Geometry Processing

6 Deformation

Ludwig-Maximilians-Universität München

1

Announcements

- Guest Talk: Industrial Modeling (scheduled at 22.02.2021, will send email for further information)
 - From WAY Engineering Group
 - Good opportunities to learn about real-world industrial level meshes (large and messy geometric data)
 - Connection and maybe intern
- No more coding projects, just focus on polish your proposed individual project :)
 - But still open for submission, but no template provided
- Register to the "exam" (project presentation, just for reporting the grades to examination office)
 - Bachelor: https://uni2work.ifi.lmu.de/course/W20/IfI/GP/exams/GP-Exam/show
 - Master: https://uni2work.ifi.lmu.de/course/W20/IfI/PGP/exams/PGP-Exam/show

Session 6: Deformation

• Motivation

- Surface Deformation
- Space Deformation
- Skinning
- Summary

Problem Settings

The deformation of a given surface $\, {\cal S} \,$ into the desired surface $\, {\cal S}' \,$

- A displacement function $\mathbf{d}(\mathbf{p})$ on each vertex $\, \mathbf{p} \in \mathcal{S} \,$
- Desired surface is determined by the displacement $S' = \{\mathbf{p} + \mathbf{d}(\mathbf{p}) | \mathbf{p} \in S\}$

User inputs (constraints):

- Handle region $\, \mathcal{H} \,$ such that $\, \mathbf{d}(\mathbf{p}_i) = ar{\mathbf{d}}_i, orall \mathbf{p}_i \in \mathcal{H} \,$
- Fixed region ${\mathcal F}$ such that ${\, {f d}}({f p}_i)=0, orall {f p}_i\in {\mathcal F}$

Optimization goal: Determine the displacement for remaining region

$$\mathbf{d}(\mathbf{p}_i), \forall \mathbf{p}_i \in \mathcal{R} = \mathcal{S} \setminus (\mathcal{H} \cup \mathcal{F})$$

Approaches

Surface deformation

- Shape is an empty shell: Curve for 2D and surface for 3D deformation
- Deformation only defined on the shape
- Deformation coupled with shape representation

Space deformation

- Shape is volumetric: Planar domain in 2D and Polyhedral domain in 3D
- Deformation defined in neighborhood of shape
- Can be applied to any shape representation

Session 6: Deformation

- Motivation
- Surface Deformation
- Space Deformation
- Skinning
- Summary

Transformation Propagation

Basic Idea: Smooth blending between the transformed handle and the fixed region Controlled by a scalar field:

• Smoothly blends between 0 (fixed region) and 1 (the handle)

Distance function:

 $d_{\mathcal{F}}(\mathbf{p})$ distance from vertex \mathbf{p} to the fixed region $d_{\mathcal{H}}(\mathbf{p})$ distance from vertex \mathbf{p} to the handle region

Scalar field:

$$s(\mathbf{p}) = \frac{d_{\mathcal{F}}(\mathbf{p})}{d_{\mathcal{F}}(\mathbf{p}) + d_{\mathcal{H}}(\mathbf{p})}$$

[Botsch et al. 2008]

Transformation Propagation (2) Smooth Blending

Recall Laplacian smooth, consider the scalar field as the harmonic field on the surface, we have:

$$\Delta s(\mathbf{p}_i) = 0, \mathbf{p}_i \in \mathcal{R}$$
$$s(\mathbf{p}_i) = 1, \mathbf{p}_i \in \mathcal{H}$$
$$s(\mathbf{p}_i) = 0, \mathbf{p}_i \in \mathcal{F}$$

Replace the Laplacian via Laplace-Beltrami operator, that turns into a linear system.

The resulting scalar field is used to damp the transformation of the handle for each vertex in the remaining region: $\mathbf{n}'_{i} = s(\mathbf{n}_{i})\mathbf{T}_{a_{i}}(\mathbf{n}_{i}) + (1 - s(\mathbf{n}_{i}))\mathbf{n}_{i}$

$$\mathbf{p}'_i = s(\mathbf{p}_i)\mathbf{T}_{\mathcal{H}}(\mathbf{p}_i) + (1 - s(\mathbf{p}_i))\mathbf{p}_i$$

Handle Transformation

Easy to implement but typically not result in geometrically intuitive solution.

Multi-Scale Deformation

Basic concept: decompose the object into multiple frequency and deform low frequencies (global shape) while *preserving the high frequency details*

- Low frequencies correspond to the smooth global shape
- High frequencies correspond to the fine-scale details

Not a specific approach but a general framework of doing deformation tasks

displacement with regard to global coordinate system and local tangent plane

[Botsch et al. 2008]

Laplacian Editing [Sorkine et al. 2004]

Manipulate per-vertex Laplacian

- 1. Compute initial Laplacian (scalar)
- 2. Manipulate Laplacian coordinates (local transformation)
- 3. Find new coordinates that match the target Laplacian coordinates

Similar approach uses gradient in Poisson gradient mesh editing **[Yu et al. 2004]**

(d)

(a)

(c)

As-Rigid-As-Possible Deformation (ARAP) [Sorkine et al. 2007]

Basic idea: deformed object should only apply rotation and translation (rigid), no scaling and shearing. Define and minimize energy function:

Use alternating minimization technique (EM algorithm in machine learning) to minimize the energy.

Changkun Ou, Prof. Butz | Universität München | mimuc.de/gp

Handle and Fixed Region

Interactive Deformation

Deformation often has higher demand on interactivity, so that either designer can iterating their idea quickly or renderer can manipulate geometry in real-time.

Implementation thinking:

- "Interaction cost": Designing minimum user inputs (select handle and fixed region, drag handle)
- "Intuitive deformation": Transformation works as "expected", global deformation that preserves local details

Session 6: Deformation

- Motivation
- Surface Deformation
- Space Deformation
- Skinning
- Summary

Space-based Deformation

Space-based deformations (meshless mapping) deforms the ambient space and thus implicitly deform the embedded objects.

Two classic approaches

- Lattice-based freeform deformation
- Cage-based freeform deformation

Lattice-based Freeform Deformation

Space deformation represented by a trivariate tensor-product spline function

$$\mathbf{d}(\mathbf{u}) = \sum_{l=1}^{n} \delta \mathbf{c}_{l} N_{l}(\mathbf{u})$$

Control points B-spline basis

Each original vertex $\mathbf{p}_i \in \mathcal{S}$ has a corresponding parameter value $\mathbf{u}_i = (u_i, v_i, w_i)$ such that $\mathbf{p}_i = \sum_l \mathbf{c}_l N_l(\mathbf{u}_i)$

The deformation c^lan be consider as the transformation of vertices: $\mathbf{p}'_i = \mathbf{p}_i + \mathbf{d}(\mathbf{u}_i)$

The remaining problem is to solve

the displacement function.

Cage-based Freeform Deformation

A generalization of the lattice-based freeform deformation

Control cages are typically coarse, arbitrary triangle mesh enclosing the object to be modified

The vertices \mathbf{p}_i of original mesh \mathcal{S} can be represented as linear combinations of the cage's control vertices \mathbf{c}_l by

$$\mathbf{p}_i = \sum_{l=1} \mathbf{c}_l arphi_l(\mathbf{p}_i)$$

where $\varphi_l(\mathbf{p}_i)$ are generalized barycentric coordinates, such as mean value coordinates.

Session 6: Deformation

- Motivation
- Surface Deformation
- Space Deformation
- Skinning
- Summary

Linear Blend Skinning

Direct skeletal shape deformation

Input data assumption

- **Rest pose shape**: original undeformed polygon mesh
- **Bone transformation**: a list of transformation matrices
- Skinning weights: amount of influence of a bone on a vertex

$$\mathbf{v}_i' = \left(\sum_{j=1}^m w_{ij} \mathbf{T}_j\right) \mathbf{v}_i$$

Similar terminologies: skeleton-subspace deformation, (single-weight-)enveloping, matrix-palette skinning

LBS and More

Multilinear skinning

Nonlinear skinning

Delta Mush (DM) [Mancewicz et al. 2014]

- Rigid binding using global large-scale solver
- Mush = Smoothing
 - Laplacian smooth
 - Shrink geometry
 - Lose surface detail
- Delta = Rest Pose Rest Pose Mush
 - Encode surface's details as displacements
 - Stored at local frame defined by the mush
 - Pre-computed once
- Delta Mush = Delta + Deformed Mush

Laplacian smooth

Direct Delta Mush [Le et al. 2019]

Real-time acceleration via

- Direct computation (runtime)
- Pre-computation (once)

Delta Mush like quality for easy authoring without cleft and bulging

Session 6: Deformation

- Motivation
- Surface Deformation
- Space Deformation
- Skinning
- Summary

Summary

- Deformation is a surface to surface mapping process
- Surface-based approach applies directly on surface and offer precise control on surface
- Space-based approach interpolates space and mostly meshless
- Skinning combines surface-based and space-based approaches that enable more flexibility of authoring in character modeling process

Homework 6: Delta Mush (optional)

Implement the Delta Mush in halfedge representation.

- 1. Compute Laplacian smooth on rest pose
- 2. Compute delta of vertices
- 3. Apply bone transformation
- 4. Apply Laplacian smooth on transformed object
- 5. Recover vertex positions

Implementation details on handling user inputs:

- 1. Create skeleton on rest pose
- 2. Interactive bone transformation controller

Further Readings: Deformation (1)

[Pauly et al. 2003] Pauly, Mark, et al. "Shape modeling with point-sampled geometry." ACM Transactions on Graphics (TOG) 22.3 (2003): 641-650.

[Sorkine et al. 2004] Sorkine, Olga, et al. "Laplacian surface editing." Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing. 2004.

[Yu et al. 2004] Yu, Yizhou, et al. "Mesh editing with poisson-based gradient field manipulation." ACM SIGGRAPH 2004 Papers. 2004. 644-651.

[Sorkine et al. 2007] Sorkine, Olga, and Marc Alexa. "As-rigid-as-possible surface modeling." Symposium on Geometry processing. Vol. 4. 2007.

[Botsch et al. 2008] Botsch, Mario, and Olga Sorkine. "On linear variational surface deformation methods." IEEE transactions on visualization and computer graphics 14.1 (2008): 213-230.

[Mancewicz et al. 2014] Mancewicz, Joe, et al. "Delta Mush: smoothing deformations while preserving detail." Proceedings of the Fourth Symposium on Digital Production. 2014.

[Le et al. 2019] Le BH, Lewis JP. "Direct delta mush skinning and variants." ACM Trans. Graph.. 2019 Jul 12.

Further Readings: Deformation (2)

[Ju et al. 2005] Ju, Tao, Scott Schaefer, and Joe Warren. "Mean value coordinates for closed triangular meshes." ACM SIGGRAPH 2005 Papers. 2005. 561-566.

[Jacobson et al. 2011] Jacobson, Alec, et al. "Bounded biharmonic weights for real-time deformation." ACM Trans. Graph. (TOG) 30.4 (2011): 78.

[Zhang et al. 2014] Zhang, Juyong, et al. "Local barycentric coordinates." ACM Trans. Graph. (TOG) 33.6 (2014): 1-12.

[Kavan 2014] Kavan, Ladislav. "Direct Skinning Methods and Deformation Primitives." ACM SIGGRAPH 2014. 2014

[Wang et al. 2015] Wang, Yu, et al. "Linear subspace design for real-time shape deformation." ACM Trans. Graph. (TOG) 34.4 (2015): 1-11.

[Le et al. 2016] Le, Binh Huy, and Jessica K. Hodgins. "Real-time skeletal skinning with optimized centers of rotation." ACM Trans. Graph. (TOG) 35.4 (2016): 1-10.

[Felix et al. 2020] Harvey, Félix G., et al. "Robust motion in-betweening." ACM Trans. Graph. (TOG) 39.4 (2020): 60-1.

Thanks! What are your questions?

Next session: Data-driven Approach