7. Bewegtbilder

Bewegungswahrnehmung 7.1

Videokompression 7.2

insbesondere MPFG-1 und MPFG-2

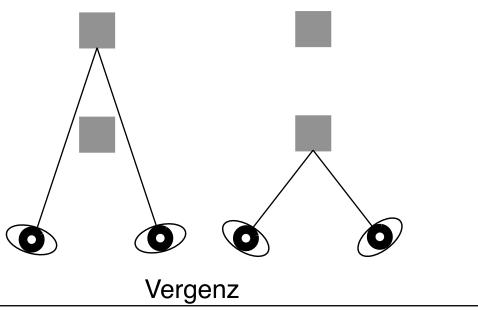
7.3 Videodatenformate

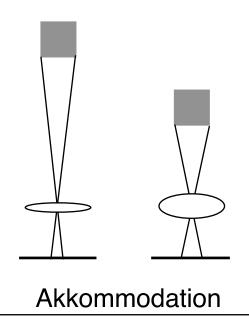
Literatur:

Arne Heyna/Marc Briede/Ulrich Schmidt: Datenformate im Medienbereich, Fachbuchverlag Leipzig 2003

John Watkinson: The MPEG Handbook, Focal Press 2001

Iain E.G. Richardson: H.264 and MPEG-4 Video Compression, Wiley 2003


Bewegungswahrnehmung (1)

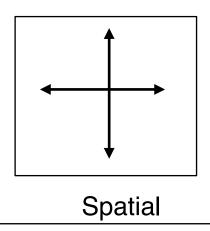

- Psychologische Faktoren:
 - Bewegungswahrnehmung ist komplexe Berechnungsund Bewertungsleistung des Gehirns
 - Physikalisch "falsche" Wahrnehmung durch Unterdrückung von Wahrnehmungen im Gehirn möglich
 - » Beispiel: Von bewegtem Objekt herunterfallendes Objekt
- Bewegungseindruck durch Betrachten von Bildfolgen
 - Grundprinzip bereits mit einfachen mechanischen Geräten nutzbar
 - Lumière 1895: Cinematograph
 - Maß: Bilder/Sekunde (frames per second, fps)
 - Physiologische Grenze: 50 60 Bilder/Sekunde (Hz)
 - » z.B. bei 100 Bildern/Sekunde keine Zwischenstufen mehr durch das Auge auflösbar
 - Psychologische Grenze: 25 30 Bilder/Sekunde (Hz)
 - » unter 50 Bildern/Sekunde aber sehr anstrengend
 - Koordination Bewegung-Wahrnehmung benötigt mindestens 5 Hz

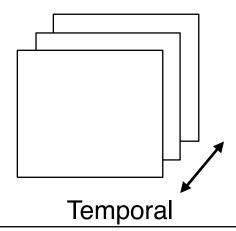
Bewegungswahrnehmung (2)

- Physiologische Faktoren:
 - Gegenseitige Beeinflussung benachbarter Lichtsinneszellen auf der Netzhaut (Verschaltung)
 - Nachführung der Augen zur Fokussierung (foveale Objektverfolgung) (Fovea = Gelber Fleck, Stelle der besten Sehleistung)
 - Anpassung an veränderliche Entfernung des Objekts
 - » Vergenz
 - » Akkommodation

7. Bewegtbilder

- Bewegungswahrnehmung 7.1
- Videokompression 7.2 insbesondere MPFG-1 und MPFG-2
- 7.3 Videodatenformate


Literatur:

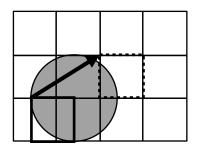

Arne Heyna/Marc Briede/Ulrich Schmidt: Datenformate im Medienbereich, Fachbuchverlag Leipzig 2003

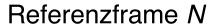
John Watkinson: The MPEG Handbook, Focal Press 2001

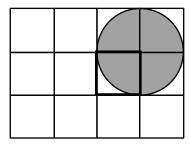
Ansatzpunkte zur Video-Kompression

- Videodaten haben vier Dimensionen:
 - Zwei Bilddimensionen
 - Eigenschaften der Pixel (Helligkeit, Farbe)
 - Zeitachse
- Kompressionsansätze:
 - Spatial oder intra-coding: Redundanz aus einem Bild entfernen
 - » Z.B. ähnlich zu JPEG
 - Temporal oder inter-coding: Redundanz zwischen Bildern entfernen
 - » Differenzcodierung, Bewegungskompensation

Konzept: Differenzkodierung (frame differencing)

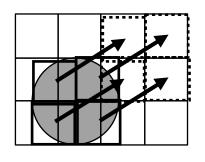



- Aufeinander folgende Bilder unterscheiden sich oft nur wenig
- Idee:
 - Startbild (und regelmäßig weitere key frames) intracodiert übertragen
 - Differenz zum nächsten Bild als Bild auffassen und komprimieren
 - » Z.B. mit DCT und anschließender Entropiecodierung
 - » Viele niedrige Werte, also hoher Kompressionsfaktor möglich

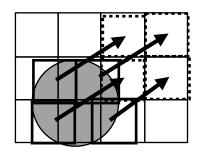

Konzept: Bewegungskompensation (motion compensation)

- Idee:
 - Bewegungen von Objekten zwischen Bildern identifizieren
 - Für Teilbilder übertragen:
 - » Differenzbild plus
 - » Verschiebungsvektor
- Verwendung u.a.:
 - MPEG-1, -2 und -4, H.261-H.265
- Problem: Algorithmen zur Bewegungsabschätzung (motion estimation)
 - block matching
 - gradient matching
 - phase correlation

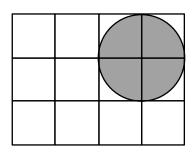
Block Matching

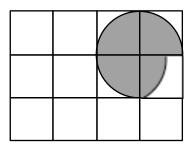


Zielframe N+1


- Referenzframe und Zielframe (aktueller Frame)
 - Referenzframe = vorheriges Bild
- Einteilung des Bildes in Blöcke
- Für jeden Block des Zielframes:
 - Suche nach "best match" im Referenzframe
 - » z.B. mittlere quadratische Abweichung oder mittlere Differenz
 - Speichern des Verschiebungsvektors
- Algorithmusbeschleunigung:
 - Hierarchische Suche zunächst auf vergröbertem Bild

Differenzbilder


Auch bei relativ schlechtem Block Matching werden die Differenzbilder (residual error pictures) relativ einfach und damit klein.


Referenzframe N

Referenzframe N

Zielframe N+1

Zielframe N+1

Differenzframe

Differenzframe

7. Bewegtbilder

- Bewegungswahrnehmung 7.1
- 7.2 Videokompression

insbesondere MPEG-1 und MPEG-2

7.3 Videodatenformate

Literatur:

Arne Heyna/Marc Briede/Ulrich Schmidt: Datenformate im Medienbereich, Fachbuchverlag Leipzig 2003

John Watkinson: The MPEG Handbook, Focal Press 2001

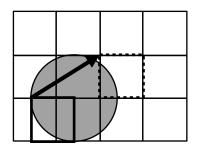
MPEG: Übersicht

- MPEG = Moving Pictures Experts Group
 - Expertengruppe bei der ISO, Bewegtbild-Kompression
 - Benutzt konsequent JPEG-Standards
 - Ansatz: Nur Decodierung spezifiziert, viele Encoder möglich
- MPEG-1 (ISO 11172, 1992)
 - Video und Audio mit der Datenrate einer Audio-CD (Video-CD)
 - 1,8 Mbit/s, davon 1,25 Mbit/s Video + zwei Audio-Kanäle
 - Auflösung: CIF (Common Intermediate Format, bei PAL 352 x 288)
- MPEG-2 (ISO-13818 und ITU Rec. H.262, 1993)
 - Hohe Bandbreite zwischen 2 und 80 Mbit/s, skalierbare Qualität (DVB, DVD)
 - Bis zu 5 Audio-Kanäle
- MPEG-4 (ISO 14496, 2000)
 - Unregelmäßig geformte Objekte, Animationen, Interaktion
- Weitere MPEG-Standards: Nicht immer Kompression! (z.B. MPEG-7)

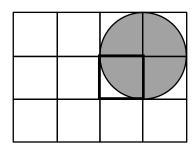
MPEG-2: Profiles und Levels

		Profiles					
		Simple	Main	4:2:2	SNR	Spatial	High
Levels	High (HDTV 16:9)		4:2:0 1920 x 1152 90 Mb/s				4:2:0/2 1920 x 1152 100 Mb/s
	High 1440 (HDTV 4:3)		4:2:0 1440 x 1152 60 Mb/s			4:2:0 1440 x 1152 60 Mb/s	4:2:0/2 1440 x 1152 80 Mb/s
	Main	4:2:0 720 x 576 15 Mb/s	4:2:0 720 x 576 15 Mb/s	4:2:2 720 x 608 50 Mb/s	4:2:0 720 x 576 15 Mb/s		4:2:0/w 720 x 576 20 Mb/s
	Low		4:2:0 352 x 288 4 Mb/s		4:2:0 352 x 288 4 Mb/s		

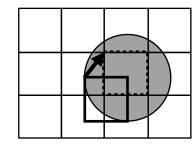
SNR = Signal Noise Ratio, HDTV = High Definition TV


Schreibweise z.B.: MP@ML

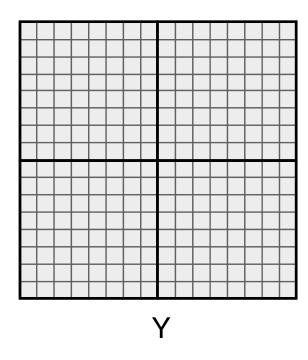
Frametypen in MPEG

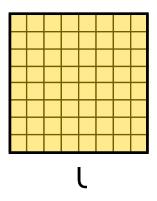

- Intraframes (I-Frames)
 - Vollständige Bilddaten, nur innerhalb des Bildes komprimiert (ca. 92 kB, 7:1)
 - Ca. jedes 15. Frame ist ein I-Frame
- Predicted Frames (P-Frames)
 - Bewegungskompensation und Differenzbildung (ca. 32 kB, 20:1)
 - Typischerweise 3 P-Frames zwischen zwei I-Frames
- Bidirectionally Predicted Frames (B-Frames)
 - Bewegungskompensation unter Berücksichtigung von nachfolgendem und vorausgehendem I- oder P-Frame (ca. 13 kB, 50:1)
 - Typischerweise 2-3 B-Frames zwischen zwei P-Frames

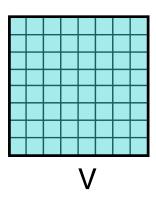
Darstellungsreihenfolge: В В Group of Pictures (GOP) Übertragungsreihenfolge: В В


Bidirektionale Bewegungskompensation

Referenzframe N

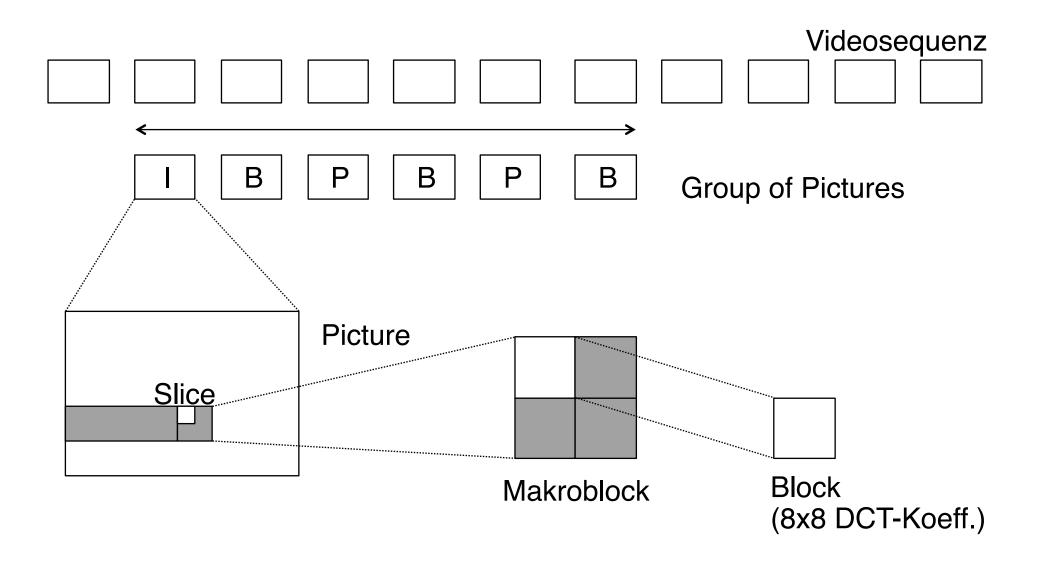

7ielframe N+1

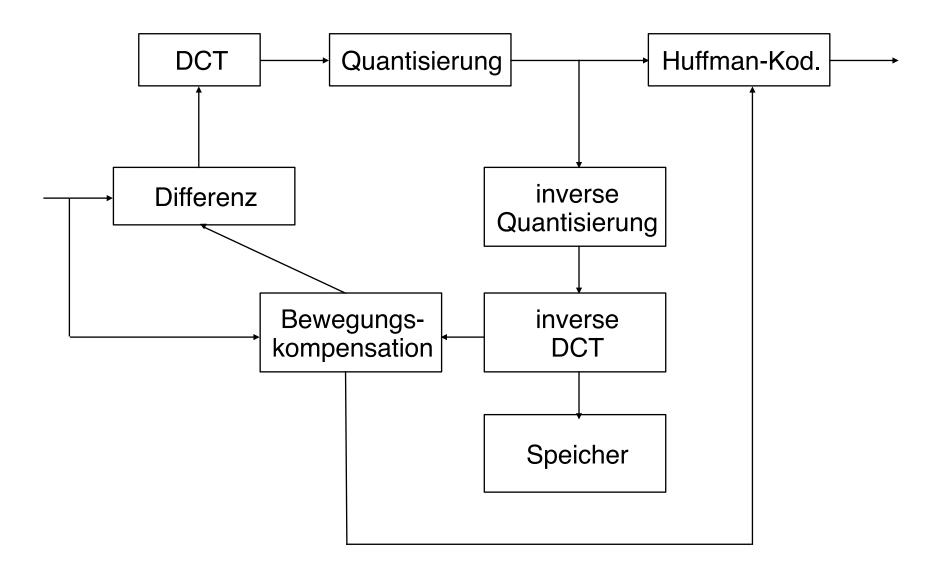



Referenzframe N+2

- Zielframe wird im Decoder zwischen zwei anderen Frames interpoliert
 - Bestimmung von zwei Verschiebungsvektoren
 - Differenzkodierung im Vergleich zum Durchschnitt der Darstellung des Makroblocks in den beiden Referenzbildern
- Mehr Information durch Verschiebungsvektoren kodiert
- Nur in MPEG-2, nicht in MPEG-1

Makroblöcke in MPEG-1/2





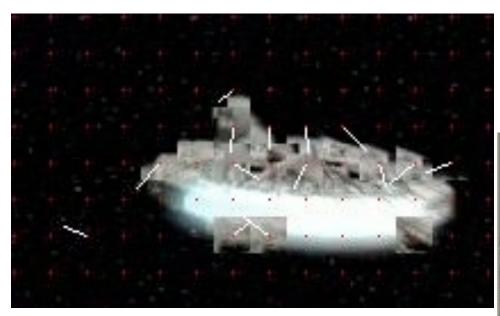
- Makro-Blockeinteilung so gewählt, dass
 - Vielfache von 8x8-Blöcken
 - Kompatibel mit Chroma-Subsampling
- Typisch: 16x16-Pixel Makroblöcke

Struktur des MPEG-2 Videodatenstroms

Schema der P- und B-Frame-Kodierung

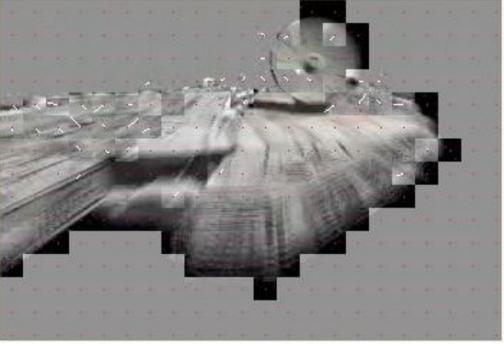
Symmetrische und unsymmetrische Verfahren

Symmetrisch:


- Aufwand für Codierung und Decodierung vergleichbar
- Relativ geringe Kompression
- Z.B. DV-Standard für Digital Video (Chroma-Subsampling + Intracodierung)

Unsymmetrisch:

- Codierung wesentlich aufwändiger als Decodierung
- Hohe Kompression erreichbar
- Qualität der Kompression oft abhängig von investiertem Aufwand
- Z.B. MPEG-Kompression


Beispiel: MPEG Video Analyse

Demonstrationssoftware "VCDemo", siehe: http://siplab.tudelft.nl/content/image-and-video-compression-learning-toolvcdemo

Bewegungskompensation

Inter-Frame Codierung

Bewegtbilder

- 7.1 Bewegungswahrnehmung
- 7.2 Videokompression

insbesondere MPEG-1 und MPEG-2

Videodatenformate 7.3

Literatur:

Arne Heyna/Marc Briede/Ulrich Schmidt: Datenformate im Medienbereich, Fachbuchverlag Leipzig 2003

John Watkinson: The MPEG Handbook, Focal Press 2001

Was ist mit MPEG-3 passiert?

- Ursprünglicher Plan:
 - MPEG-3 als Erweiterung von MPEG-2 für HDTV
 - Wurde von MPEG-2 vollständig abgedeckt
 - Auflösung der MPEG-3 Aktivitäten
- Es gibt keinen MPEG-3 Standard!
- Parallel neue Entwicklung gestartet: MPEG-4
 - Start 1993
 - 1995: H.263 (siehe später) als Basis für Videocodierung gewählt
 - 1999: MPEG-4 Visual Standard publiziert, Ergänzungen 2002
 - 2003: H.264/MPEG-4 Part 10 (siehe später)

MPEG-4 Visual (1999)

- Part 2 von ISO/IEC 14496 "Coding of Audio-Visual Objects"
 - Ca. 540 Seiten...
- Diverse "Coding tools"
 - Repräsentation verschiedener Datentypen für "Video-Objekte", siehe nächste Folie
- Kernstück = Video-Kompressionsalgorithmus, sehr ähnlich zu MPEG-2
 - Block-basiert, Bewegungskompensation, DCT, Quantisierung, Entropiecodierung
 - Verbesserungen der Codierungs-Effizienz u.a. durch
 - » Kleinere Blöcke für Bewegungskompensation (4x4)
 - » Intra-Frame prediction

H.261 und H.263

- H.261: CCITT-Entwicklung (1984-1990)
 - VCEG (Video Coding Experts Group der ITU)
- H.263: ITU-T (1996), Ersatz und Ergänzung von H.261
- Ziel: Videokonferenzen und Videotelefonie auf ISDN-Leitungen
 - Bandbreiten 64 kbit/s und Vielfache
- YUV-Farbmodell, Chroma-Subsampling 4:2:0
- Frames vom Typ CIF oder QCIF
 - CIF (Common Interchange Format)
 - » NTSC: 352 x 240 Pixel, PAL: 360 x 288 Pixel; kein Interlacing
 - » Chroma-Subsampling 4:2:0
 - » Datenrate 36,5 Mbit/s
 - QCIF (Quarter CIF)
 - » 176 x 144 Pixel, sonst wie CIF
- I-Frames und P-Frames wie in MPEG

H.264

- Zusammenarbeit zwischen MPEG (Moving Pictures Expert Group der ISO) und der VCEG (Video Coding Experts Group der ITU)
- Resultat: Internationaler gemeinsamer Standard
 - H.264/MPEG-4 Part 10, von beiden Gremien publiziert
 - "Advanced Video Coding" (AVC)
 - Ziel: Bessere Kompressionsraten relativ zur Qualität
- Techniken (Auswahl):
 - Prädiktion kann auf Speicher von mehreren Bildern zurückgreifen (short- and long-term prediction)
 - Baum-strukturierte Bewegungskompensation mit variabler Blockgröße
 - Prädiktion für Bewegungsvektoren aus benachbarten Partitionen
 - Filter zur Beseitigung von Block-Artefakten
 - Spezielle Entropie-Codierungsverfahren

Weitere Video-Formate

- AVI (Audio/Video Interleave)
 - Microsoft 1991, basiert auf RIFF
 - Container-Format: Viele Codecs möglich
- ASF (Advanced Systems Format) und Windows Media Video (WMV)
 - ASF ist Container, WMV ist (proprietärer) Codec
- DivX:
 - Basiert ursprünglich auf reverse engineering von Microsoft-Format
 - DivX 4 und XviD: Freie MPFG-4 Codecs
- Theora
 - Open video codev for ogg container format
- VP-Codecs (Google): VP8 und VP9
 - "WebM" container, Ziel lizenzfreies Video-Format
- H.265/HEVC: Aktueller Nachfolger von H.264/MPEG-4