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Theories and Models
• Device Support

– how HCI research started to consider the kinematic chain 
– spatial relationship to the device affects interaction performance and 

perceived comfort
• BiTouch Design Space, extension of Guiard’s theory

• Gestural Input
– what we loose when moving from keyboard and mouse and direct 

touch interaction
– missing standards, how to describe gestures? 

• gesture documentation
• physical approach to gestures

• Hand Occlusion
– how a controlled experiment can help you to come up with an 

approximate model of you hand occlusion
– how that inspires design of interaction techniques

• Pointing
– how to describe the imprecision by extending Fitt‘s law
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Proton++ Gesture
• describe a gesture as regular expression over 

these touch event symbols
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Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1 )(Ms:N

1 |Ms:S
1 )*(Us:N

1 |Us:S
1 ).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1 
corresponds to first attribute etc.

consider attributes: 
hit-target shape, 
direction

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1 )(Ms:N

1 |Ms:S
1 )*(Us:N

1 |Us:S
1 ).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012
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consider attributes: 
hit-target shape, 
direction

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

A1 ∈ {s}, s= star element
A2 ∈ {N, S, O}, O = hold touch

D1
s:O M1

s:O* M1
s:N|S M1

s:.⦁* U1
s:.⦁

(M1
s:N | M1

s:S | M1
s:O)*

translate() copy()
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Occlusion

• problem: system generated messages may be 
positioned under the user’s hand.

• one approach: experimental study using a 
novel combination of video capture, 
augmented reality marker tracking, and image 
processing techniques to capture occlusion 
silhouettes. 

• result: five parameter geometric model which 
matches the silhouette with larger precision 
than the simple bounding box approach

• useful for occlusion aware interfaces
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ABSTRACT 
We present results from an experiment examining the area 
occluded by the hand when using a tablet-sized direct pen 
input device. Our results show that the pen, hand, and fore-
arm can occlude up to 47% of a 12 inch display. The shape of 
the occluded area varies between participants due to differ-
ences in pen grip rather than simply anatomical differences. 
For the most part, individuals adopt a consistent posture for 
long and short selection tasks. Overall, many occluded pixels 
are located higher relative to the pen than previously thought. 
From the experimental data, a five-parameter scalable circle 
and pivoting rectangle geometric model is presented which 
captures the general shape of the occluded area relative to the 
pen position. This model fits the experimental data much 
better than the simple bounding box model often used implic-
itly by designers. The space of fitted parameters also serves 
to quantify the shape of occlusion. Finally, an initial design 
for a predictive version of the model is discussed.  
Author Keywords: Hand occlusion, pen input, Tablet PC. 

ACM Classification: H5.2. Information interfaces and pres-
entation: User Interfaces - Input devices and strategies. 
 
INTRODUCTION 
Given our familiarity with using pens and pencils, one would 
expect that operating a tablet computer by drawing directly 
on the display would be more natural and efficient. However, 
issues specific to direct pen input, such as the user’s hand 
covering portions of the display during interaction – a phe-
nomena we term occlusion (Figure 1a) – create new problems 
not experienced with conventional mouse input [12].  
Compared to using pen on paper, occlusion with pen comput-
ing is more problematic. Unlike paper, the results of pen in-
put, or system generated messages, may be revealed in oc-
cluded areas of the display. Researchers have suggested that 
occlusion impedes performance [7,10] and have used it as 
motivation for interaction techniques [1,14,24], but as of yet 
there has been no systematic study or model to quantify the 
amount or shape of occlusion.  

Certainly, any designer can simply look down at their own 
hand while they operate a Tablet PC and take the perceived 
occlusion into account, but this type of ad hoc observation is 
unlikely to yield sound scientific findings or universal design 
guidelines. To study occlusion properly, we need to employ 
controlled experimental methods. 
In this paper we describe an experimental study using a novel 
combination of video capture, augmented reality marker 
tracking, and image processing techniques to capture images 
of hand and arm occlusion from the point-of-view of a user. 
We call these images occlusion silhouettes (Figure 1b). 
Analyses of these silhouettes found that the hand and arm can 
occlude up to 47% of a 12 inch display and that the shape of 
the occluded area varies across participants according to their 
style of pen grip, rather than basic anatomical differences. 
Based on our findings, we create a five parameter geometric 
model, comprised of a scalable circle and pivoting rectangle, 
to describe the general shape of the occluded area (Figure 
1c). Using non-linear optimization algorithms, we fit this 
geometric model to the silhouette images captured in the ex-
periment. We found that this geometric model matches the 
silhouettes with an F1 score [18] of 0.81 compared to 0.40 for 
the simple bounding box which designers often use implicitly 
to account for occlusion. The space of fitted parameters also 
serves as to quantify the shape of occlusion, capture different 
grip styles, and provide approximate empirical guidelines. 
Finally, we introduce an initial scheme for a predictive ver-
sion of the geometric model which could enable new types of 
occlusion-aware interaction techniques.  

 
Figure 1: (a) Occlusion caused by the hand with direct 
pen input; (b) an occlusion silhouette image taken 
from the point-of-view of a user and rectified; (c) a 
simplified circle and rectangle geometric model cap-
turing the general shape of the occluded area.  

(a)

(b) (c)
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Vogel’s Controlled Experiment

• goal: measure size and shape of occluded 
area of a tablet-sized display.

• home target: on the far right side
• measurement target: positioned somewhere 

on an invisible grid (7 x 11 = 77 different 
locations)
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FORMAL EXPERIMENT 
Our goal is to measure the size and shape of the occluded 
area of a tablet-sized display. To accomplish this, we record 
the participant’s view of their hand with a head-mounted 
video camera as they select targets at different locations on 
the display. We then extract key frames from the video and 
isolate occlusion silhouettes of the participant’s hand as they 
appear from their vantage point.  
Participants 
22 people (8 female, 14 male) with a mean age of 26.1 (SD 
8.3) participated. All participants were right-handed and pre-
screened for color blindness. Participants had little or no ex-
perience with direct pen input, but this is acceptable since we 
are observing a lower level physical behaviour.  
At the beginning of each session, we measured the partici-
pant’s hand and forearm since anatomical dimensions likely 
influence the amount of occlusion (Figure 2). We considered 
controlling for these dimensions, but recruiting participants to 
conform to anatomical sizes proved to be difficult, and the 
ranges for each control dimension were difficult to define. 

 
Figure 2. Anthropomorphic measurements (diagram 
adapted from Pheasant and Hastlegrave [13]). 

x EL - elbow to fingertip length 
x SL - shoulder to elbow length 
x UL - upper limb length including hand 
x FL - upper limb length, elbow to crease of wrist, EL - HL 
x HL - hand length, crease of the wrist to the tip of finger  
x HB - hand breadth, maximum width of palm  

Apparatus 
The experiment was conducted using a Wacom Cintiq 12UX 
direct input pen tablet. It has a 307 mm (12.1 inch) diagonal 
display, a resolution of 1280 by 800 pixels (261 by 163 mm), 
and a pixel density of 4.9 px/mm (125 DPI). We chose the 
Cintiq because it provides pen tilt information which is un-
available on current Tablet PCs. 
We positioned the tablet in portrait-orientation and supported 
it such that it was at an angle of 12 degrees off the desk, ori-
ented towards the participant. Participants were seated in an 
adjustable office chair with the height adjusted so that the 
elbow formed a 90 degree angle when the forearm was on the 
desk. This body posture is the most ergonomically sound 
according to Pheasant and Hastlegrave [13]. 
To capture the participant’s point-of-view, we use a small 
head-mounted video camera to record the entire experiment 
at 640 × 480 px resolution and 15 frames-per-second (Figure 
3a).  The camera is attached to a head harness using hook-
and-loop strips making it easy to move up or down so that it 
can be positioned as close as possible to the center of the 
eyes, without interfering with the participants’ line of sight. 

In pilot experiments, we found that we could position the 
camera approximately 40 mm above and forward of the line 
of sight, and the resulting image was very similar to what the 
participant saw.  
Printed fiducial markers were attached around the bezel of 
the tablet to enable us to transform the point-of-view frames 
to a standard, registered image perspective for analysis. De-
tails of the image analysis steps are in the next section. 

 
Figure 3. Experiment apparatus: (a) head mounted 
camera to capture point-of-view; (b) fiducial markers 
attached to tablet bezel (image is taken from head 
mounted camera video frame). 

 
Figure 4. (a) 7 x 11 grid for placement; (b) square; (c) 
circle target (targets are printed actual size). 

Task and Stimuli 
Participants were presented with individual trials consisting 
of an initial selection of a home target, followed by selection 
of a measurement target.  
The 128 px tall and 64 px wide home target was consistently 
located at the extreme right edge of the tablet display, 52 mm 
from the display bottom. This controlled the initial position 
of the hand and forearm at the beginning of each trial. We 
observed participants instinctively returning to a similar rest 
position in our initial observational study. 
The location of the measurement target was varied across 
trials at positions inscribed by a 7 × 11 unit invisible grid 
(Figure 4a). This created 77 different locations with target 
centers spaced 122 px horizontally and 123 px vertically. 
We observed two primary styles of pen manipulation in our 
initial observational study: long, localized interactions where 
the participant rested their palm on the display (such as ad-
justing a slider), and short, singular interactions performed 
without resting the hand (such as pushing a button). Based on 
this, our task had two types of target selection: tap – selection 
of a 64 px square target with a single tap (Figure 4b); and 
circle – selection of a circular target by circling within a 
28 px tolerance between a 4 px inner and 32 px outer radius 
(Figure 4c). The circle selection is designed to encourage 
participants to rest their palm, while the tap selection can be 
quickly performed with the palm in the air. The different 
shapes for the two selection tasks were intended to serve as a 
mnemonic to the user as to what action was required.  
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Image Processing

• Frame extraction: video frames taken between 
successful down and up pen event.
– synchronize video and data log similar to a movie clapperboard: 

blend in a large red square containing a unique number.

• Rectification: track fiducial and determine screen 
corners

• Isolation: blur filter (noise reduction) + extract blue 
color channel + applied threshold to create an inverted 
binary image.
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FORMAL EXPERIMENT 
Our goal is to measure the size and shape of the occluded 
area of a tablet-sized display. To accomplish this, we record 
the participant’s view of their hand with a head-mounted 
video camera as they select targets at different locations on 
the display. We then extract key frames from the video and 
isolate occlusion silhouettes of the participant’s hand as they 
appear from their vantage point.  
Participants 
22 people (8 female, 14 male) with a mean age of 26.1 (SD 
8.3) participated. All participants were right-handed and pre-
screened for color blindness. Participants had little or no ex-
perience with direct pen input, but this is acceptable since we 
are observing a lower level physical behaviour.  
At the beginning of each session, we measured the partici-
pant’s hand and forearm since anatomical dimensions likely 
influence the amount of occlusion (Figure 2). We considered 
controlling for these dimensions, but recruiting participants to 
conform to anatomical sizes proved to be difficult, and the 
ranges for each control dimension were difficult to define. 

 
Figure 2. Anthropomorphic measurements (diagram 
adapted from Pheasant and Hastlegrave [13]). 

x EL - elbow to fingertip length 
x SL - shoulder to elbow length 
x UL - upper limb length including hand 
x FL - upper limb length, elbow to crease of wrist, EL - HL 
x HL - hand length, crease of the wrist to the tip of finger  
x HB - hand breadth, maximum width of palm  

Apparatus 
The experiment was conducted using a Wacom Cintiq 12UX 
direct input pen tablet. It has a 307 mm (12.1 inch) diagonal 
display, a resolution of 1280 by 800 pixels (261 by 163 mm), 
and a pixel density of 4.9 px/mm (125 DPI). We chose the 
Cintiq because it provides pen tilt information which is un-
available on current Tablet PCs. 
We positioned the tablet in portrait-orientation and supported 
it such that it was at an angle of 12 degrees off the desk, ori-
ented towards the participant. Participants were seated in an 
adjustable office chair with the height adjusted so that the 
elbow formed a 90 degree angle when the forearm was on the 
desk. This body posture is the most ergonomically sound 
according to Pheasant and Hastlegrave [13]. 
To capture the participant’s point-of-view, we use a small 
head-mounted video camera to record the entire experiment 
at 640 × 480 px resolution and 15 frames-per-second (Figure 
3a).  The camera is attached to a head harness using hook-
and-loop strips making it easy to move up or down so that it 
can be positioned as close as possible to the center of the 
eyes, without interfering with the participants’ line of sight. 

In pilot experiments, we found that we could position the 
camera approximately 40 mm above and forward of the line 
of sight, and the resulting image was very similar to what the 
participant saw.  
Printed fiducial markers were attached around the bezel of 
the tablet to enable us to transform the point-of-view frames 
to a standard, registered image perspective for analysis. De-
tails of the image analysis steps are in the next section. 

 
Figure 3. Experiment apparatus: (a) head mounted 
camera to capture point-of-view; (b) fiducial markers 
attached to tablet bezel (image is taken from head 
mounted camera video frame). 

 
Figure 4. (a) 7 x 11 grid for placement; (b) square; (c) 
circle target (targets are printed actual size). 

Task and Stimuli 
Participants were presented with individual trials consisting 
of an initial selection of a home target, followed by selection 
of a measurement target.  
The 128 px tall and 64 px wide home target was consistently 
located at the extreme right edge of the tablet display, 52 mm 
from the display bottom. This controlled the initial position 
of the hand and forearm at the beginning of each trial. We 
observed participants instinctively returning to a similar rest 
position in our initial observational study. 
The location of the measurement target was varied across 
trials at positions inscribed by a 7 × 11 unit invisible grid 
(Figure 4a). This created 77 different locations with target 
centers spaced 122 px horizontally and 123 px vertically. 
We observed two primary styles of pen manipulation in our 
initial observational study: long, localized interactions where 
the participant rested their palm on the display (such as ad-
justing a slider), and short, singular interactions performed 
without resting the hand (such as pushing a button). Based on 
this, our task had two types of target selection: tap – selection 
of a 64 px square target with a single tap (Figure 4b); and 
circle – selection of a circular target by circling within a 
28 px tolerance between a 4 px inner and 32 px outer radius 
(Figure 4c). The circle selection is designed to encourage 
participants to rest their palm, while the tap selection can be 
quickly performed with the palm in the air. The different 
shapes for the two selection tasks were intended to serve as a 
mnemonic to the user as to what action was required.  
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Image Processing

• Frame extraction: video frames taken between 
successful down and up pen event.
– synchronize video and data log similar to a movie clapperboard: 

blend in a large red square containing a unique number.

• Rectification: track fiducial and determine screen 
corners

• Isolation: blur filter (noise reduction) + extract blue 
color channel + applied threshold to create an inverted 
binary image.
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The circle selection used an ink trail visualization to indicate 
progress. Errors occurred when the pen tip moved beyond the 
inner or outer diameter. We wanted this to be difficult enough 
to require a palm plant, but not tedious. In practice, partici-
pants took at least half-a-second to circle the target, which 
seemed to be enough to plant the palm. 
At the beginning of each trial, a red home target and a gray 
measurement target were displayed. After successfully select-
ing the home target, the measurement target turned red and 
the participant selected it to complete the trial. We logged all 
aspects of pen input, including pressure and tilt.  
Design 
We presented 3 blocks of trials for each of the two tasks. A 
block consisted of 77 trials covering each target position in 
the grid, making 3 repetitions for each grid position and task 
type. Trials were presented in randomized order within a 
block and the presentation order of tasks was balanced across 
participants. Before beginning the first block of a task, the 
participant completed 40 practice trials. In summary: 

2 Tasks (Tap, Circle) × 3 Blocks × 77 Target Positions  
= 462 data points per participant 

IMAGE PROCESSING 
To transform the point-of-view video into a series of occlu-
sion silhouettes, we performed the following steps with cus-
tom built software (Figure 5):  
Frame Extraction. We extracted video frames taken between 
successful down and up pen events for the tap target, or just 
before the circular target was completely circled. To do this, 
we had to synchronize the video with the data log. We used a 
visual time marker which functions similar to a movie clap-
perboard. The time marker is a large red square containing a 
unique number. When this square is tapped, it disappears and 
a timestamp is saved to our data log. After the experiment, 
we scrubbed through the video and found the video time 
where the time marker disappeared. Then, using linear inter-
polation between bounding time marks, we located the corre-
sponding video frame for a given log time. In most cases, the 
frame captured the pen at the intended target location, but 
occasional lags during video capture produced a frame with 
the pen separated from the target location.  
Rectification. We used the ARToolkitPlus augmented reality 
library [21] to track the fiducial markers in each frame and 
determine the location of the four corners of the display. In 
practice, this sometimes required hand tuning when the 
markers were occluded by the hand or were out of frame due 
to head position. Using the four corner positions, we un-
warped the perspective using the Java Advanced Image [17] 
functions PerspectiveTransform and WarpPerspec-
tive with bilinear interpolation, and cropped it to a final 
267 × 427 px image. Note that due to our single camera set-
up, the unwarping will shift the image of the hand down 
slightly relative to the actual eye view. As an example, if the 
eye position is at the end of a vector 500 mm and 50q from 
the centre of the tablet, and the camera is located 40 mm 
above and forward of the eye, the unwarped image of a point 
on the hand 40 mm above the tablet will be shifted down by 
6.2 mm (about 4 px in our unwarped image). The exact error 

will vary according to participant size and grip style, but the 
values above are typical. Rather than try to compensate for 
this slight shift and possibly introduce additional errors, we 
accepted this as a reasonable limitation of our technique.  
Isolation. We used simple image processing techniques to 
isolate the silhouette of the hand. First, we applied a light blur 
filter to reduce noise. Then we extracted the blue color chan-
nel and applied a threshold to create an inverted binary im-
age. We were able to use the blue channel to isolate the hand 
because the camera’s color balance caused the display back-
ground to appear blue (it was actually white). Since the color 
space of skin is closer to red, this made isolating the hand 
relatively easy. To remove any edge pixels from the display 
bezel, we applied standard dilation and erosion morphologi-
cal operations [3]. Finally, we filled holes based on the con-
nectivity of pixels to produce the final silhouette.  

 
Figure 5. Image processing steps: (a) frame extrac-
tion; (b) rectification; (c) silhouette isolation. 

RESULTS 
Unfortunately, lighting and video problems corrupted large 
portions of data for participants 7, 14, 21, and 22 making 
isolation of their occlusion silhouettes unreliable. Capture 
problems with participant 8 corrupted the first block, but we 
kept this participant and their remaining blocks. In the end, 
our analysis included 18 out of the original 22 participants (6 
female, 12 male) with a mean age of 26.3 (SD 8.4). In addi-
tion, we removed data trials when capture lag produced sil-
houettes more than 20 mm from the target location (7.8% of 
trials). These types of problems are typical when using video 
capture to generate empirical data: it is difficult to produce 
the same kind of “clean” data generated by experiments re-
cording straightforward variables such as performance time 
and errors. Researchers attempting similar work should re-
cruit extra participants and run multiple trials as we did, to 
ensure a reasonable amount of clean trials can be obtained.  
Participants occasionally produced errors (mean 4.4%), but 
we included the silhouette regardless. Since each target must 
be successfully tapped or circled before continuing, the final 
video frame for an error trial would not differ. Also, the 
logged pen tilt values were very noisy, in spite of silhouette 
images suggesting tilt should be more uniform. Our attempts 
to filter them were unsuccessful, and we were forced to leave 
them out of our analysis.  
Occlusion Ratio 
We define the occlusion ratio as the percentage of occluded 
pixels within all possible display pixels. We used a ratio, 
rather than actual area, for unit independence. The actual area 
can be computed using the display area of 42,543 mm2. 

(a) (b) (c)
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Results
• largest occlusion when 

tapping the top left corner 
(occlusion rate: 38.8%)

• identified 3 grips
• large within-subject 

consistency in occlusion 
shape.

• “can we find a simple 
geometric model that could 
describe the general shape 
and position of the 
occlusion silhouettes?”
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Since occlusion ratio varies according to pen location, we 
calculate the occlusion area for each X-Y target location in 
the 7 x 11 grid. Not surprisingly, we found the highest occlu-
sion ratios when the pen was near the top left of the display. 
However, the highest value did not occur at the extreme top, 
but rather a short distance below (Figure 7). The highest val-
ues did not differ greatly by task with 38.6% for circle (SD 
6.2) and 38.8% for tap (SD 14.2). Participant 1 had the high-
est occlusion ratio with 47.4% for tap and 46.3% for circle. 

 
Figure 7. Occlusion ratio, plotted by X-Y display loca-
tion for: (a) tap task; (b) circle task. 

These mean ratios may reflect a sampling bias among our 
participants since controlling for aspects such as anatomical 
size and pen grip style is difficult to do a-priori. To help ad-
dress this, we compare occlusion ratios given participant size. 
Influence of Participant Size 
We established a simple size metric S to capture the relative 
size of each participant’s arm and hand compared to the gen-
eral population. S is the mean of three ratios between a par-
ticipant measurement and 50th percentile values from a table 
of anthropomorphic statistics1. We use measurements for 
shoulder length (SL), hand length (HL), and hand breadth 
(HB). Since tables of anthropomorphic statistics are divided 
by gender, we compute S for men and women using different 
50th percentile values. We found mean S values of 0.99 (SD 
0.04) and 1.01 (SD 0.06) for men and women respectively, 
indicating that the size of our participants was representative. 

We expected to see a relationship between S and the maxi-
mum occlusion ratio since, larger hands and forearms should 
cover more of the display. However, a plot of S vs. maximum 
occlusion ratio does not suggest a relationship (Figure 8). 

 
                                                           
1 Anthropomorphic statistics for U.S Adults 19 to 65 years old [13]. 
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ticipants, we found that grip style varied predominately 
across three dimensions: size of fist, angle of pen, and height 
of grip location on pen. We believe it is these characteristics 
of grip style that interact with anatomical measurements and 
ultimately govern occlusion area.  

 
Figure 11. Grip styles: (a) loose fist, low angle, me-
dium grip height; (b) tight fist, high angle, high grip 
height; (c) loose fist, straight angle, low grip height.  

Left-handed Users 
We conducted a small follow-up study with two left-handed 
users. Similar to Hancock and Booth’s finding with 
performance [7], we found that the left-handed data mirrored 
the right-handed individuals.  
Influence of Clothing 
We gathered our data for sleeveless participants to maintain a 
consistent baseline, but we recognize that size of the occlu-
sion silhouette could be much larger when clothed (consider 
using a tablet while wearing a loose fitting sweater or jacket). 
As a general rule, Pheasant and Hastlegrave [13] suggest add-
ing 25mm to all anatomical dimensions for men and 45mm 
for women to account for thickness of clothing.  
GEOMETRIC MODEL OF OCCLUSION SHAPE  
The experiment revealed that the occlusion shape was some-
what uniform within a participant and high level similarities 
appeared across participants. We wondered if a simple geo-
metric model could describe the general shape and position of 
the occlusion silhouettes. If so, by fitting this model to the 
actual silhouettes, the resulting model parameters could serve 
as empirical guidelines for designers. Moreover, this geomet-
ric representation could form the basis for a predicative ver-
sion of model: in real time, a system would be aware of oc-
cluded portions of the interface without the aid of elaborate 
sensors. For example, imagine an interface that knows when 
a status message is occluded, and re-displays it as a bubble in 
a nearby non-occluded area instead. 
There are many ways to approach modeling the shape of the 
occlusion silhouettes. Perhaps the most straightforward ap-
proach is to assume pixels below and to the right of the pen’s 
position are occluded, an approach which some designers and 
researchers seem to use implicitly. We refer to this as a 
bounding rectangle model (Figure 12c). This model is con-
stant relative to the pen’s position and requires no other input, 
but the accuracy is poor. At the other end of the spectrum, we 
could create a model with a flexible shape such as one com-
posed of Bézier spline segments (Figure 12a). While this 
would certainly yield a very accurate representation of the 
occluded area, the huge number of parameters would make 
fitting and interpreting the model difficult and hence imprac-
tical for creating empirical guidelines. Our aim then is to cre-

ate a simple model with a small number of parameters, yet 
still produce a reasonable degree of accuracy. 
Scalable Circle and Pivoting Rectangle Model 
We noticed that the occlusion silhouettes produced by the 
experimental data often resembled a lopsided circle for the 
fist, a thick narrowing rectangle sticking out the bottom for 
the arm, and, with some participants, there was also a thinner 
rectangle puncturing the top of the ball for the pen. This 
meant that a single oriented bounding box would be unlikely 
to capture all grip styles accurately. Our first approach then, 
was to create a geometric model using an ellipse for the fist, 
an isosceles trapezoid for the arm, and a rectangle for the pen. 
However, even this model had 11 parameters and automati-
cally fitting the geometry to our experimental data was prob-
lematic. Instead, we simplified our representation further to 
an offset circle and a rectangle with only the following 5 pa-
rameters (also illustrated in Figure 12b): 
x q is the offset from the pen position p to the circle edge,  
x r is the radius of the circle over the fist area, 
x ) is the rotation angle of the circle around p (expressed in 

degrees where ) = 0q when the centre is due East, 
) = -45q for North-East, and ) = 45q for South-East), 

x 4 is the angle of rotation of the rectangle around the cen-
tre of the circle (using the same angle configuration as )), 

x w is the width of the rectangle representing the forearm. 
Note that the length of the rectangle is infinite for our pur-
poses. If we were building a model for larger displays, this 
may become another parameter, but at present we are con-
cerned with tablet-sized displays like the portable Tablet PC.  

 
Figure 12. Three occlusion shape models: (a) Bézier 
spline; (b) circle and rectangle; (b) bounding rectan-
gle. p is the position of the pen.  

Fitting the Geometric Model to Captured Silhouettes 
For each silhouette image from our experiment, we use non-
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ticipants, we found that grip style varied predominately 
across three dimensions: size of fist, angle of pen, and height 
of grip location on pen. We believe it is these characteristics 
of grip style that interact with anatomical measurements and 
ultimately govern occlusion area.  

 
Figure 11. Grip styles: (a) loose fist, low angle, me-
dium grip height; (b) tight fist, high angle, high grip 
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Left-handed Users 
We conducted a small follow-up study with two left-handed 
users. Similar to Hancock and Booth’s finding with 
performance [7], we found that the left-handed data mirrored 
the right-handed individuals.  
Influence of Clothing 
We gathered our data for sleeveless participants to maintain a 
consistent baseline, but we recognize that size of the occlu-
sion silhouette could be much larger when clothed (consider 
using a tablet while wearing a loose fitting sweater or jacket). 
As a general rule, Pheasant and Hastlegrave [13] suggest add-
ing 25mm to all anatomical dimensions for men and 45mm 
for women to account for thickness of clothing.  
GEOMETRIC MODEL OF OCCLUSION SHAPE  
The experiment revealed that the occlusion shape was some-
what uniform within a participant and high level similarities 
appeared across participants. We wondered if a simple geo-
metric model could describe the general shape and position of 
the occlusion silhouettes. If so, by fitting this model to the 
actual silhouettes, the resulting model parameters could serve 
as empirical guidelines for designers. Moreover, this geomet-
ric representation could form the basis for a predicative ver-
sion of model: in real time, a system would be aware of oc-
cluded portions of the interface without the aid of elaborate 
sensors. For example, imagine an interface that knows when 
a status message is occluded, and re-displays it as a bubble in 
a nearby non-occluded area instead. 
There are many ways to approach modeling the shape of the 
occlusion silhouettes. Perhaps the most straightforward ap-
proach is to assume pixels below and to the right of the pen’s 
position are occluded, an approach which some designers and 
researchers seem to use implicitly. We refer to this as a 
bounding rectangle model (Figure 12c). This model is con-
stant relative to the pen’s position and requires no other input, 
but the accuracy is poor. At the other end of the spectrum, we 
could create a model with a flexible shape such as one com-
posed of Bézier spline segments (Figure 12a). While this 
would certainly yield a very accurate representation of the 
occluded area, the huge number of parameters would make 
fitting and interpreting the model difficult and hence imprac-
tical for creating empirical guidelines. Our aim then is to cre-

ate a simple model with a small number of parameters, yet 
still produce a reasonable degree of accuracy. 
Scalable Circle and Pivoting Rectangle Model 
We noticed that the occlusion silhouettes produced by the 
experimental data often resembled a lopsided circle for the 
fist, a thick narrowing rectangle sticking out the bottom for 
the arm, and, with some participants, there was also a thinner 
rectangle puncturing the top of the ball for the pen. This 
meant that a single oriented bounding box would be unlikely 
to capture all grip styles accurately. Our first approach then, 
was to create a geometric model using an ellipse for the fist, 
an isosceles trapezoid for the arm, and a rectangle for the pen. 
However, even this model had 11 parameters and automati-
cally fitting the geometry to our experimental data was prob-
lematic. Instead, we simplified our representation further to 
an offset circle and a rectangle with only the following 5 pa-
rameters (also illustrated in Figure 12b): 
x q is the offset from the pen position p to the circle edge,  
x r is the radius of the circle over the fist area, 
x ) is the rotation angle of the circle around p (expressed in 

degrees where ) = 0q when the centre is due East, 
) = -45q for North-East, and ) = 45q for South-East), 

x 4 is the angle of rotation of the rectangle around the cen-
tre of the circle (using the same angle configuration as )), 

x w is the width of the rectangle representing the forearm. 
Note that the length of the rectangle is infinite for our pur-
poses. If we were building a model for larger displays, this 
may become another parameter, but at present we are con-
cerned with tablet-sized displays like the portable Tablet PC.  
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gle. p is the position of the pen.  

Fitting the Geometric Model to Captured Silhouettes 
For each silhouette image from our experiment, we use non-
linear optimization techniques to set the five parameters of 
the geometric model so that it “fits” over the silhouette as 
accurately as possible. Note that other optimization algo-
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would certainly yield a very accurate representation of the 
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tical for creating empirical guidelines. Our aim then is to cre-
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experimental data often resembled a lopsided circle for the 
fist, a thick narrowing rectangle sticking out the bottom for 
the arm, and, with some participants, there was also a thinner 
rectangle puncturing the top of the ball for the pen. This 
meant that a single oriented bounding box would be unlikely 
to capture all grip styles accurately. Our first approach then, 
was to create a geometric model using an ellipse for the fist, 
an isosceles trapezoid for the arm, and a rectangle for the pen. 
However, even this model had 11 parameters and automati-
cally fitting the geometry to our experimental data was prob-
lematic. Instead, we simplified our representation further to 
an offset circle and a rectangle with only the following 5 pa-
rameters (also illustrated in Figure 12b): 
x q is the offset from the pen position p to the circle edge,  
x r is the radius of the circle over the fist area, 
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degrees where ) = 0q when the centre is due East, 
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x w is the width of the rectangle representing the forearm. 
Note that the length of the rectangle is infinite for our pur-
poses. If we were building a model for larger displays, this 
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Occlusion-aware techniques
• occlu
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http://www.youtube.com/watch?v=4sOmlhEJ2ac

http://www.youtube.com/watch?v=4sOmlhEJ2ac
http://www.youtube.com/watch?v=4sOmlhEJ2ac


Try to read this 
text when it is 
partly occluded!
Tough, isn‘t it?
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Occlusions and the Fat Finger Problem
• Fingers and hands can occlude screen objects

– minimize by adapting the screen layout!

• Fingers may hit several small objects
– just use large objects ;-)

• Exact hit point is occluded, precision limited!
• We‘ll discuss workarounds in the Interaction part next week
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Fat Fingers and FFitts law
• For small targets and fat fingers, there is a limit 

to pointing precision!
– Fitt‘s law fails to predict performance in this situation

• Modify Fitt‘s law formula to account for precision
– think of it like of Newtonian and relativistic physics: 

• at small speeds, both are the same 
• towards the speed of light, they differ
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which the Digraph-Fitts model [16] was used to predict text 
entry speed.  

The contributions of this paper are two-fold: 

1) We propose the dual-distribution hypothesis to interpret 
the distribution of endpoints for finger input.  

2) We derive the FFitts law (Eq. 2) model based on the 
dual-distribution hypothesis: 

 ܶ = ܽ + ܾ logଶ ቌ 
ටଶగ(ఙమିఙమೌ)

+ 1ቍ              (2) 

where ߪis the standard deviation of the touch points, and ߪ 
reflects the absolute precision of the input finger, which is 
independent of the task.  

To our knowledge this is the first time Fitts’ law has been 
systematically and successfully extended to finger input on 
phone-sized touchscreens. In three experiments we show 
that this model is able to better predict finger touch 
performance than the conventional forms of Fitts’ law. 

RELATED WORK 

Effective Width Adjustment Method 
Fitts’ law in its original form predicts human (performer) 
movement time from the nominal task parameters of target 
distance (A) and target width (W). The logarithm of the 
ratio A/W, measured in bits, was viewed as the task’s index 
of difficulty. It was realized that the performer may over- or 
under-utilize the target size W. In other words the 
performer’s actual pointing precision could be different 
from the nominal task specification [9, 18, 21].  The most 
common way of compensating for this discrepancy is to 
replace the nominal target width W with the so-called 

effective width, ܹ = ξ2ߪ݁ߨ , hence:  

ܶ = ܽ + ܾ logଶ ቀ 
ξଶగߪ + 1ቁ                               (3) 

The justification for the use of ܹ  is commonly traced to 
Welford [21], which in turns attributes it to Crossman [9]. 
Crossman’s reasoning of ܹ  relies on an information-
theoretic metaphor. logଶ ܹ  was viewed as the entropy of 
the endpoint distribution. Since endpoints are observed to 
be normally distributed about the center of the target, the 
theoretically correct expression for endpoint entropy ()ܪ, 

is ()ܪ = logଶ ξ2[21 ,9,18] ߪ݁ߨ. 

Although this information-theoretic foundation is only 
metaphorical without stronger or more rigorous basis, 

adjusting effective width based on ξ2ߪ݁ߨ  has been 
advocated by many researchers of Fitts’ Law. For example, 
MacKenzie [18] suggested that “this adjustment lies at the 
very heart of the information-theoretic metaphor that 
movement amplitude area analogous to ‘signals’ and end-
point variability (via target width) is analogous to ‘noise’.” 
(section 3.4 Effective Target Width, paragraph 2, p 106). 

Recently, Zhai et al. [25] empirically investigated the effect 
of using effective width vs. nominal width. Their work 
showed (although not completely) that ܦܫ  partially 
compensated for subjective accuracy choice and reduced 
the discrepancy of a and b estimates between different 
experimental conditions. The R2

 value of T vs. ܦܫ  
regression across different operating biases was higher than 
the R2

 value of T vs. ܦܫ regression.  

Given the justification from information-theoretic metaphor 

and empirical foundation, adjusting W based on ξ2ߪ݁ߨ has 
been widely adopted if the observed error rates deviate 
from 4%. In this paper, we are particularly interested in 
whether ܦܫ  would also compensate for a finger’s 
imprecision and compare the ܦܫ  model with the proposed 

FFitts index of difficulty ܦܫ .  

Fitts’ Law and Finger Input 
There has been an increasing interest in understanding the 
“Fat Finger” problem, and examining Fitts’ Law for finger 
input.  

As a key input modality for touchscreens, touch input has 
been extensively studied by many researchers. Holz and 
Baudisch’s research [13] showed that the offsets of touch 
point locations from the intended point were affected by the 
angles between the finger and the touch surface (i.e., pitch, 
roll and yaw). In the following studies [14], they discovered 
that users relied on the visual features of fingers such as 
finger outlines and nail outlines for placing the touch 
points. As touchscreen hardware usually reported the 
centroid of the contact area between the finger and the 
touchscreen as the touch point, the registered position could 
be very different from the perceived touch point.  

Cockburn et al. [8] recently compared finger input, stylus 
and mouse in tap, drag and radial pointing tasks.  The 
results showed that the completion time of finger tap and 
drag strongly conformed to the  ܦܫ  model, though the error 
rate was high (around 12%) when W = 5 mm. W values in 
their study varied in a wide range (W = 5, 12.5, and 20 
mm). They did not particularly investigate small target 
acquisition tasks.  

Sasangohar et al. [20] conducted a Fitts’ Reciprocal 
Tapping task to evaluate mouse and touch input on a 
tabletop display. Their study also showed very high error 
rates when targets were small: the error rates were above 
20% with targets in which W = 5mm. They did not report 
the regression results for Fitts’ law.    

Lee and Zhai [15] studied soft button finger tapping 
performance on smartphones. It is interesting to note that 
Fitts’ law in its traditional form clearly did not work well 
for their tasks. When the target was smaller, finger touch 
performance degraded much faster than Fitts’ law would 
have predicted. 
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ABSTRACT 
Fitts’ law has proven to be a strong predictor of pointing 

performance under a wide range of conditions. However, it 

has been insufficient in modeling small-target acquisition 

with finger-touch based input on screens. We propose a 

dual-distribution hypothesis to interpret the distribution of 

the endpoints in finger touch input. We hypothesize the 

movement endpoint distribution as a sum of two 

independent normal distributions. One distribution reflects 

the relative precision governed by the speed-accuracy 

tradeoff rule in the human motor system, and the other 

captures the absolute precision of finger touch independent 

of the speed-accuracy tradeoff effect. Based on this 

hypothesis, we derived the FFitts model—an expansion of 

Fitts’ law for finger touch input. We present three 

experiments in 1D target acquisition, 2D target acquisition 

and touchscreen keyboard typing tasks respectively. The 

results showed that FFitts law is more accurate than Fitts’ 

law in modeling finger input on touchscreens. At 0.91 or a 

greater R2 value, FFitts’ index of difficulty is able to 

account for significantly more variance than conventional 

Fitts’ index of difficulty based on either a nominal target 

width or an effective target width in all the three 

experiments.  

Author Keywords 
Fitts’ law; Touchscreen; Finger input 

ACM Classification Keywords 
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Interface]: Theory and Methods. 
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INTRODUCTION 
Since originally published in 1954, Fitts’ law (Eq. 1) [11] 

has proven to be one of the most robust and successful 

models of human motor behavior. In HCI, Fitts’ Law is 

typically defined as:  

                    ܶ = ܽ + ܾ logଶ ቀௐ + 1ቁ,                                (1) 

where ܶ  is the average time taken to complete the 

movement, ܣ is the distance from the starting point to the 

center of the target, ܹ is the width of the target, ܽ and ܾ are 

constants reflecting the efficiency of the pointing system.  

Because of its strong predictive power, Fitts’ law has served 

as one of the quantitative foundations for human-computer 

interaction research and design. It has been used as a 

theoretical framework for computer input device evaluation 

[6, 18], a tool for optimizing new interfaces [5, 16], a 

predictive element in complex gesture recognition 

algorithms [26], as well as a logical basis for modeling 

more complex HCI tasks [1]. 

Dating back from Fitts’ original studies [11], target 

acquisition tasks were typically carried out with a stylus or 

a cursor that is much smaller than the targets. As finger 

touch on the popular smart phones and tablets emerges as 

one of the main input modalities today—the post-PC 

computing era—examining Fitts’ law for finger touch has 

been attracting attention from HCI researchers [8, 20]. A 

critical challenge in applying Fitts’ law to finger input is 

that finger input is imprecise, especially relative to smaller-

sized targets [8, 20, 14, 13], due to the obvious and well-

known “Fat Finger” problem. Previous research showed 

that Fitts’ law’s predictive power dropped when targets 

were small [7, 22]. Our experiments presented later in this 

paper confirmed such degradation of the conventional 

forms of Fitts’ law for small target acquisition using finger 

input as well.  

To accurately model finger input, we propose a dual-
distribution hypothesis to interpret the distribution of 

endpoints of finger input. We hypothesize that the endpoint 

distribution is a sum of two independent normal 

distributions. One reflects the relative touch precision 

governed by the speed-accuracy tradeoff in the human 

motor system, and the other reflects the absolute precision 

of finger touch independent of the speed-accuracy tradeoff 

effect.   

Based on this hypothesis, we derive the FFitts model—an 

expansion and also a refinement of Fitts’ law for finger 

touch input (Eq 2). Our study results show that the FFitts 

model is strong in predicting finger touch input 

performance, and it outperforms conventional Fitts’ law 

with either a nominal target width (Eq. 1, hereafter referred 

to as ܦܫ  model) or an “effective target” width (Eq. 3, 

hereafter referred to as ܦܫ model) in both 1D and 2D Fitts’ 

aimed movement tasks, as well as in a text entry task in 
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which the Digraph-Fitts model [16] was used to predict text 
entry speed.  

The contributions of this paper are two-fold: 

1) We propose the dual-distribution hypothesis to interpret 
the distribution of endpoints for finger input.  

2) We derive the FFitts law (Eq. 2) model based on the 
dual-distribution hypothesis: 

 ܶ = ܽ + ܾ logଶ ቌ 
ටଶగ(ఙమିఙమೌ)

+ 1ቍ              (2) 

where ߪis the standard deviation of the touch points, and ߪ 
reflects the absolute precision of the input finger, which is 
independent of the task.  

To our knowledge this is the first time Fitts’ law has been 
systematically and successfully extended to finger input on 
phone-sized touchscreens. In three experiments we show 
that this model is able to better predict finger touch 
performance than the conventional forms of Fitts’ law. 

RELATED WORK 

Effective Width Adjustment Method 
Fitts’ law in its original form predicts human (performer) 
movement time from the nominal task parameters of target 
distance (A) and target width (W). The logarithm of the 
ratio A/W, measured in bits, was viewed as the task’s index 
of difficulty. It was realized that the performer may over- or 
under-utilize the target size W. In other words the 
performer’s actual pointing precision could be different 
from the nominal task specification [9, 18, 21].  The most 
common way of compensating for this discrepancy is to 
replace the nominal target width W with the so-called 

effective width, ܹ = ξ2ߪ݁ߨ , hence:  

ܶ = ܽ + ܾ logଶ ቀ 
ξଶగߪ + 1ቁ                               (3) 

The justification for the use of ܹ  is commonly traced to 
Welford [21], which in turns attributes it to Crossman [9]. 
Crossman’s reasoning of ܹ  relies on an information-
theoretic metaphor. logଶ ܹ  was viewed as the entropy of 
the endpoint distribution. Since endpoints are observed to 
be normally distributed about the center of the target, the 
theoretically correct expression for endpoint entropy ()ܪ, 

is ()ܪ = logଶ ξ2[21 ,9,18] ߪ݁ߨ. 

Although this information-theoretic foundation is only 
metaphorical without stronger or more rigorous basis, 

adjusting effective width based on ξ2ߪ݁ߨ  has been 
advocated by many researchers of Fitts’ Law. For example, 
MacKenzie [18] suggested that “this adjustment lies at the 
very heart of the information-theoretic metaphor that 
movement amplitude area analogous to ‘signals’ and end-
point variability (via target width) is analogous to ‘noise’.” 
(section 3.4 Effective Target Width, paragraph 2, p 106). 

Recently, Zhai et al. [25] empirically investigated the effect 
of using effective width vs. nominal width. Their work 
showed (although not completely) that ܦܫ  partially 
compensated for subjective accuracy choice and reduced 
the discrepancy of a and b estimates between different 
experimental conditions. The R2

 value of T vs. ܦܫ  
regression across different operating biases was higher than 
the R2

 value of T vs. ܦܫ regression.  

Given the justification from information-theoretic metaphor 

and empirical foundation, adjusting W based on ξ2ߪ݁ߨ has 
been widely adopted if the observed error rates deviate 
from 4%. In this paper, we are particularly interested in 
whether ܦܫ  would also compensate for a finger’s 
imprecision and compare the ܦܫ  model with the proposed 

FFitts index of difficulty ܦܫ .  

Fitts’ Law and Finger Input 
There has been an increasing interest in understanding the 
“Fat Finger” problem, and examining Fitts’ Law for finger 
input.  

As a key input modality for touchscreens, touch input has 
been extensively studied by many researchers. Holz and 
Baudisch’s research [13] showed that the offsets of touch 
point locations from the intended point were affected by the 
angles between the finger and the touch surface (i.e., pitch, 
roll and yaw). In the following studies [14], they discovered 
that users relied on the visual features of fingers such as 
finger outlines and nail outlines for placing the touch 
points. As touchscreen hardware usually reported the 
centroid of the contact area between the finger and the 
touchscreen as the touch point, the registered position could 
be very different from the perceived touch point.  

Cockburn et al. [8] recently compared finger input, stylus 
and mouse in tap, drag and radial pointing tasks.  The 
results showed that the completion time of finger tap and 
drag strongly conformed to the  ܦܫ  model, though the error 
rate was high (around 12%) when W = 5 mm. W values in 
their study varied in a wide range (W = 5, 12.5, and 20 
mm). They did not particularly investigate small target 
acquisition tasks.  

Sasangohar et al. [20] conducted a Fitts’ Reciprocal 
Tapping task to evaluate mouse and touch input on a 
tabletop display. Their study also showed very high error 
rates when targets were small: the error rates were above 
20% with targets in which W = 5mm. They did not report 
the regression results for Fitts’ law.    

Lee and Zhai [15] studied soft button finger tapping 
performance on smartphones. It is interesting to note that 
Fitts’ law in its traditional form clearly did not work well 
for their tasks. When the target was smaller, finger touch 
performance degraded much faster than Fitts’ law would 
have predicted. 

Xiaojun Bi, Yang Li, Shumin Zhai: FFitts Law: Modeling Finger Touch with 
Fitts’ Law, ACM CHI 2013, http://yangl.org/pdf/ffits.pdf 
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Take-away message
• Three on-going research challenges with 

touch and pen input
– device support
– gestural input
– occlusion & fat fingers

• Approaches:
– analyzing interaction using the kinematic chain
– apply, extend and test existing theories from other 

fields (psychology, mathematics, linguistics, physics)

• In particular: the body’s spatial relationship 
affects interaction performance and perceived 
comfort (was that the case in desktop env.?)

16



LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II  — WS2013/14                                                    Slide

Mobile Technologies

17

context and task

challenges

input technologies

challenges in interaction 
design

output technologies



LMU München — Medieninformatik — Andreas Butz — !Mensch-Maschine-Interaktion II  — WS2013/14                                                    Slide

Mobile

context and 
task

challenges

input 
technologies

challenges in 
interaction 
design

output 
technologies

Touch Input
• Resistive Touch
• Capacitive Touch
• Tangibles on capacitive touch screens

18
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Resistive touch screen
[http://de.wikipedia.org/wiki/Touchscreen]

• Two sheets of 
conductive, transparent 
material

• Connected by finger or 
pen pressure

• Resistance 
measurements
– Between X electrodes
– Between Y electrodes

http://de.wikipedia.org/wiki/Touchscreen
http://de.wikipedia.org/wiki/Touchscreen
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Capacitive Touch: e.g. iPad + iPhone
http://electronics.howstuffworks.com/iphone2.htm 

20

http://electronics.howstuffworks.com/iphone2.htm
http://electronics.howstuffworks.com/iphone2.htm
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CapWidgets [Kratz et al. CHI 2011]

21
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Sketch-a-TUI [Wiethoff et al. TEI 2012]

• Prototyping approach for TUIs on capacitive touch 
screens

• Uses conductive ink to transfer touch
• Same principle can be used on all capacitive surfaces

22
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Sensor-based input
• accelerometers
• magnetometers
• proximity sensors

23
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• Multi-touch display or keypad
• GPS sensor (location)
• Accelerometer (orientation)
• Magnetometer (heading)
• Distance sensor (proximity)
• Ambient light sensor (brightness)
• RFID/NFC readers (tags)
• Camera

Sensors in Current Mobile Devices

MagnetometerAccelerometer
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Source: Rekimoto: Tilting Operations for Small 
Screen Interfaces, 1996

How do Accelerometers work?

• Measure acceleration
– Change of velocity

• Causes of acceleration
– Gravity, vibration, human movement, etc.

• Typically three orthogonal axes
– Gravity as reference

• Operating principle
– Conceptually: damped mass on a spring
– Typically: silicon springs anchor a silicon wafer to controller 
– Movement to signal: Capacitance, induction, piezoelectric etc.

• Derive position by integration
– Problem: drift
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http://www.youtube.com/watch?v=Wtcys_XFnRA http://www.youtube.com/watch?v=Hh2zYfnvt4w

Accelerometer Uses

http://www.youtube.com/watch?v=KymENgK15ms
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Accelerometers
Health & Fitness: “Sleep Cycle”
• Uses accelerometer to monitor movement during sleep
• Uses motion to find best time to ring alarm 

(within 30 min window)
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Shoogle: Shaking Mobile Phones Reveals 
What’s Inside
• Accelerometer input
• Sonification
• Vibrotactile display

John Williamson, Dynamics and Interaction Group, Glasgow University
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Shoogle: Shaking Mobile Phones Reveals 
What’s Inside

http://www.youtube.com/watch?v=AWc-j4Xs5_w
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Source: Dachselt, Buchholz: 
Natural Throw and Tilt Interaction 
between Mobile Phones and Distant 
Displays. CHI 2009.

• Throw gesture to move content between display types
• Tilt gestures to navigate large display content

Throw and Tilt: Mapping Gestures 
to Meaning
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How do Magnetometers work?
• Measure strength and direction of magnetic field

– Have to be calibrated

• Causes of magnetic fields
– Earth’s magnetic field (varies from place to place)
– Electro magnetic interference (EMI)

• Typically three orthogonal axes
– Magnetic north as reference

• Operating principle
– Rotating coil, hall effect, etc.

• Technical parameters
– Sensitivity to EMI
– Update rate

KM51 Magnetic Field Sensor
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Using Magnetometers: MagiTact

32

http://magitact.com/

MagiMusic: using embedded compass (magnetic) sensor for touch-less gesture based 
interaction with digital music instruments in mobile devices, H Ketabdar et al., TEI 2011

http://magitact.com
http://magitact.com
http://dl.acm.org/citation.cfm?id=1935749
http://dl.acm.org/citation.cfm?id=1935749
http://dl.acm.org/citation.cfm?id=1935749
http://dl.acm.org/citation.cfm?id=1935749
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Side-of-Device Interaction: SideSight
• Useful if device is placed on table
• Distance sensors along device edges

– Multipoint interactions

• IR proximity sensors
– Edge: 10x1 pixel “depth” image

Left and right “depth” images

Butler, Izadi, Hodges. SideSight: Multi-“touch” Interaction Around Small Devices. UIST’08.
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Side-of-Device Interaction: SideSight

Butler, Izadi, Hodges. SideSight: Multi-“touch” Interaction Around Small Devices. UIST’08.
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Using further sensors
• shearing: Shear
• bending: Gummi
• bending with flexible displays

• sound propagation: Skinput
• EMG senors: Myo

35
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Shear (Chris Harrison et al. CHI 2012)

36

http://www.chrisharrison.net/index.php/Research/ShearTouch

http://www.chrisharrison.net/index.php/Research/ShearTouch
http://www.chrisharrison.net/index.php/Research/ShearTouch
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Bending: Gummi (Schwesig, Poupeyrev, 2002)

37

http://www.youtube.com/watch?v=W0g-SZTrFdY

http://www.youtube.com/watch?v=W0g-SZTrFdY
http://www.youtube.com/watch?v=W0g-SZTrFdY
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Lahey,'Girouard,'Burleson,'Vertegaal.'PaperPhone:'Understanding'the'Use'of'Bend'Gestures'in'
Mobile'Devices'with'Flexible'Electronic'Paper'Display.'CHI'2011.

PaperPhone: Bend Gestures in Mobile 
Devices with Flexible E-Paper Display

Use device as watch… …detach, use as PDA
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Lahey,'Girouard,'Burleson,'Vertegaal.'PaperPhone:'Understanding'the'Use'of'Bend'Gestures'in'
Mobile'Devices'with'Flexible'Electronic'Paper'Display.'CHI'2011.

PaperPhone: Bend Gestures in Mobile 
Devices with Flexible E-Paper Display
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Skinput
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http://www.chrisharrison.net/index.php/Research/Skinput

http://www.chrisharrison.net/index.php/Research/Skinput
http://www.chrisharrison.net/index.php/Research/Skinput
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MYO - muscle input
• http://www.youtube.com/watch?v=oWu9TFJjHaM

41

http://www.youtube.com/watch?v=oWu9TFJjHaM
http://www.youtube.com/watch?v=oWu9TFJjHaM
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Take-home Message
• Input on mobile devices can be much more 

than (touch) screen input
– think beyond classical GUIs
– find interactions appropriate to the task
– add more sensors if needed
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