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● Representations for Learning in 3D

● Trends and Challenges with 3D Data
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○ Ground Truth User Expectations

● Summary
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Statistical Learning Schemes
● Supervised learning

● Unsupervised learning

● Semi-supervised learning

● Generative learning

● (Inverse) Deep Reinforcement learning

● Active Learning

● …
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Example: Supervised Approach
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Labeled training data
(supervised data) Learning algorithm

Converged?

Trained Model
Test data

(runtime data)

Validation set
(supervision data)

Prediction
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Traditional: Feature Engineering
Manually extract features

● Laplacian matrix: well understood intrinsic surface representation

○ Uniform/Cotan/MVC weights

Feature Selection

● Average geodesic distance

● Gaussian curvature

● Conformal factor

● Shape contexts

● Shape diameter function

● ...
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Hierarchical: Deep Neural Networks
Input: a sort of representation of 3D shapes

Output: whatever we want, such as vertex informations (normals, uvs, etc.)

Procedure in three major steps:

● Design network architecture: Determines hypothesis space

● Design loss function: Determines loss (distance) function between hypothesis

● Design optimization strategy: Determines the path of searching hypothesis

Issue: Overfitting (Memorization) v.s. Generalization

○ Different perspective: Overfit and memorize all data

○ See understanding generalization in deep learning
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Memorization Generalization

[Mohri et al. 2018]

https://changkun.de/s/generalize
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Example: Convolutional NN (CNN) on Grid-based Images
AlexNet: CNN to the mainstream

VGG: Deep and simple

Inception: 1x1 feature pooling

ResNet: Skip connection and residual block (powerful, for network performance)

CapsuleNet: Dynamic routing to dealing with rotation invariance

...
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Representation Learning
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L3 L2 L1 L2 L3

Intermediate 
representation

Train an autoencoder that learns an intermediate representation
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Representation Learning (2)
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L3 L2 L1 L2

Intermediate 
representation

Cutting output layers to reduce the dimensionality of outputs
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Representation Learning (3)
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L3 L2 L1

Changing output layers to produce different representations
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Representation Learning (4)
Mixing input representations and producing other representations
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Clean mesh Triangle soup Regular point cloud Irregular point 
cloud

3D Printer path Voxelization Watertight surface SDF
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3D Representations
● Surface-based (major focus in this course)

○ e.g. mesh autoencoder for deformation 
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[Ranjan et al. 2018] 
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3D Representations
● Surface-based (major focus in this course)

○ e.g. mesh autoencoder for deformation 

○ How to encode manifold representation and feed into a NN?
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[Masci et al. 2015] 
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3D Representations
● Image-based
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[Su et al. 2015]
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3D Representations
● Point-based
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[Wang et al. 2019]



Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

3D Representations: Pros and Cons
● Image-based

○ Pros: good performance, easy to transfer knowledge

○ Cons: rendering is slow and memory-heavy, not geometric

● Surface-based

○ Pros: parameterize+image networks(intrinsic representation)

○ Cons: suffers from parameterization artefacts (local vs global distortion), require good quality mesh

● Point-based

○ Pros: native processing, directly applicable to scans

○ Cons: memory hungry, missing connectivity

● Volumetric and Implicit (SDF or occupancy): different stories
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Challenges When Deal with Representations
1. Main Question: How to feed 3D data into a neural network?

2. Neighborhood information (one-ring in previous sessions, maybe more?)

● Who are the neighbouring elements

● How are the elements ordered

● ...

3. Extrinsic v.s. intrinsic representation (Differential form on surface embedding, or Euclidean embedding)
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Challenges: Dealing with “Bad” Inputs
General goals are clear but very tricky to find an answer:

● Prevent input with artifacts

● Prevent producing outputs that contains artifacts

20
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Flaw Inputs with Artifacts

21

[Botsch et al. 2006] 

Artifacts does not well fit traditional theory

● Laplacian equation does not work with non-manifolds

● Quadrics are not invertible in mesh simplification

● ...
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Upstream and Downstreams in The Processing Pipeline
Upstream producer determines characteristics and defects of outputs

The origin of defects in mesh

● Nature: (physical) real-world data, e.g. statuary (noise, holes, chamfered feature, topological noise)

● Approach: algorithm itself does not guarantee or implementation specific

● ...

Downstream consumer determines requirements on their inputs

● Visualizations: rendering v.s. printing

● Modeling: surface properties and further animations

● ...

22



Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Challenges: Repairing Artifacts
The process of dealing with bad inputs is often tedious and had to be done manually

Traditional wisdoms

● Artifacts repairing is expected to be eliminated if all algorithms does not produce bad inputs

● Unfortunately, algorithms does not guarantee to produce high quality mesh

Example: 

● Noisy point cloud ⇒ Denoising and reconstruction

● Mesh with holes ⇒ Filling holes

● ...

Neural networks (may) intrinsically removes the flaws from inputs

Does artifacts really important for data-driven processing pipeline?

23



Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

● Infinite inputs in image-based representations

○ Render images from different scene, camera, illumination settings

● Transformed (deformed) meshes as inputs

○ Is it a chicken egg problem? NN learns the algorithm instead of ground truth

Q: What is ground truth, where and how to obtain it?

Challenges: Data Augmentation
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Challenges: Ground Truth User Expectations
User expectations are application dependent: Where to obtain ground truth labels?

● What is the target user for the models? Low-fidelity Gaming? Filming? Industrial design?

● What exactly contributes to "artifacts"?

● When do "people" (regular users or experts) satisfy with the model for "further processing" or "final use"?

● How to properly evaluate user expectations? e.g. equal loudness contour and head-related transfer function for 

audio measurement and evaluation

● ...
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3D Datasets
ABC Dataset [Koch et al. 2019] : A collection of one million Computer-Aided Design (CAD) models for research of geometric 

deep learning methods and applications https://deep-geometry.github.io/abc-dataset/ 

More:

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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Summary
● Selecting and learning 3D representations remains open problem

● Evaluating inputs and user expectations remains open problem

TLDR: Large and rich research opportunities!
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Further Reading Suggestions
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Open Positions
● Work as a tutor in Computer Graphics 1

○ Teaching is a further step of learning

● An Einzelpraktikum or a Thesis in this area

○ Feel free to contact me :)
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