
Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2014/2015

1

Assignment 7 (HF)
Due: Mon 15.12.2014; 16:00h (2 Weeks)

Please note: Although the due date is two weeks from now, there will be another assignment next week!

Task: Feedback Voting Web Application

Imagine a website, where students can submit suggestions for improvement regarding a lecture. Already

submitted suggestions are listed and all students can up- or down-vote a suggestion. The voting is done

with buttons that show distinguishable icons and the number of respective votes. The suggestions are

ordered according to their average score. As people submit suggestions and vote for them, the views

refresh automatically.

Watch the demo here: https://www.youtube.com/watch?v=4VjWNc54FOk

Your task this week is to write such a web application. However, submitting a suggestion is not a required

feature – simply take the list of suggestions that you find in the material for this assignment.

Although it might be difficult to make a clear cut, you can tackle the task by distributing the coding

between the frontend and the backend. The requirements are described in the following.

Task 1: Frontend
The front end is ‘what the user sees’ or, in other words, an interface between the user and the back end.

For our project, it’s everything included in the “public” folder (get the template here:

https://gitlab.cip.ifi.lmu.de/stockinger/mmn-nodejs-template/tree/master) plus the templates in the

“view” folder.

https://www.youtube.com/watch?v=4VjWNc54FOk
https://gitlab.cip.ifi.lmu.de/stockinger/mmn-nodejs-template/tree/master

Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2014/2015

2

Include the following in your user interface:

 List of suggestions. Each suggestion has its own ID. Use the <div>’s id or a data attribute to store the

corresponding information.

 Each suggestion is accompanied by two buttons to vote it up or down.

o If the user has already voted, the button should be deactivated.

o The users should be able to change their minds. Hence, only deactivate the button that they

have already clicked. For example, if the user voted ‘up’, the ‘up’ button is deactivated but

once the user clicks ‘down’ for the same suggestion, ‘down’ is deactivated and ‘up’ is re-

activated.

o We suggest using a jQuery-UI button widget for this functionality, because it has handy

methods to enable/disable buttons.

 If the user clicks a button, send a POST request to '/service' in order to update the model in the

back end. The request should be a JSON Object, which includes

o The ID of the suggestion

o The vote: ‘up’ or ‘down’

 Once the voting request has finished, the list of suggestions is rearranged according to the score of a

suggestion.

o The easiest scoring algorithm could be

𝑠𝑐𝑜𝑟𝑒(𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛) = 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛. 𝑢𝑝𝑉𝑜𝑡𝑒𝐶𝑜𝑢𝑛𝑡 − 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛. 𝑑𝑜𝑤𝑛𝑉𝑜𝑡𝑒𝐶𝑜𝑢𝑛𝑡

o array.sort(function(a,b){}) lets you pass you own sorting function – a & b are the

comparable objects.

o Use $(element).after(succeedingElement) to generate the order.

 Write a class API that encapsulates all API calls:

o voteUp(suggestionID)

o voteDown(suggestion)

o getSuggestions()

Task 2: Backend
The backend is the part of the web app that the users do not see. It holds the data model and provides

interfaces to modify the model. There should be two main routes to the back end that you define in

app.js.

 Entry point: '/'

o Create the file index.js which renders views/index.jade for all GET requests. Use the Express

Router to achieve this.

o Retrieve a list of suggestions from the service.js module and sort the suggestions by score if

necessary.

o Export the router object, that other modules can import with require().

 Suggestion API: '/service'

o Create the file service.js and use the Express router to accept POST requests for its root path.

Export the router object, that other modules can import with require().

http://api.jqueryui.com/button/

Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2014/2015

3

o Require the module (data.js) that is included in the material for this assignment. The object

can be modified, e.g. by

data[0].someNewAttribute = 'Some new value'

o POST requests update the model. A user can only vote ‘up’ or ‘down’ once for each

suggestion. You can use the user’s IP to block duplicate votes. The user IP can be retrieved

from the request object:

var getIpForRequest = function(request){

 return request.headers['x-forwarded-for'] ||

 request.connection.remoteAddress ||

 request.socket.remoteAddress ||

 request.connection.socket.remoteAddress;

};

Make sure the users can change their mind and swap their vote.

o Create another route '/service/suggestions' which supports GET and delivers the

current data as JSON object. Handle the IP from which the request was sent to add a key

hasVoted that indicates if this IP has voted for the suggestion.

Further Tips and Tricks
 No database. For this exercise, we make use of NodeJS capability to store data across multiple

requests (this is one of the biggest advantages over Apache/PHP – it trumps sessions because the

data can be shared across requests from different users!). Therefore, we do not need a database to

store the suggestions, but the data is lost once we restart the app.

 Suggestion data structure. A suggestion is represented with the following model:

{

 id: 1,

 text: 'Suggestion Text',

 votes: {

 up: 0,

 down: 0

 },

 votesByUser: {}

}

votesByUser is a map of IPs to votes. It may look like this, after a couple of requests:

votesByUser: {

 '127.0.0.1': 'up',

 '192.168.2.100': 'down'

}

 Use Socket.io (optional). Push updates in the data model to the clients. This will not be part of the

solution that’s shown in the tutorial.

Further notes:

 Please make sure to comment your code sufficiently to facilitate correction of your submission.

 Incomplete submissions are welcome. However, please make sure to include a “README” text file to

tell us how far you have come.

