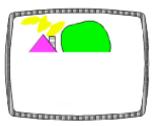
# 11. Weitere Bild- und Bewegtbildformate

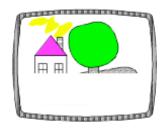
11.1 Stufenweise Anzeige: Progressives und hierarchisches JPEG

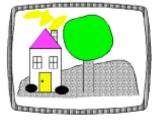


- 11.2 Verlustfreie prädiktive Bildkompression: JPEG-LS
- 11.3 Wavelet-basierte Bildkompression: JPEG 2000
- 11.4 Aktuelle Bildformate
- 11.5 Aktuelle Bewegtbildformate

### **Progressives JPEG**


- Ein Durchlauf (scan) durch die JPEG-Daten kann Verschiedenes bewirken:
  - Ausgabe einer Komponente des Bildes
  - Ausgabe einer unscharfen Vorversion des Bildes
- Progressive Coding verbessert die Bildqualität in aufeinander folgenden scans.



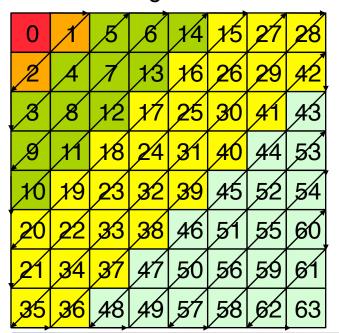






Progressive








Sequential

TISO0730-93/d009

## Progressive Kodierung durch Spektralselektion

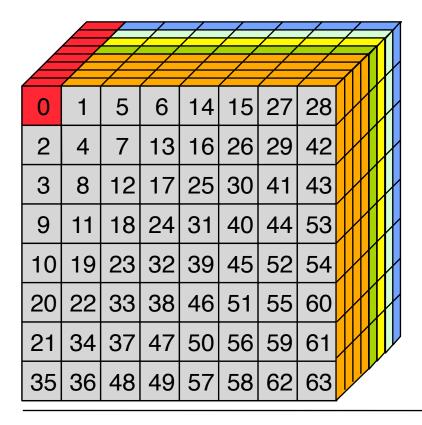
- 8x8-Block von DCT-Koeffizienten
  - Zick-Zack-Reihenfolge geht von niedrigen Frequenzen (wenig Detail) zu hohen Frequenzen (viel Detail).
- Band: Teilintervall der Bildfrequenzen
  - als Intervall der DCT-Koeffizienten
- Je Band ein separater scan
  - Bandgrenzen im scan header angegeben



Beispiel: 5 Bänder (d.h. 5 scans)

Band 1: DCT-Koeffizient 0 (DC)

Band 2: DCT-Koeffizienten 1 – 2


Band 3: DCT-Koeffizienten 3 – 14

Band 4: DCT-Koeffizienten 15 – 42

Band 5: DCT-Koeffizienten 43 – 63

# Progressive Kodierung durch Bit Plane Approximation

- Koeffizienten werden zunächst mit geringerer Präzision übertragen
  - Division mit Zweierpotenz bzw. Rechts-Shift (point transform)
  - Definition der verwendeten Transformation im scan header
- Fehlende Bits werden in weiteren scans nachgeliefert



Beispiel: 6 scans

Scan 1: DCT-Koeffizient 0 (DC)

Scan 2: Bits 4 – 7 der DCT-Koeffizienten 1 – 63 (d.h. der AC-Koeffizienten)

Scan 3: Bit 3 der AC-Koeffizienten

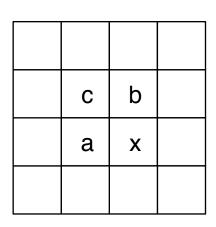
Scan 4: Bit 2 der AC-Koeffizienten

Scan 5: Bit 1 der AC-Koeffizienten

Scan 6: Bit 0 der AC-Koeffizienten

## **JPEG Progressive Coding**

- Einfachste Variante:
  - Ausschließlich Spektralselektion
  - Relativ schlechte Bildqualität in den Zwischenstufen
- Flexiblere Variante:
  - Spektralselektion und sukzessive Approximation
  - Je Band der Spektralselektion:
  - mehrere Scans mit bitweiser Verfeinerung der Auflösung
  - Endqualität und Kompression gleichwertig zu sequentieller Codierung
- Praktische Bedeutung:
  - Progressive JPEG findet nur geringe Akzeptanz
  - Konzepte sind dennoch interessant
- Hierarchisches JPEG:
  - Differentielle Codierung von Folgebildern besserer Auflösung
  - Fast ungebräuchlich


# 11. Weitere Bild- und Bewegtbildformate

- 11.1 Stufenweise Anzeige: Progressives und hierarchisches JPEG
- 11.2 Verlustfreie prädiktive Bildkompression: JPEG-LS



- 11.3 Wavelet-basierte Bildkompression: JPEG 2000
- 11.4 Aktuelle Bildformate
- 11.5 Aktuelle Bewegtbildformate

# Prädiktoren für JPEG (Lossless Operation Mode)



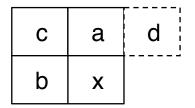
- Prädiktor = Formel zur Berechnung des x-Wertes aus dem Kontext (hier Werte für a, b, c)
  - Prädizierter Wert Px und tatsächlicher Wert Rx
  - Übertragen werden: Prädiktor-Regel und Differenzen Px – Rx
  - Je besser Px mit Rx übereinstimmt, desto häufiger treten Null und sehr niedrige Differenzen auf: Gute Kompression mit Entropiecodierung möglich
- Eindimensionale Prädiktoren:

$$- Px = Ra, Px = Rb, Px = Rc$$

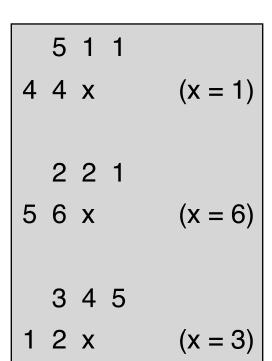
Zweidimensionale Prädiktoren:

$$- Px = (Ra + Rb)/2$$

$$- Px = Ra + (Rb - Rc)/2$$

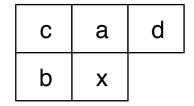

$$- Px = Rb + (Ra - Rc)/2$$

$$- Px = Ra + Rb - Rc$$
 ("Paeth-Prädiktor")


### JPEG-LS

- 1998:
  - Final *Draft* International Standard ISO 14495-1 / ITU Rec. T.87
- Verlustfreie und fast verlustfreie Kompression von Standbildern
  - Hohe Kompressionsrate, geringe Komplexität
  - Unabhängig vom JPEG-Standard
- Basiert auf "LOCO-I" (Low Complexity Image Compression)
  - HP Labs: M. Weinberger, G. Seroussi, G. Sapiro
  - Bessere Einbeziehung des Kontextes in Prädiktion
  - Einfache Kantenentdeckung möglich
  - Entropie-Codierung: Adaptive Variante der Golomb-Rice-Kodierung
- Frühere Algorithmen: entweder wesentlich komplexer oder benutzten arithmetische Entropie-Kompression.
- Derzeit noch kaum im praktischen Einsatz

### Prädiktionsmodell von JPEG-LS



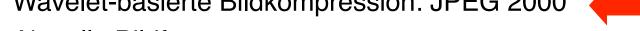

- Px = min(Ra, Rb) falls  $Rc \ge max(Ra, Rb)$
- Px = max(Ra, Rb) falls  $Rc \le min(Ra, Rb)$
- Px = Ra + Rb Rc sonst
- Wert von d für "Kontexterkennung" benutzt



- Einfache Kantenerkennung (median edge detector):
  - Vertikale Kante links von x: führt (oft) zur Wahl von Px = Ra
  - Horizontale Kante oberhalb von x: führt (oft) zur Wahl von Px = Rb
  - Keine Kante erkannt:
     Px entsprechend einer Ebene durch Ra, Rb, Rc

## Verwendung von Kontextinformation



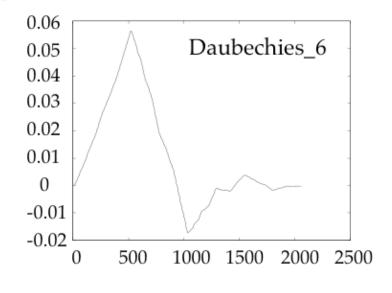

- Kontextbestimmung
  - -g1 = Rd Rb, g2 = Rb Rc, g3 = Rc Ra
  - Einteilung in 365 verschiedene Kontextsituationen
- Adaptive Korrektur der Prädiktion:
  - Je Kontext:
    - » Zahl der Kontextvorkommen mitrechnen
    - » Bisherige Vorhersagefehler kumulieren
  - Prädiktionswert um bisherigen durchschnittlichen Vorhersagefehler korrigieren
- Kontextinformation auch benutzt zur Wahl des Code-Typs in spezieller Entropiecodierung

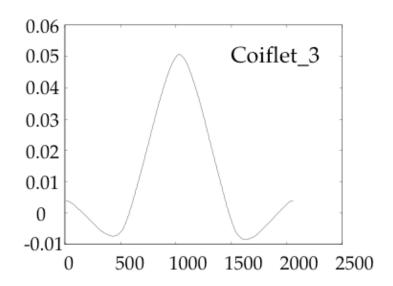
## **Golomb-Rice Codierung**

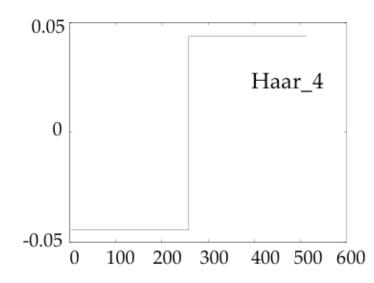
- Grundidee: Entropie-Codierung für (Ganz-)Zahlwerte mit geometrischer Häufigkeitsverteilung
  - Niedrige Werte häufiger und deshalb kürzer codiert
  - Trifft bei den Restwerten (Residuen) von Prädiktion meist zu
- Golomb-Codierung (Solomon Golomb, 60er Jahre):
  - Bestimme Quotient q und Rest r zu einem festen Divisor M
  - Codiere q als Unärzahl, r als abgeschnittene Binärzahl
- Golomb-Rice-Codierung:
  - Divisor M ist Zweierpotenz
- Praktischer Algorithmus (Golomb-Rice-Codierung der Ordnung k):
  - Teile n durch 2<sup>k</sup>, Quotient ist q, Rest ist r
  - Bilde Codewort aus: (q-mal 0), (1-mal L), k letzte Bits der Binärform von n
- Beispiel (k = 2):
  - n = 3: q = 0, r = 3, Code ist **LLL**
  - n = 13: q = 3, r = 1, Code ist **000L0L**

# 11. Weitere Bild- und Bewegtbildformate

- Stufenweise Anzeige: Progressives und hierarchisches JPEG 11.1
- Verlustfreie prädiktive Bildkompression: JPEG-LS
- Wavelet-basierte Bildkompression: JPEG 2000





- 11.4 Aktuelle Bildformate
- 11.5 Aktuelle Bewegtbildformate


### **Wavelets**


- Wavelets sind spezielle mathematische Funktionen, die sich als "Basis" zur Erzeugung beliebiger Wellenformen besonders gut eignen.
  - "kompakte Unterstützung", d.h. null außerhalb eines endlichen Intervalls
  - unendlich oft differenzierbar
  - orthonormale Basis
- Ermöglichen Zeit- bzw. Ortsanalyse und Frequenzanalyse
- Historische Perspektive:
  - Erste Ideen ca. um 1900 (Haar)
  - Grosse Entwicklungssprünge ab 1960, insbesondere in den 80ern (Mallat, Daubechies)
  - Anwendungen in verschiedenen Disziplinen:
    - Beispiele: Fingerabdruckerkennung, Analyse von Turbulenzen, Erdbebenvorhersage ... und Bildkompression

## **Beispiele von Wavelets**









## Frequenz- und Zeit/Ortanalyse

- Klassische Transformation in den Frequenzraum (Fourier, DCT):
  - Sinus- und Cosinus-Funktionen wiederholen sich periodisch
  - Fourier-Transformation arbeitet sogar mit periodischer Fortsetzung nichtperiodischer Funktionen
  - Analyse bezieht sich immer auf die gesamte Zeitachse (z.B. bei Ton) bzw. gesamte Ortsachse (bei Bild)
- Gleichzeitige präzise Auflösung in der Zeit/Ortsachse und in der Frequenz nicht erreichbar
  - Abhilfe z.B. bei JPEG und MP3: Einteilung in kleine Blöcke/Zeitfenster
  - Probleme bei Blockgrenzen und bei Diskontinuitäten
- Wavelets:
  - erlauben eine Mischung aus langen Wavelet-Funktionen für Frequenzanalyse und kurzen, hochfrequenten Wavelet-Funktionen für Zeit/ Ortanalyse

### Grundprinzip der Wavelet-Analyse

- Bild wird zerlegt in
  - Tiefe Frequenzanteile (Tiefpass)
  - Hohe Frequenzanteile (Hochpass) = Details
- Zeilen- und spaltenweise Analyse mit Filtern
  - Vier Bilder:(TP-hor + TP-vert, HP-hor + TP-vert, TP-hor + HP-vert, HP-hor + HP vert)
- Subsampling: Jeder zweite Koeffizient verworfen in Zeilen und Spalten
- Rekursive Fortsetzung mit dem Teilbild "TP-hor + TP-vert" (= Tiefpass-gefiltertes Bild)
- Verlustfreie Transformation!



### Kompression bei Wavelet-Transformation

- Die hohen Frequenz-Koeffizienten k\u00f6nnen quantisiert (gerundet) werden
  - Basis der Darstellung ist das niederfrequent gefilterte Bild
- Flexibler Kompressionsgrad
  - Mehr hohe Frequenzen quantisiert: Bild beruht auf stärkerer Tiefpass-Filterung, also schlechtere Qualität
  - Verschiedene Kompressionsraten aus einer Basisinformation
- Kompression führt kaum zu Block-Artefakten



# Beispiel für Tiefpass und Hochpass

- (Nach Heyna/Briede/Schmidt)
- Haar-Transformation:

$$- TP(n) = 0.5 (x(n) + x(n+1))$$

$$- HP(n) = 0.5 (x(n) - x(n+1))$$

|                       | x(0) | x(1) | x(2) | x(3) | x(4) |
|-----------------------|------|------|------|------|------|
| Original-Pixelwerte   | 26   | 8    | 17   | 3    | 5    |
| TP-Koeffizienten      | 17   | 12.5 | 10   | 4    |      |
| HP-Koeffizienten      | 9    | -4.5 | 7    | -1   |      |
| Subsampling TP-Koeff. | 17   |      | 10   |      |      |
| Subsampling HP-Koeff. | 9    |      | 7    |      |      |

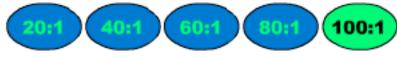
#### Rekonstruktion:

$$x(0) = TP(0) + HP(0) = 17 + 9 = 26$$

$$x(1) = TP(0) - HP(0) = 17 - 9 = 8$$
 usw.

### **JPEG2000**

- März 1997
  - Start der Entwicklung eines verbesserten Standards für Bildkompression "JPEG 2000" (".j2k")
  - Bessere verlustbehaftete Kompression als JPEG (mit Wavelets)
  - Leistungsfähige verlustfreie Kompression als Option
  - In Auflösung und Präzision lokal skalierbare Bilder
  - Wahlfreier Zugriff auf Bildteile in höherer Auflösung
  - Einbeziehung von Schwarz/weiss-Bildern
- Final Draft International Standard August 2000
  - Draft ISO 15444-1 und ITU Rec. T.800
  - Entwicklung seit 2000 nur noch sehr langsam
  - Praktischer Einsatz z.B. im medizinischen Bereich, im neuen Reisepass
- Grundarchitektur wie bei JPEG:
  - Forwärtstransformation (Discrete Wavelet Transform DWT)
  - Quantisierung (oder verlustfrei)
  - Entropiecodierung (hier mit arithmetischer Codierung)


### **Qualitätsunterschied JPEG – JPEG2000**

AWARE'S JPEG2000 SDK DEMO
JPEG vs JPEG 2000 Comparison





JPEG 2000 PSNR = 28.7



Compression Ratio (click to select)

Quelle: www.aware.com

# Region-of-Interest (ROI) Coding in JPEG2000

- Bestimmte (beliebig geformte) Regionen des Bildes oft "interessanter" als der Hintergrund (region of interest ROI)
- ROI kann mit besserer Qualität codiert werden als der Hintergrund
- Sogenannter "MAXSHIFT"-Algorithmus platziert die ROI an einer Stelle (höhere bitplane), wo sie zeitlich vor dem Hintergrund decodiert wird



# 11. Weitere Bild- und Bewegtbildformate

- 11.1 Stufenweise Anzeige: Progressives und hierarchisches JPEG
- 11.2 Verlustfreie prädiktive Bildkompression: JPEG-LS
- 11.3 Wavelet-basierte Bildkompression: JPEG 2000
- 11.4 Aktuelle Bildformate



11.5 Aktuelle Bewegtbildformate

### JPEG XR

- Microsoft-spezifische Fotoformate:
  - "Windows Media Photo", eingeführt mit Windows Vista
  - 2006 umbenannt in "HD Photo"
  - Seit 2009 ISO-Standard unter dem Namen "JPEG XR"
- Ähnlich zu JPEG
  - Photo Core Transformation (PCT), ähnlich zu DCT
  - Auf verschobenen 4x4-Blöcken arbeitende "Photo Overlap Transformation" vermeidet Blockartefakte
- Vorteile gegen JPEG:
  - Verlustfreie und verlustbehaftete Kompression in einem Verfahren
  - Direkter Zugriff auf Bildkacheln (Regionen)
  - Unterstützung für extrem hohe Farbtiefen (48 bit)
    - » Ziel: High Dynamic Range (HDR) Fotografie
  - Echter Alpha-Kanal



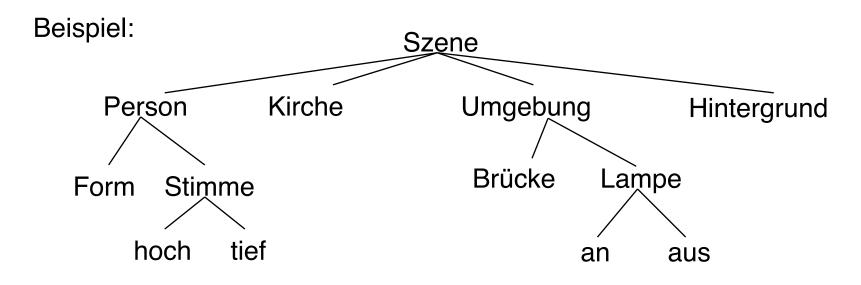
### **WebP**

- Kompressionsverfahren für Foto-Bilder
  - Von Google entwickelt (Ankauf von on2) und als offener Standard verbreitet
  - Freigabe 30. September 2010
  - Verlustfreie und verlustbehaftete Varianten, echter Alpha-Kanal
  - Basiert auf dem Video-Standard VP8, analog zum Videoformat "WebM"
  - Verwendet RIFF-Container zur Datenablage
- Basiert mehr auf Prädiktion von Pixelwerten im Vergleich zu JPEG
  - vgl. PNG/Paeth-Prediktor oben
- Quantisierung von Residual-Werten
  - d.h. Differenz zwischen prädiziertem und tatsächlichem Wert
- Google-Studien (sh. developers.google.com/speed/webp/):
  - Verlustfreies WebP 26% kleiner als vergleichbares PNG
  - Verlustbehaftetes WebP 25-34% kleiner als vergleichbares JPEG

# 11. Weitere Bild- und Bewegtbildformate

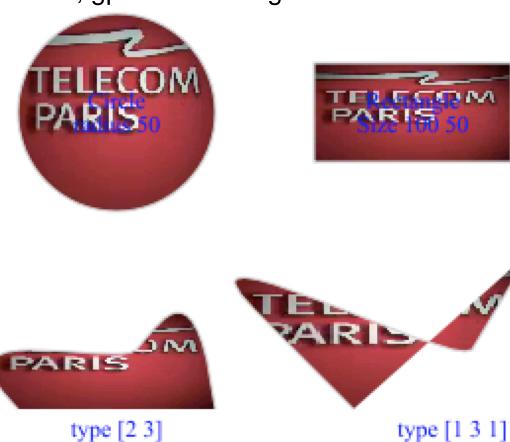
- 11.1 Stufenweise Anzeige: Progressives und hierarchisches JPEG
- 11.2 Verlustfreie prädiktive Bildkompression: JPEG-LS
- 11.3 Wavelet-basierte Bildkompression: JPEG 2000
- 11.4 Aktuelle Bildformate
- 11.5 Aktuelle Bewegtbildformate




### **Motion JPEG**

- M-JPEG oder "Motion JPEG"
- Einfacher "Standard" für Bewegtbilder
  - Folge von JPEG-Bildern
  - Sehr einfach für Filmschnitt
  - Z.B. für Filmclips auf Fotokameras
- Aber:
  - nicht standardisiert
  - Begriff wird von Herstellern verwendet, Format aber proprietär
- JPEG2000
  - "offizielle" Motion-Erweiterung "Motion JPEG2000" (MJ2, MJP2)
  - Teil 3 des JPEG2000-Standards

# **MPEG-4 Media Objects**



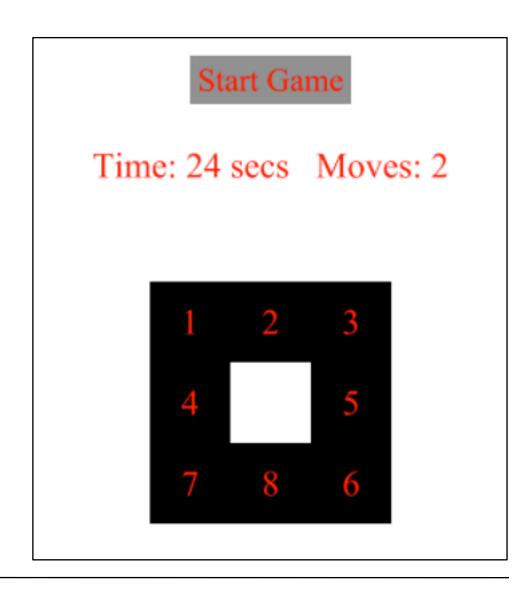

- Media Objects
  - Beliebige audiovisuelle Datenformen, auch mit unregelmäßigen Grenzen
  - Z.B. Hintergründe, Video-Objekte (etwa Personen), Audio-Objekte, animierte
     Objekte (z.B. Avatare = Repräsentanten von Menschen in virtuellen Welten)
  - Synthetic Natural Hybrid Coding: Mischung aus künstlichen und abgetasteten Medienobjekten
  - Hierarchisch organisiert



### Demo: MP4-Video als Textur auf 2D-Konturen

Siehe: gpac.wp.mines-telecom.fr, gpac.sourceforge.net




Curve2D Points: 50 0, -100 50, 0 20, 10 30, 40 80, 50 0

## Szenenbeschreibung in MPEG-4

- BIFS (Binary Format for Scenes)
  - Basiert auf dem Standardformat für 3-dimensionale Szenen VRML/X3D
  - XML-basiertes Repräsentationsformat XMT, ähnlich zu SMIL
- Bäume von Medienobjekten sind dynamisch
  - Bestimmte Knoten können Objekte bewegen und modifizieren
    - » Z.B. abhängig vom Zeitverlauf
  - Interaktion mit Objekten
    - » Reaktion auf benutzererzeugte Ereignisse
    - » Verursacht Modifikation von Objekten
- Anwendungsbeispiele:
  - Interaktive Produktpräsentation im E-Commerce
  - Interaktives Video (z.B. Sprachversionen)
  - Virtuelle Konferenzen mit künstlich animierten Köpfen/Körpern und Möglichkeit zur Steuerung des "eigenen" virtuellen Repräsentanten

# **Demo: Interaktives Spiel in MPEG-4 (!)**

- Datei: arrange.mp4!
- Spiellogik in ECMAScript



### **WebM**



- Open-Source-Projekt für ein lizenzfreies Video-Containerformat
  - unterstützt von Google, Opera, Mozilla Foundation
  - Nachfolger von Ogg Theora an vielen Stellen im Web
  - YouTube-Pilotprojekt mit HTML5 und WebM
- Video-Codec VP8
  - Entwickelt von O2 Technologies (übernommen von Google)
  - Als IETF RFC dokumentiert
- Audio-Codec Vorbis
  - siehe Audio-Kapitel...
- Kritische Fragen:
  - Lizenzfreiheit von WebM praktisch durchsetzbar?
  - Was wird "das" Standard-Videoformat für HTML5?

### H.265 / MPEG HEVC

- Gemeinsame Standardisierung bei ISO/IEC (MPEG) und ITU-T
  - ITU H.265, MPEG High Efficiency Video Coding
  - Final Draft International Standard Januar 2013
- Vorteile:
  - Doppelte Kompressionsrate gegenüber H.264/AVC
  - Unterstützung sehr hoch auflösender Bildformate (UHD 4k und 8k) (bis zu 8192x4320)
- Coding Tree Blocks:
  - Makroblöcke in mehreren Größen (64x64, 32x32, 16x16), Baumstruktur
- Parallele Codierung von unabhängigen Bildteilen
- Arithmetische Codierung (!) CABAC
  - Context-adaptive binary arithmetic coding
- Intra-Frame-Codierung mit prädiktiven Verfahren

## Wie geht es weiter?

- Digitale Medien:
  - Die Entwicklung schreitet weiter voran:
  - Neue Formate
  - Neue Hardware: E-Book-Readers, Tablets, diverse mobile Geräte
  - Neue Software: Interaktive Medien, Web-Anwendungen ohne Request-Response-Charakteristik, ...
- Vorlesung/Praktikum "Medientechnik" Sommer 2013
  - Schwerpunkt auf praktischer Übung in Medienproduktion
  - Audio-, Foto-, Video-Praktikum
- Vertiefung der angesprochenen Themen:
  - "Computergrafik" (Pflicht 4. Sem. im Bachelor MI)
  - "Multimedia-Programmierung" (Vertiefendes Thema)