
Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp 1

8 Data-driven Approach
(Part 2)

 Ludwig-Maximilians-Universität München

Geometry Processing

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Session 8: Data-driven Approach (Part 2)
● Automatic Differentiation and PyTorch

● From Graphs to Manifolds

○ Permutation Invariant and Equivariant

○ General Tasks and Layers

○ Laplacian (revisited)

● Differentiable Rendering and PyTorch3D

● Summary and Outlook

2

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Computational Graph

3

Computational graph presents a general

abstraction of a transformation function.

Given an input, the output is determined

by the graph.

Neural network represents a set of

non-linear transformation functions that

maps a given input to an output, and can

be represented by a computational graph.

When the weights are determined, the

network represents a unique function. This network is a linear transformation because it does
not include any non linear activation function

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Automatic Differentiation, Forward Pass, and Loss
Automatic differentiation can determining

the weights of a computational graph.

To employee AutoDiff, one has to define a

criteria, the loss function, to compare the

graph output in a forward pass to an

expected target.

4

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Backward Pass
With a computed loss, one can conduct a

differentiation on the graph, and compute

the gradient of a weight in a backward

pass, or back propagation.

The gradient conveys information for

future weight adjustments, which requires

an optimizer.

5

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Optimizer
An optimizer minimizes the loss of a computational graph. The most frequent optimizer is the stochastic gradient descent

(SGD). SGD is both efficient and numerically stable.

For a given weight , and computed gradient , SGD consists of a hyperparameter learning rate , and update rule:

Other frequently used optimizers:

Adam, Rmsprop, …

The selection of optimizers is domain specific,

but SGD is the one that theoretically sound.

6

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

PyTorch

7

PyTorch is one of the frameworks in machine learning that offers automatic differentiation.

It is popular due to the friendly designed APIs and stability (compare to TensorFlow, which often breaks the APIs).

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

PyTorch: Dataset

from torch.utils.data import Dataset

class ThisIsDataset(Dataset):

 def __init__(self):

 return

 def __getitem__(self, idx):

 return X, y

 def __len__(self):

 return 0

8

Dataset is an abstraction that defines how to access inputs and expected outputs of a computational graph.

PyTorch offers predefined dataset, but mostly we have to define our own dataset hence require to implement the

__init__, __getitem__, and __len__ methods. The __getitem__ returns both an input instance tensor, and

the expected output.

Reference: https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.Dataset

https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.Dataset

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

PyTorch: DataLoader

9

from torch.utils.data import DataLoader

for batch_idx, sample in enumerate(DataLoader(dataset, batch_size=2, shuffle=True)):

 ...

A DataLoader offers efficient data batching, i.e. a list of data samples.

The data loader consumes a required input that implements Dataset.

Reference: https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.DataLoader

https://pytorch.org/docs/stable/data.html?highlight=dataset#torch.utils.data.DataLoader

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

PyTorch: nn.Module

10

import torch

import torch.nn as nn

class Model(nn.Module):

 def __init__(self):

 super(Model, self).__init__()

 def forward(self, x):

 return torch.pow(x, 2) + 1

nn.Module is the key module to define a neural network.

It is required to implement the forward method that defines the computational graph.

Reference: https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

PyTorch: Loss and BackProp
Loss can be computed using provided loss function or be self defined. The backward pass is computed through loss by

calling backward method.

Reference: https://pytorch.org/docs/stable/nn.html#loss-functions

11

from torch.utils.data import Dataset, DataLoader

import torch.nn as nn

ds = Dataset()

dl = DataLoader(ds, batch_size=100)

f = Model()

criterion = nn.CrossEntropyLoss()

for epoch in range(10000):

 for i, data in enumerate(dataloader, 0):

 inputs, labels = data

 outputs = f(inputs) # forward

 loss = criterion(outputs, labels) # loss

 loss.backward() # backward

https://pytorch.org/docs/stable/nn.html#loss-functions

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

PyTorch: Optimizer
An optimizer utilizes the computed gradients from a backward pass, and updates the weights and biases accordingly.

Reference: https://pytorch.org/docs/stable/optim.html

12

import torch.optim as optim

optimizer = optim.SGD(f.parameters(), lr=0.001, momentum=0.9)

for epoch in range(10000):

 for i, data in enumerate(dataloader, 0):

 inputs, labels = data

 optimizer.zero_grad()

 outputs = f(inputs)

 loss = criterion(outputs, labels)

 loss.backward()

 optimizer.step()

https://pytorch.org/docs/stable/optim.html

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

PyTorch: Training, validation, and testing
During training, one can use a training set and a validation set to prevent overfitting.

After observing the optimal capacity, one can stop the training and apply testing for inference tasks.

13

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Session 8: Data-driven Approach (Part 2)
● Automatic Differentiation and PyTorch

● From Graphs to Meshes

○ Permutation Invariant and Equivariant

○ General GNN Tasks and Layers

○ Laplacian (revisited)

● Differentiable Rendering and PyTorch3D

● Summary and Outlook

14

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Graphs and Meshes (revisited)
Roughly speaking, mesh is a subset of graph (irregular non-Euclidean structure).

15

Social Network Publication Network Molecule Mesh

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Geometric Priors
● Symmetric prior

○ Invariance and Equivariance => Learning a class of instance approximately equals to the goal of learning symmetric structures

16

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Geometric Priors
● Symmetric prior

○ Invariance and Equivariance => Learning a class of instance approximately equals to the goal of learning symmetric structures

● Scale separation prior

○ Coarsening => Local scales dominate

17

coarse
graining

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Permutation Invariant and Equivariant
The major issue of learning graphs: A graph can be mapped as different matrices.

18

1

2

3
4

5

3

1

4
2

5

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Graph NN
Permutations act on the edges of a graph, hence we need a proper permute both rows and columns of graph matrix .

Invariance

Equivariance

Theorem: A local function applied over all neighbourhoods ensures

equivariance if the function does not depends on the order of the

graph nodes (permutation invariant).

19

eq
u

ivariant tran
sfo

rm
atio

n

invariant

eq
u

ivariant tran
sfo

rm
atio

n

co
arsen

in
g (p

o
o

lin
g)

co
arsen

in
g (p

o
o

lin
g)

…

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Graph NN Tasks and Layers
There are three major tasks in graph NN:

● Node classification (e.g. mesh segmentation)

● Graph classification (e.g. mesh object recognition)

● Edge prediction (e.g. infer a mesh from a point cloud)

There are also three major categories of GNN layers (increasing order of generality):

● Convolutional

● Attentional

● Message-passing

Pooling?

● Edge collapse

● Q-sim

● …?

20

Convolutional Attentional Message-passing

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Laplacian (revisited)
Discrete Laplacian: uniform weights

Mesh Laplacian: could be cotan weights

Graph Laplacian: g is local permutation-invariant

21

Convolutional

Message-passing

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Session 8: Data-driven Approach (Part 2)
● Automatic Differentiation and PyTorch

● From Graphs to Manifolds

○ Permutation Invariant and Equivariant

○ General Tasks and Layers

○ Laplacian (revisited)

● Differentiable Rendering and PyTorch3D

● Summary and Outlook

22

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Differentiable Rendering

23

Transform Renderer Loss

GNN provides the foundation of processing mesh data, depending on the goal, the network may be designed differently.

In a rendering context, the output does not only depend on the mesh data, but also other rendering assets and

parameters, such as camera, lights, textures. The loss is usually the difference of a target rendering goal, and a forward

output.

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Soft Rasterizer [Liu et al. 2019]

Soft Rasterizer encodes a tensor representation of a mesh M, per-vertex attributes A, camera P, and lights

L to compute a fragment color C. The image-space coordinates U and depths Z are utilized in aggregate

function that enables backward propagation of a rendering target I.

24

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

XYZ Discontinuity

25

Gradient can be designed to consider the changes along x, y, and z axis. But it introduces a fundamental challenge to

tackle: Discontinuity, which are essentially the following two cases:

● The image-space x and y direction may not be differentiable.

● The depth buffer in z direction is also not differentiable.

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Soft Aggregation [Liu et al. 2019]

26

Soft aggregation does the following:

● XY discontinuity: Consider faces which fall within a blur radius

● Z discontinuity: Blend closest K faces in the depth direction

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Case study: PyTorch3D

27

PyTorch3D is one of the solutions in processing meshes, and utilizes the SoftRasterizer approach.

Other choices, such as PyTorch Geometric, Tensorflow Graphics, Nvdiffrast, … utilizes different approaches to conduct

differentiable rendering. The theory of which approach is fundamentally better is an open question as of 2021.

The overview of provided modules in PyTorch3D:

https://pytorch-geometric.readthedocs.io/en/latest/
https://www.tensorflow.org/graphics
https://github.com/NVlabs/nvdiffrast

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

PyTorch3D: Meshes
Meshes provides packed or padded representations for vertex positions, and edge indices. Meshes includes multiple

meshes as a batch.

Meshes may have different numbers of faces, vertices, and etc.

PyTorch3D internally uses padded tensors for processing.

28

0.1, 0.3, 0.7
0.2, 0.5, 0.4
0.4, 0.8, 0.2
0.5, 0.9, 0.2
0.1, 0.2, 0.9
0.4, 0.8, 0.2
0.3, 0.7, 0.2
0.1, 0.4, 0.1
0.5, 0.1, 0.4
0.1, 0.7, 0.3
0.3, 0.2, 0.9
0.2, 0.8, 0.1

0.1, 0.3, 0.7
0.2, 0.5, 0.4
0.4, 0.8, 0.2
0.5, 0.9, 0.2
0.0, 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
0.1, 0.2, 0.9
0.4, 0.8, 0.2
0.3, 0.7, 0.2
0.1, 0.4, 0.1
0.5, 0.1, 0.4
0.1, 0.7, 0.3
0.3, 0.2, 0.9
0.2, 0.8, 0.1

Packed Padded

Mesh 1

Mesh 2

Mesh 1

Mesh 2

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

PyTorch3D: 3D Operators and Losses
PyTorch3D only provides a GraphConv as a convolution layer. The current implementation is a uniform summation of all

neighbors.

Reference: https://pytorch3d.readthedocs.io/en/latest/modules/ops.html

The current provided losses in PyTorch3D concerns these properties: point-wise distances, edge-wise distances, face-wise

distances, length of edges, Laplacian smoothness, and normal consistency.

Reference: https://pytorch3d.readthedocs.io/en/latest/modules/loss.html

29

https://github.com/facebookresearch/pytorch3d/blob/v0.6.1/pytorch3d/ops/graph_conv.py
https://pytorch3d.readthedocs.io/en/latest/modules/ops.html
https://pytorch3d.readthedocs.io/en/latest/modules/loss.html

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

PyTorch3D: Renderer
The renderer (MeshRasterizer) itself has no surprises and essentially a classic hardware rasterizer. The benefit is that it

can process torch.Tensor, and embeds aggregation for differentiation. The rendering engine involves:

● Separate rasterizer & shader modules

● 2 step rasterization

● Return Top K faces in Fragments

● Heterogeneous batching

● Shading in PyTorch

The other relevant classes are:

Cameras, Texturing, Shading, Lighting, Blending

30

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Session 8: Data-driven Approach (Part 2)
● Automatic Differentiation and PyTorch

● From Graphs to Manifolds

○ Permutation Invariant and Equivariant

○ General Tasks and Layers

○ Laplacian (revisited)

● Differentiable Rendering and PyTorch3D

● Summary and Outlook

31

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Summary and Outlook
● Computational graph and automatic differentiation are the force of neural networks

● Training a powerful network to process meshes requires permutation invariance local operators

● Differentiable rendering as one possible target application domain in utilizing mesh-based surfaces

● PyTorch as a practice of AutoDiff and PyTorch3D as an implementation of SoftRasterizer

Both geometric deep learning and differentiable rendering are under active research!

32

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

[Bronstein et al. 2017] Bronstein, Michael M., et al. "Geometric deep learning: going beyond euclidean data." IEEE Signal
Processing Magazine 34.4 (2017): 18-42.

[Bronstein et al. 2017] Bronstein, Michael M., et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and
gauges." arXiv preprint arXiv:2104.13478 (2021).

[Loper et al. 2014] Loper, Matthew et al. "OpenDR: An approximate differentiable renderer." European Conference on
Computer Vision. Springer, Cham, 2014.

[Kato et al. 2018] Kato, Hiroharu et al. "Neural 3d mesh renderer." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018.

[Li et al. 2018] Li, Tzu-Mao et al. "Differentiable monte carlo ray tracing through edge sampling." ACM Transactions on
Graphics (TOG) 37.6 (2018): 1-11.

[Liu et al. 2019] Liu, Shichen, et al. "Soft rasterizer: A differentiable renderer for image-based 3d reasoning." Proceedings

of the IEEE/CVF International Conference on Computer Vision. 2019.

[Chen et al 2019] Chen, Wenzheng, et al. "Learning to predict 3d objects with an interpolation-based differentiable
renderer." Advances in Neural Information Processing Systems 32 (2019): 9609-9619.

Further Reading Suggestions

33

https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://link.springer.com/chapter/10.1007/978-3-319-10584-0_11
https://openaccess.thecvf.com/content_cvpr_2018/html/Kato_Neural_3D_Mesh_CVPR_2018_paper.html
https://dl.acm.org/doi/abs/10.1145/3272127.3275109
https://openaccess.thecvf.com/content_ICCV_2019/html/Liu_Soft_Rasterizer_A_Differentiable_Renderer_for_Image-Based_3D_Reasoning_ICCV_2019_paper.html
https://proceedings.neurips.cc/paper/2019/hash/f5ac21cd0ef1b88e9848571aeb53551a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f5ac21cd0ef1b88e9848571aeb53551a-Abstract.html

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Open Positions
● Work as a tutor in Computer Graphics 1

○ Teaching is a further step of learning

● An Einzelpraktikum or a Thesis in this area

○ Feel free to contact me :)

34

http://mimuc.de/cg1

