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Session 7: Data-driven Approach

® Representations for Learning in 3D

e Trends and Challenges with 3D Data

o Dealing with Defects and Flaws Inputs

o Ground Truth User Expectations

e Summary

Changkun Ou, Prof. Butz | Universitat Minchen | mimuc.de/gp



Statistical Learning Schemes

Supervised learning

Unsupervised learning
Semi-supervised learning

Generative learning

(Inverse) Deep Reinforcement learning

Active Learning
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Example: Supervised Approach

Labeled training data

(supervised data) | Learning algorithm
Converged? P Validation set
5 (supervision data)
Test data N
- Trained Model — Praeiian

(runtime data)
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Traditional: Feature Engineering

Manually extract features

Laplacian matrix: well understood intrinsic surface representation

o Uniform/Cotan/MVC weights

Feature Selection

Average geodesic distance
Gaussian curvature
Conformal factor

Shape contexts

Shape diameter function
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Hierarchical: Deep Neural Networks

Input: a sort of representation of 3D shapes
Output: whatever we want, such as vertex informations (normals, uvs, etc.)
Procedure in three major steps:

e Design network architecture: Determines hypothesis space

e Design loss function: Determines loss (distance) function between hypothesis

e Design optimization strategy: Determines the path of searching hypothesis

Issue: Overfitting (Memorization) v.s. Generalization

o Different perspective: Overfit and memorize all data

o See understanding generalization in deep learning

Memorization
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[Mohri et al. 2018]

Generalization


https://changkun.de/s/generalize

Example: Convolutional NN (CNN) on Grid- based Images
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Representation Learning

Train an autoencoder that learns an intermediate representation

Intermediate
representation
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Representation Learning (2)

Cutting output layers to reduce the dimensionality of outputs
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Representation Learning (3)

Changing output layers to produce different representations
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Representation Learning (4)

Mixing input representations and producing other representations

Clean mesh Triangle soup Regular point cloud

3D Printer path Voxelization Watertight surface
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Irregular point
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3D Representations

e Surface-based (major focus in this course)

o e.g. mesh autoencoder for deformation
RS
RZOX 32 IRZOX 32
RS 23X 3 314x 16 R79X 16 ]R79X 32 R314x 16

RIZSGX 16 R1256X 16

’!’ !!u!‘ [Ranjan et al. 2018]
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3D Representations

e Surface-based (major focus in this course)

o e.g. mesh autoencoder for deformation

o How to encode manifold representation and feed into a NN?

— filterbank 1 -
; P filters ;

@@ @@—

(D€

maXx

max

fout

T3 = 9m I I J I I L 1
Input M-dim LIN ReLU GC AMP Output Q-dim

[Masci et al. 2015]
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3D Representations

® Image-based

3D shape model
rendered with
different virtual cameras
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2D rendered
images

our multi-view CNN architecture

bathtub
bed
chair
desk
dresser

UDHDD

toilet—

output class
predictions

[Su et al. 2015]
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3D Representations

e Point-based
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[Wang et al. 2019]
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3D Representations: Pros and Cons

® Image-based

o Pros: good performance, easy to transfer knowledge

o Cons: rendering is slow and memory-heavy, not geometric
e Surface-based

o Pros: parameterize+image networks(intrinsic representation)

o Cons: suffers from parameterization artefacts (local vs global distortion), require good quality mesh
e Point-based

o Pros: native processing, directly applicable to scans

o Cons: memory hungry, missing connectivity

e Volumetric and Implicit (SDF or occupancy): different stories
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Challenges When Deal with Representations

1. Main Question: How to feed 3D data into a neural network?

2. Neighborhood information (one-ring in previous sessions, maybe more?)
e Who are the neighbouring elements
e How are the elements ordered
[

3. Extrinsic v.s. intrinsic representation (Differential form on surface embedding, or Euclidean embedding)
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Challenges: Dealing with “Bad” Inputs

General goals are clear but very tricky to find an answer:
e Prevent input with artifacts

® Prevent producing outputs that contains artifacts
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Flaw Inputs with Artifacts

Artifacts does not well fit traditional theory
e Laplacian equation does not work with non-manifolds
e Quadrics are not invertible in mesh simplification

holes and inclonsisFent
isles ) orientation
singular
vertex

large scale overlap

complex
edges

gaps and
small overlaps

[Botsch et al. 2006]
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Upstream and Downstreams in The Processing Pipeline

Upstream producer determines characteristics and defects of outputs

The origin of defects in mesh

e Nature: (physical) real-world data, e.g. statuary (noise, holes, chamfered feature, topological noise)

® Approach: algorithm itself does not guarantee or implementation specific

Downstream consumer determines requirements on their inputs

e Visualizations: rendering v.s. printing

e Modeling: surface properties and further animations
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Challenges: Repairing Artifacts

The process of dealing with bad inputs is often tedious and had to be done manually
Traditional wisdoms
® Artifacts repairing is expected to be eliminated if all algorithms does not produce bad inputs

e Unfortunately, algorithms does not guarantee to produce high quality mesh

Example:
® Noisy point cloud = Denoising and reconstruction
e Mesh with holes = Filling holes
[
Neural networks (may) intrinsically removes the flaws from inputs

Does artifacts really important for data-driven processing pipeline?
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Challenges: Data Augmentation

e Infinite inputs in image-based representations
o Render images from different scene, camera, illumination settings
e Transformed (deformed) meshes as inputs

o Is it a chicken egg problem? NN learns the algorithm instead of ground truth

Q: What is ground truth, where and how to obtain it?
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Challenges: Ground Truth User Expectations

User expectations are application dependent: Where to obtain ground truth labels?
e Whatis the target user for the models? Low-fidelity Gaming? Filming? Industrial design?
e What exactly contributes to "artifacts"?
e When do "people" (regular users or experts) satisfy with the model for "further processing" or "final use"?
e How to properly evaluate user expectations? e.g. equal loudness contour and head-related transfer function for

audio measurement and evaluation
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3D Datasets

ABC Dataset [Koch etal. 2019] : A collection of one million Computer-Aided Design (CAD) models for research of geometric

deep learning methods and applications https://deep-geometry.github.io/abc-dataset/

More:

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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Summary

e Selecting and learning 3D representations remains open problem

e Evaluating inputs and user expectations remains open problem

TLDR: Large and rich research opportunities!
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... and many more :)
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Open Positions

Work as a tutor in Computer Graphics 1

o  Teachingis a further step of learning

An Einzelpraktikum or a Thesis in this area

o  Feel free to contact me :)
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