A DatalLoader offers efficient data batching, i.e. a list of data samples.

The data loader consumes a required input that implements Dataset.

Reference: https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.DataLoader

from torch.utils.data import DatalLoader

for batch_idx, sample in enumerate(DatalLoader (dataset, batch_size=2, shuffle=True)):
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https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.DataLoader

PyTorch: nn.Module

nn.Module is the key module to define a neural network.

It is required to implement the forward method that defines the computational graph.

Reference: https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

import torch

import torch.nn as nn

class Model(nn.Module):
def __1init__(self):
super (Model, self).__init__()

def forward(self, x):

return torch.pow(x, 2) + 1
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https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

PyTorch: Loss and BackProp

Loss can be computed using provided loss function or be self defined. The backward pass is computed through loss by

calling backward method.

Reference: https://pytorch.org/docs/stable/nn.html#loss-functions

from torch.utils.data import Dataset, DatalLoader

import torch.nn as nn

ds = Dataset ()
dl = DatalLoader (ds, batch size=100)
f = Model ()

criterion = nn.CrossEntropyLoss ()
for epoch in range (10000) :
for i1, data in enumerate (dataloader, 0):

inputs, labels = data

outputs = f (inputs) # forward
loss = criterion (outputs, labels) # loss
loss.backward () # backward
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https://pytorch.org/docs/stable/nn.html#loss-functions

PyTorch: Optimizer

An optimizer utilizes the computed gradients from a backward pass, and updates the weights and biases accordingly.

Reference: https://pytorch.org/docs/stable/optim.html
import torch.optim as optim

optimizer = optim.SGD (f.parameters(), lr=0.001, momentum=0.9)
for epoch in range (10000) :
for i, data in enumerate (dataloader, 0):

inputs, labels = data

optimizer.zero_grad()

outputs = f (inputs)

loss = criterion (outputs, labels)
loss.backward()

optimizer.step()
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https://pytorch.org/docs/stable/optim.html

PyTorch: Training, validation, and testing

During training, one can use a training set and a validation set to prevent overfitting.

After observing the optimal capacity, one can stop the training and apply testing for inference tasks.
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Graphs and Meshes (revisited)

Roughly speaking, mesh is a subset of graph (irregular non-Euclidean structure).

Social Network Publication Network Molecule
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Geometric Priors

e Symmetric prior

o Invariance and Equivariance => Learning a class of instance approximately equals to the goal of learning symmetric structures

(R \ ]

b% X

e L

person 0.88 coal black color 0.79
reddish orange color 0.78 hairpiece (hair) 0.71
light brown color — 0.78 dress 0.71
starlet 0.66 maroon color 0.71
entertainer 0.66 person 0.58
female 0.60 toupee (hairpiece) 0.58
woman 0.59 woman 0.56
young lady (heroine) 0.59 Earrings 0.55
female 0.50
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Geometric Priors

e Symmetric prior

o Invariance and Equivariance => Learning a class of instance approximately equals to the goal of learning symmetric structures

® Scale separation prior

o Coarsening => Local scales dominate

coarse
graining
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Permutation Invariant and Equivariant

The major issue of learning graphs: A graph can be mapped as different matrices.

® O
1 1 1 1 0 11000>
1 1.0 0 0 1 11 1 0
101007&101007&
1 00 1 1 1 0 0 1 1
000 1 1 00 0 1 1
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Graph NN

Permutations act on the edges of a graph, hence we need a proper permute both rows and columns of graph matrix A .

Invariance

f(PX,PAPT) = f(X)

Equivariance

F(PX,PAPT) = PF(X, A) X

uollew.Josues] JueleAINb
(8unjood) Bujuassieod
uoljew.ojsuely Juereainba
(8unjood) Suiuasieod
JuelIBAU|

Theorem: A local function applied over all neighbourhoods ensures

equivariance if the function does not depends on the order of the

graph nodes (permutation invariant).
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Graph NN Tasks and Layers

There are three major tasks in graph NN:
e Node classification (e.g. mesh segmentation)
® Graph classification (e.g. mesh object recognition)
e Edge prediction (e.g. infer a mesh from a point cloud)
There are also three major categories of GNN layers (increasing order of generality):
e Convolutional
e Attentional

® [Message-passing

Q.. @

Pooling? ,
«
e Edge collapse TN
. Qsim & O
e _? ki = f(xi, Pwijg(x;)) ki = f(xi, Pwlxix;)g(x;)) ki = f(xi P g(xi, %))
J J J
Convolutional Attentional Message-passing
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Laplacian (revisited)

Discrete Laplacian: uniform weights

(Ax); = Y (xi —x;)
J
Mesh Laplacian: could be cotan weights

(Ax)i = > wij(xi — x;)
J
Graph Laplacian: g is local permutation-invariant

(Ax)i = g(xi, x;)
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Differentiable Rendering

GNN provides the foundation of processing mesh data, depending on the goal, the network may be designed differently.
In a rendering context, the output does not only depend on the mesh data, but also other rendering assets and

parameters, such as camera, lights, textures. The loss is usually the difference of a target rendering goal, and a forward

(

output.

oL OL
dloss O(camera) O(lights) _0L
Omesh O(image)
_— - _— _— Loss
Transform Renderer
- <+ - -

oL
O(texture)
- ; /&‘ A
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Soft Rasterizer [Liu et al. 2019]

Soft Rasterizer encodes a tensor representation of a mesh M, per-vertex attributes A, camera P, and lights
L to compute a fragment color C. The image-space coordinates U and depths Z are utilized in aggregate

function that enables backward propagation of a rendering target I.

Intrinsic Extrinsic Rendered
Properties L Variables Rendering Pipeline Image
' ] . Traditional Rasterizer
@—'—V‘ Transform | > Rasterization —>®—> Z-buffering : -»@
= ~—(UXA_+ Soft Rasterizer
5 : ] Color ] [ Probability . Aggregate | |
: > . — | Computation | - Functions | .
. . Computation | ) A '
SOOI .= s R T S S S T T S S SN
P - B S EEEE—
. Differentiable function ] Non-differentiable function Differentiable forward ~ Non-differentiable forward
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XYZ Discontinuity

Gradient can be designed to consider the changes along x, y, and z axis. But it introduces a fundamental challenge to

tackle: Discontinuity, which are essentially the following two cases:
e The image-space x and y direction may not be differentiable.

e The depth buffer in z direction is also not differentiable.

. - Step change
XY discontinuity ?::?;?g:g: Z discontinuity in pixel color

Pixel color

Pixel color
y y
Yy Shift blue Y
triangle
by +8x —
—_— [] Shift I
Pixel triangle
Ixe Pixel
X ) by +6z
Xo X Xo + 8x Xo Xo+8% 4 coord of overlap with = y overlap X Zy 2o +83 d of
: blue face with red 0 zcoordo
Pixel overlap No pixel |
with blue o pixel overlap

face
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Soft Aggregation piveta. 2019

Soft aggregation does the following:

e XY discontinuity: Consider faces which fall within a blur radius

e Zdiscontinuity: Blend closest K faces in the depth direction
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Case study: PyTorch3D

PyTorch3D is one of the solutions in processing meshes, and utilizes the SoftRasterizer approach.
Other choices, such as PyTorch Geometric, Tensorflow Graphics, Nvdiffrast, ... utilizes different approaches to conduct

differentiable rendering. The theory of which approach is fundamentally better is an open question as of 2021.

The overview of provided modules in PyTorch3D:

Ops Loss Renderer
Graph Conv Chamfer MeshRasterizer Shading
Chamfer Ll 2l PointRasterizer Lighting
KNN Laplacidn Cameras Blending
Cubify Normal Consistency Texturing
Vert Align Point Mesh distance

Data loaders
ShapeNet, R2N2

10 e o & Structures Transforms
Load/save .obj e B o Meshes @ S03

3D transforms

Load/save .ply Point clouds
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https://pytorch-geometric.readthedocs.io/en/latest/
https://www.tensorflow.org/graphics
https://github.com/NVlabs/nvdiffrast

PyTorch3D: Meshes

Meshes provides packed or padded representations for vertex positions, and edge indices. Meshes includes multiple

meshes as a batch.

Meshes may have different numbers of faces, vertices, and etc.

PyTorch3D internally uses padded tensors for processing.
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PyTorch3D: 3D Operators and Losses

PyTorch3D only provides a GraphConv as a convolution layer. The current implementation is a uniform summation of all

neighbors.

Reference: https://pytorch3d.readthedocs.io/en/latest/modules/ops.html
The current provided losses in PyTorch3D concerns these properties: point-wise distances, edge-wise distances, face-wise

distances, length of edges, Laplacian smoothness, and normal consistency.

Reference: https://pytorch3d.readthedocs.io/en/latest/modules/loss.html

Changkun Ou, Prof. Butz | Universitat Minchen | mimuc.de/gp

29


https://github.com/facebookresearch/pytorch3d/blob/v0.6.1/pytorch3d/ops/graph_conv.py
https://pytorch3d.readthedocs.io/en/latest/modules/ops.html
https://pytorch3d.readthedocs.io/en/latest/modules/loss.html

PyTorch3D: Renderer

The renderer (MeshRasterizer) itself has no surprises and essentially a classic hardware rasterizer. The benefit is that it

can process torch.Tensor, and embeds aggregation for differentiation. The rendering engine involves:

® Separate rasterizer & shader modules
® 2 step rasterization

e Return Top K faces in Fragments

e Heterogeneous batching

e Shading in PyTorch

The other relevant classes are:

Cameras, Texturing, Shading, Lighting, Blending
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Summary and Outlook

Computational graph and automatic differentiation are the force of neural networks
Training a powerful network to process meshes requires permutation invariance local operators
Differentiable rendering as one possible target application domain in utilizing mesh-based surfaces

PyTorch as a practice of AutoDiff and PyTorch3D as an implementation of SoftRasterizer

Both geometric deep learning and differentiable rendering are under active research!
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Open Positions

e Work as a tutor in Computer Graphics 1

o Teaching is a further step of learning

® An Einzelpraktikum or a Thesis in this area

o Feel free to contact me :)
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