Mobile Input & Output Technologies

Mensch-Maschine-Interaktion 2, WS 2010/2011

Michael Rohs michael.rohs@ifi.lmu.de MHCI Lab, LMU München

Lectures & Exercises

Lecture	Date	Торіс
	112.1.	Mobile Device Platforms
	219.1.	Introduction to Mobile Interaction
	326.1.	Prototyping and Evaluation of Mobile Systems
	42.2.	Mobile Input & Output Technologies
	59.2.	Location & Context, UI Design for Small Displays

Exercise Date	Торіс
0	Developing countries + Android-Eclipse
110.1.	Recipe input
217.1.	Touch input, gestures
324.1.	Evaluation of mobile LMU Web portal
431.1.	Location-based audio

Mobile Text Entry

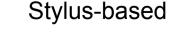
Partly based on slides by Scott MacKenzie: Text input for mobile devices by Scott MacKenzie. Tutorial at Mobile HCI 2008.

Text Entry on Mobile Devices

• Mobile text entry is huge

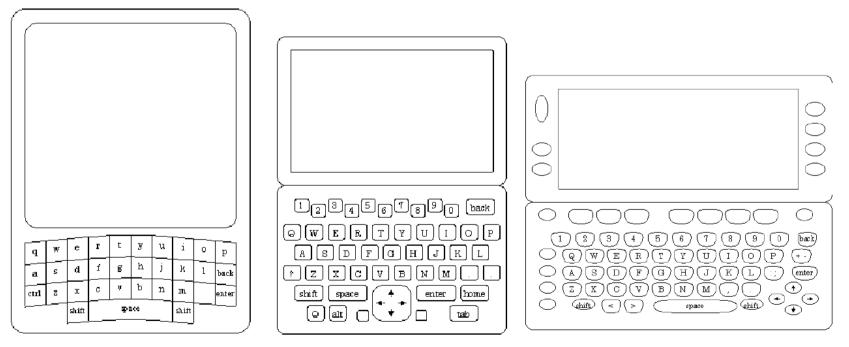
Source: http://digitaldaily.allthingsd.com/20091008/ omfg-4-1-billion-text-messages-sent-every-day-in-us/

- SMS (>2.5 billion users; 4.1 billion SMSs each day, US, 2009)
- Email, calendars, notes, passwords, etc.
- Small devices require alternative input methods
 - Smaller keyboards, stylus input, finger input, gestures
- Many text entry methods exist
 - Companies are ambitiously searching for improvements


Key-based

Finger-based

Tilt-based

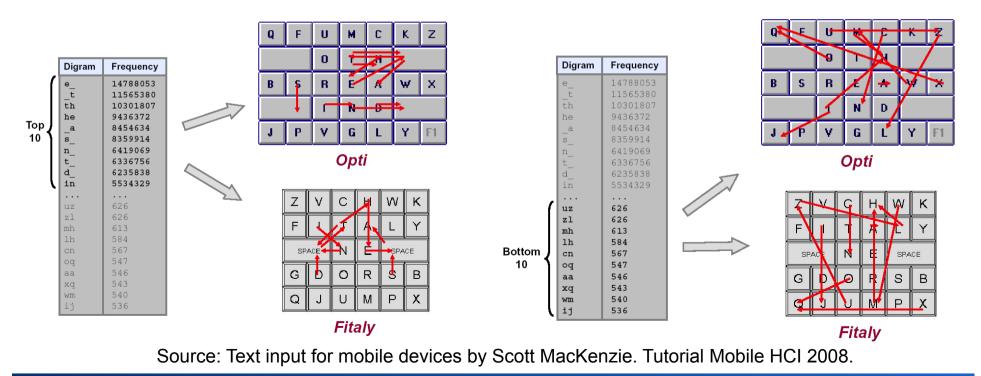

Mensch-Maschine-Interaktion 2

Text Entry Speed on Mobile Devices

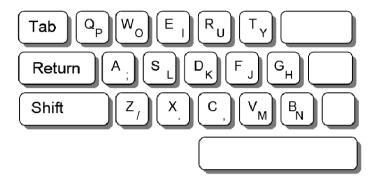
- Goal: High-speed entry at low error rates
 - Movement minimization
 - Low attention demand
 - Low cognitive demand
- Entry speeds depend on task type and practice
- Typical text entry speeds
 - Handwriting speeds: 13-22 words per minute (wpm)
 - Desktop touch typing: 60+ wpm
 - Soft (on-screen) keyboards:
 40+ wpm after lots of practice,
 typically 18-28 wpm for qwerty,
 5-7 wpm for unfamiliar layout

Keyboard Layouts for Mobile Devices

- Querty variations
 - Querty designed to be slow
 - Prevented typing machines from jamming
 - · alternate between sides of the keyboard


Dvorak Keyboard

- Speed typing by
 - Maximizing home row (where fingers rest)
 - Alternate hand typing
- Most frequent letters and digraphs easiest to type

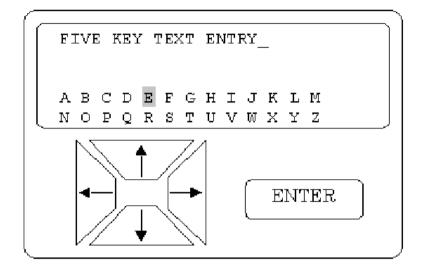

Fitaly and Opti Keyboards

- Designed for stylus input on soft (on-screen) keyboards
- Minimizing stylus movement during text entry
- Stylus movement for entering the ten most and least frequent digrams:

Half-Qwerty and ABC Keyboards

- Half-qwerty
 - One-handed operation
 - 30 wpm

- ABC keyboards
 - Familiar arrangement
 - Non-qwerty shape

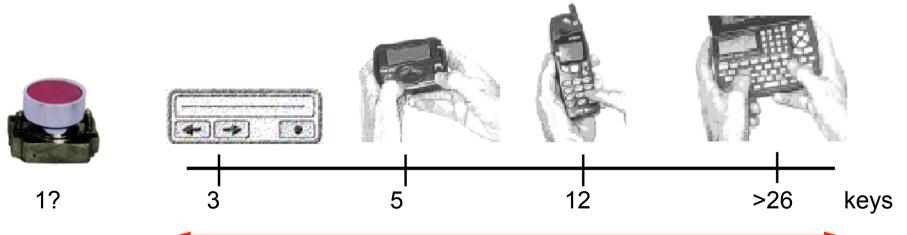


Source: Text input for mobile devices by Scott MacKenzie. Tutorial Mobile HCI 2008.

Mensch-Maschine-Interaktion 2

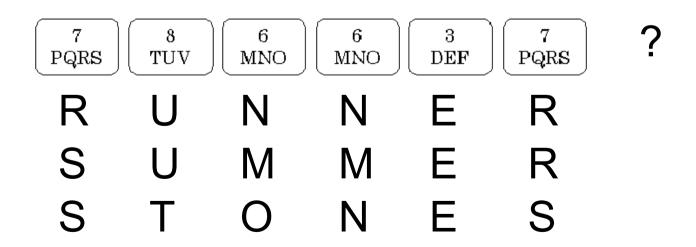
Very Small Devices

• 5 keys (e.g., pager)



• 3 keys (e.g., watch)

Keyboards and Ambiguity


- Keyboard miniaturization: Smaller keys, Less keys
- Unambiguous keyboards
 - One key, one character
- Ambiguous keyboards
 - One key, many characters
 - Disambiguation methods (manually driven, semiautomatic)

ambiguity continuum

Ambiguity

- Ambiguity occurs if fewer keys than symbols in the language
- Disambiguation needed to select intended letter from possibilities
- Typical example: Phone keypad

Unambiguous Keyboards

- One key, one character
- FasTap keyboard
 - Keys in space between keys
 - 9.3 wpm

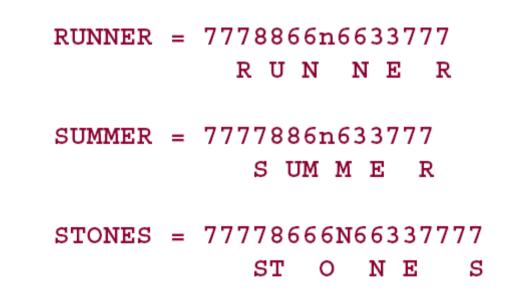
Ambiguous Keyboards

- One key, many characters
- Standard 12-button phone keyboard, larger variants

Twiddler, chord keyboard

Nokia N73

Blackberry 7100


Mensch-Maschine-Interaktion 2

Manual Disambiguation

- Consecutive disambiguation
 - Press key, then disambiguate
 - Example: Multitap
 - Disambiguating presses on same key (timeout or timeout kill)
- Concurrent disambiguation
 - Disambiguate while pressing key (via tilting or chord)
 - Example: Tilting
 - Tilt in a certain direction while pressing
 - Example: Chord-keyboard on rear of device
 - Not widely used

Disambiguation by Multitap

"n" = next character on key

Source: Text input for mobile devices by Scott MacKenzie. Tutorial Mobile HCI 2008.

Mensch-Maschine-Interaktion 2

TiltType, Univ. Washington

- Text input method for watches or pagers
- Press and hold button while tilting device
- 9 tilting directions (corners + edges)
- Buttons select to character set

Kurt Partridge et al.: TiltType: Accelerometer-Supported Text Entry for Very Small Devices. UIST 2002 technote portolano.cs.washington.edu/projects/tilttype



Mensch-Maschine-Interaktion 2

Dictionary-Based Disambiguation (T9)

- Term frequency RUNNER = 786637nn stored in dictionary RUNNE R
- Most frequent possibility presented first
- "n" = key for next frequent possibility

RUNNE R SUMMER = 786637 SUMMER STONES = 786637n

STONE S

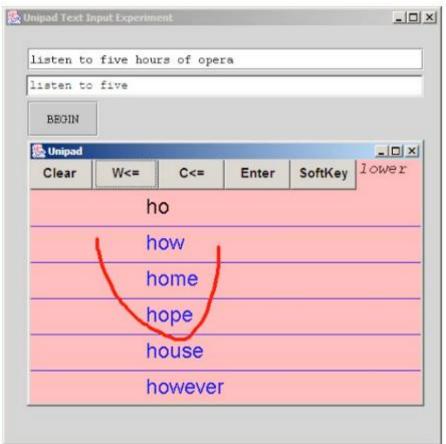
Simplified Handwriting: Unistroke

- Single-stroke handwriting recognition
 - Each letter is a single stroke, simple recognition
 - Users have to learn the strokes
 - "Graffiti" intuitive unistroke alphabet (5 min practice: 97% accuracy)

$$\bigwedge_{a} \underset{b}{\beta} \underset{c}{C} \underset{d}{D} \underset{e}{\varepsilon} \underset{f}{f} \underset{g}{f} \underset{h}{G} \underset{h}{h} \underset{i}{j} \underset{j}{j} \underset{k}{k} \underset{l}{h} \underset{m}{M}$$

$$\bigwedge_{a} \underset{b}{\beta} \underset{c}{\rho} \underset{d}{e} \underset{g}{f} \underset{f}{f} \underset{g}{f} \underset{h}{j} \underset{i}{j} \underset{i}{j} \underset{k}{k} \underset{l}{f} \underset{m}{M}$$

- Slow (15 wpm)
- Users have to attend to and respond to recognition process
- Recognition constrains variability of writing styles


Unipad: Language-Based Acceleration for Unistroke

- Speeding up stylus-based text entry
 - Eyes-free entry possible for unistroke
 - Look at suggestions during eyes-free unistrokes
- Language-based acceleration techniques
 - Word completion list based on corpus (word, frequency)
 - Tap candidate
 - Frequent word prompting ("for", "the", "you", "and", etc.)
 - Tap frequent word
 - Suffix completion based on suffix list ("ing", "ness", "ly", etc.)
 - Top-left to bottom-right stroke, tap suffix

MacKenzie, Chen, Oniszczak: Unipad: Single-stroke text entry with language-based acceleration. NordiCHI 2006.

Unipad: Acceleration by Word Completion

- Word completion example
 - User is entering word "hours"
 - State after two strokes ("ho")
- Experimental interface
 - First line shows text to enter
 - Second line shows text already entered
 - Pad below
 - Entering strokes
 - Word completion list

MacKenzie, Chen, Oniszczak: Unipad: Single-stroke text entry with language-based acceleration. NordiCHI 2006.

Unipad: Acceleration by Frequent Word

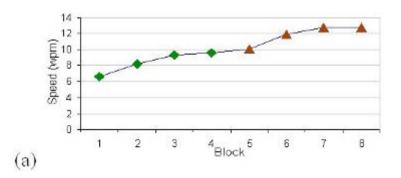
- Frequent word example
 - User is about to enter "of"
- Pad shows frequent word list
 - User taps "of"

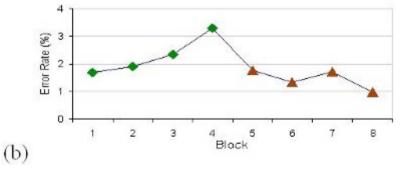
MacKenzie, Chen, Oniszczak: Unipad: Single-stroke text entry with language-based acceleration. NordiCHI 2006.

listen to	five hour	rs of ope	ra		
isten to	five hour	ra			
BEGIN					
🛃 Unipad					_ <u>_ </u> _ ×
Clear	W<=	C<=	Enter	SoftKey	lower
of			for		
а			the		
to			you		
is			and		
in			was		
it			that		

Unipad: Acceleration by Suffix Completion

- Suffix completion example
 - User is entering "parking"
 - State after 4 strokes ("park")
- Pad shows word completion list
 - User enters top-left to bottom-right stroke to show suffix list
- Pad shows suffix list
 - User taps "ing"


 $p a r \searrow \overset{s}{\bullet} (\overset{s}{\bullet} = tap entry in suffix list)$

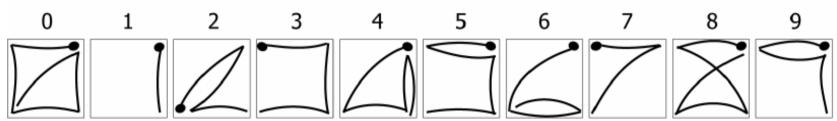

parking t	ickets ca	n be chall	enged		
BEGIN					
Unipad Clear	W<=	C<=	Enter	SoftKey	_ Oxer
	L		Linter	Johney] ful
pa	rk^	S			Tui
		ed			ing
er est ly able					ion
					ive
				n	nent
			ness		

MacKenzie, Chen, Oniszczak: Unipad: Single-stroke text entry with language-based acceleration. NordiCHI 2006.

Unipad: Performance

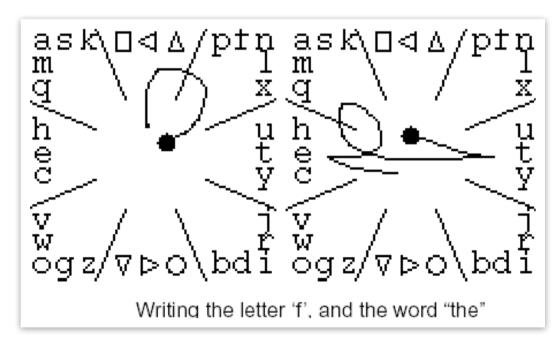
- Entry speed >40 wpm possible
 - KSPC \approx 0.5 (key strokes per character)
- Expert performance simulated on sentence "the quick brown fox jumps over the lazy dog" (43 chars)

MacKenzie, Chen, Oniszczak: Unipad: Single-stroke text entry with language-based acceleration. NordiCHI 2006.


EdgeWrite

- Provide physical constraints
- Moving stylus along edges and diagonals of square input area
- People with motor impairments
- Input = Sequence of visited corners

• Example: Digits


Wobbrock, Myers, Kembel: EdgeWrite: A stylus-based text entry method designed for high accuracy and stability of motion. UIST'03. <u>http://depts.washington.edu/ewrite/</u>

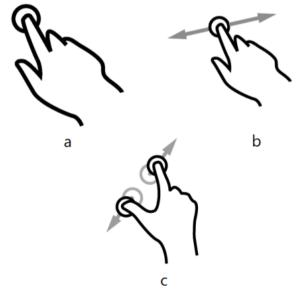
Mensch-Maschine-Interaktion 2

QuickWriting: Gesture-Based Input

- Combine visual keyboards with stylus movements
- Following a path through letters of the word to enter
- Motor memory for paths
- Reduced stress and fatigue compared to tapping

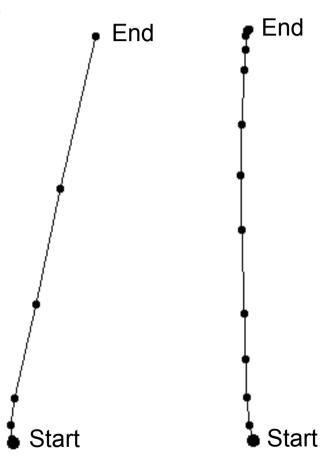
 Ken Perlin: Quikwriting: Continuous Stylus-based Text Entry. UIST'98.

Quickwriting, http://mrl.nyu.edu/~perlin/demos/Quikwrite2_0.html

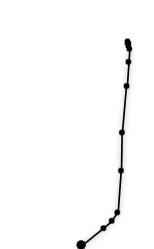

Swype

- Text entry via continuous swipes, lifting between words
- Guesses most likely word from language model
- Manual disambiguation possible
- Example: entering the word "quick":

- World record text message: 26 words typed in 25.94s
- http://www.swypeinc.com/product.html


Touch Screen Gestures

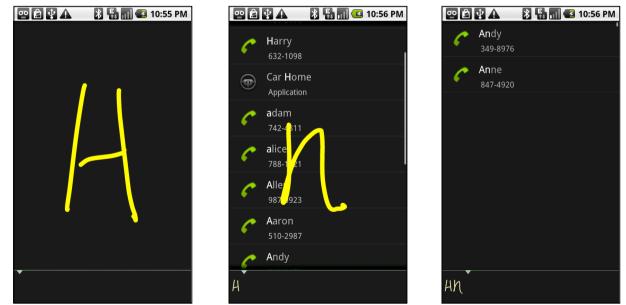
Source: GestureWorks.com


Which Gestures are These?

- Hint: one is "flick" and one is "drag"
- Relevant gesture parameters
 - Velocity profile
 - Shape
 - Direction

And this one?

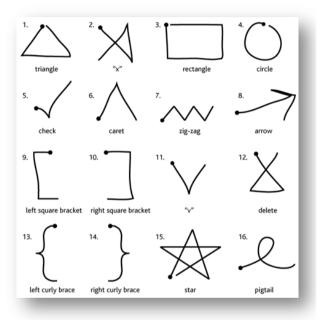
- Multi-touch pinch inwards
 - Typically mapped to "zoom out"
- Relevant gesture parameters
 - Number of touch points
 - Shape
 - Direction
- Challenge: finding intuitive mappings
 - Who should do this?
 - Developers? Designers? Users? Ergonomists?



Gesture Usage

- Letter and digit recognizer
 - Fixed gesture set
 - E.g., based on neural network classifier
 - Trained on large corpus of collected data
- User-customizable recognizer
 - Typically template based
 - Nearest-neighbor matching
- Usage
 - Shortcuts to frequent content
 - Contacts
 - Applications
 - Functionality: "take me home home"
 - Gesture location = operand, gesture shape = operation
 - Annotations, editing marks

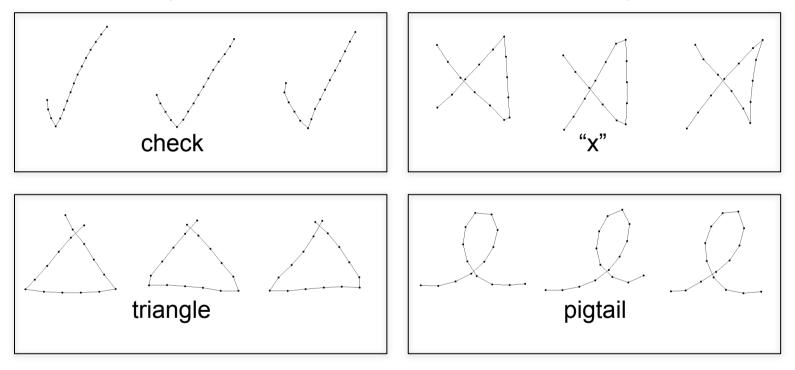
Example Application: Gesture Search


- Find items on Android phones
 - Contacts, applications, songs, bookmarks
 - Drawing alphabet gestures
- http://gesturesearch.googlelabs.com

Yang Li. Beyond Pinch and Flick: Enriching Mobile Gesture Interaction. IEEE Computer, December 2009. http://yangl.org/pdf/gesturelibrary-ieee2009.pdf

Recognition of Touch Screen Gestures

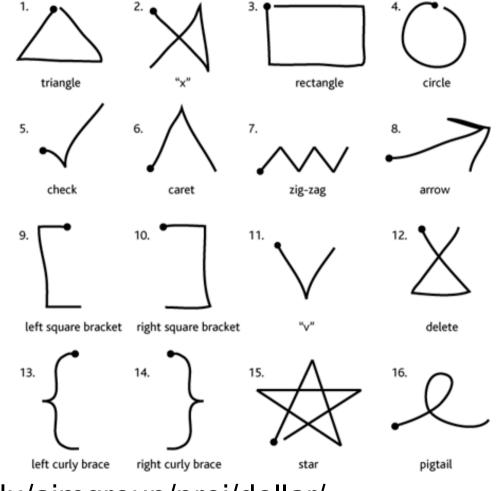
- Touch screens on many mobile devices
 - Mostly used for tapping (pointing tasks)
 - Suitable for swiping (crossing tasks)
 - Suitable for entering complex gestures
- Gesture recognition challenging
 - Pattern matching, machine learning
- Approaches for simple UI prototyping
 - \$1 Recognizer
 - Wobbrock, Wilson, Li. Gestures without Libraries, Toolkits or Training: A \$1 Recognizer for User Interface Prototypes. UIST 2007.
 - http://depts.washington.edu/aimgroup/proj/dollar/
 - Protractor
 - Li. Protractor: A Fast and Accurate Gesture Recognizer. CHI 2010.
 - http://yanglisite.net



Recognition of User-Defined Touch Screen Gestures

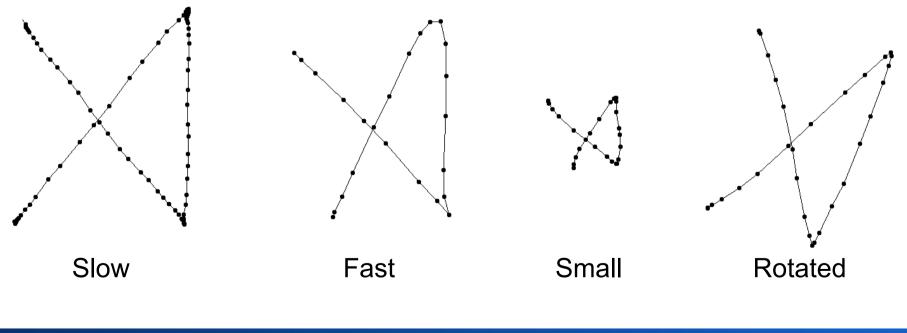
- Template-based recognizers
 - Template preserves shape and sequence of training gesture
 - Nearest neighbor approach
- Process
 - Store training samples as templates (multiple templates per gesture)
 - Compare unknown gesture against templates
 - Choose class of most similar template
- Advantages
 - Purely data-driven, customizable (no assumed underlying model)
 - Small number of examples per class sufficient
- Disadvantages
 - Comparison with all templates can be time and space consuming

Template-Based Recognizers


• Templates (4 classes, 3 examples per class)

• Query gesture

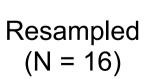
Gesture Set of "\$1 Recognizer"


- Unistroke gestures (touch – move – release)
- Dot indicates start point

http://depts.washington.edu/aimgroup/proj/dollar/

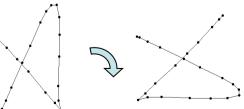
Variability in Raw Input

- Number and distribution of sample points depends on
 - Sampling rate
 - Movement speed and variability
 - Movement amplitude (scale)
 - Initial position and orientation

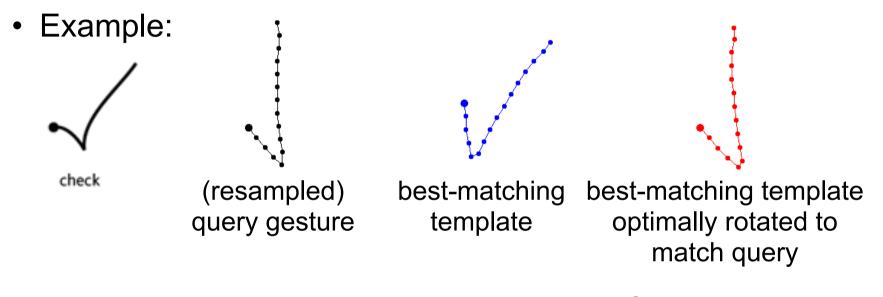


Preprocessing of Gesture Trace

- Resample to fixed number of points
 - E.g., N = 16 points
 - Linear interpolation
 - Length per step = pathLength / (N-1)
- Compute centroid c
- Translate by -c
 - Centered at origin
- Normalize v (to length 1)
 - Treat trace as vector of R^{2N} :


 $v = x_1, y_1, x_2, y_2, ..., x_N, y_N$

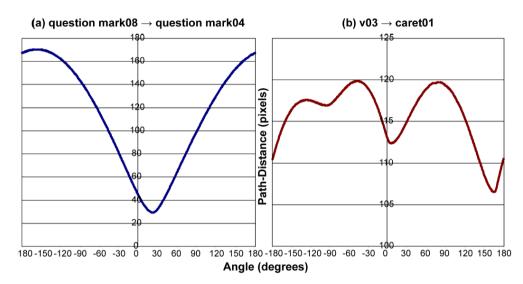
Original trace


Gesture Recognition

- Gesture recognition = search for most similar template
- Preprocessed query gesture g and templates t_i
 - Resampled (N=16), centroid translated to origin, normalized
- "Most similar" metric?
 - Sum of squared differences between points min j = 1..M { sum i = 1..2N { (gi-tji)² } }
 - $\label{eq:scalar} \begin{array}{l} \mbox{ Scalar product between query gesture and template} \\ min_{j\,=\,1..M} \left\{ \mbox{ acos}(\mbox{ sum}_{i\,=\,1..2N} \left\{ \mbox{ }(g_i\,t_{ji})^2 \right\} \end{tabular} \right\} \end{tabular} or \\ max_{j\,=\,1..M} \left\{ \mbox{ sum}_{i\,=\,1..2N} \left\{ \mbox{ }(g_i\,t_{ji})^2 \right\} \right\} \end{array}$
- Remaining variability: rotation (and gesture class)

Optimal Angular Distance

Orientation of template might be different from query gesture


Overlaying query gesture (black) and optimally rotated best-matching template (red):

• How to find the optimal angle?

Finding the Optimal Angular Distance

- Wobbrock et al., UIST'07
 - "Seed and search":
 Given query and template, try different orientations and take best one
- Li, "Protractor", CHI'10
 - Closed form solution!
 - Better speed and performance!

Wobbrock et al., UIST'07

- Closed form solution: Find θ that optimizes metric
 - Metric: Min. angle between query gesture g and template t in R^{2N} Optimal angle: θ = argmin $_{-\pi \le \theta \le \pi}$ { acos(g · t(θ)) }
 - Equivalent: Max. scalar product between g and t in R^{2N} Optimal angle: θ = argmax $_{-\pi \le \theta \le \pi}$ { g · t(θ) }

Optimal Angular Distance: Closed Form Solution

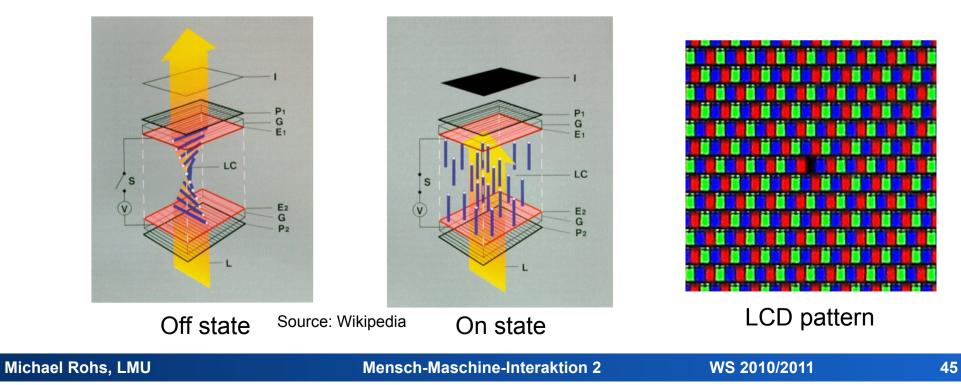
- Maximize scalar product $g \cdot t(\theta)$
- Find θ that maximizes scalar product between g and t $\theta = \operatorname{argmax}_{-\pi \le \theta \le \pi} \{ g \cdot t(\theta) \}$ g = x₁, y₁, ..., x_N, y_N t(0) = x^t₁, y^t₁, ..., x^t_N, y^t_N
- Rotate each point in t by θ

$$R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \qquad \begin{aligned} x' &= x\cos\theta - y\sin\theta \\ y' &= x\sin\theta + y\cos\theta \end{aligned}$$
$$t(\theta) = x_{1}^{t}\cos\theta - y_{1}^{t}\sin\theta, \quad x_{1}^{t}\sin\theta + y_{1}^{t}\cos\theta, \dots$$

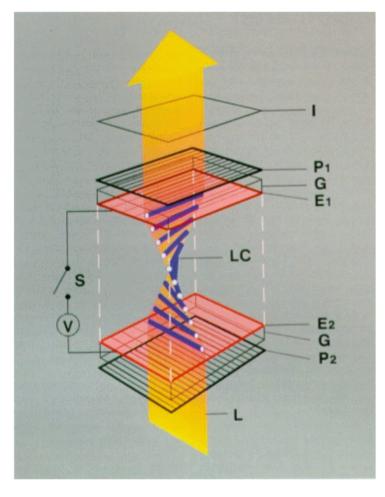
Optimal Angular Distance: Closed Form Solution

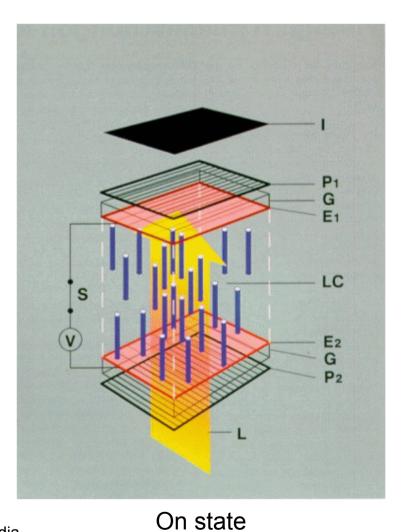
- Scalar product $g \cdot t(\theta)$
 - $= sum\{1..N\}(x_i(x_i^t \cos \theta y_i^t \sin \theta) + y_i(x_i^t \sin \theta + y_i^t \cos \theta))$
 - $= sum\{1..N\}(x_i x_i^t \cos \theta x_i y_i^t \sin \theta + y_i x_i^t \sin \theta + y_i y_i^t \cos \theta)$
 - $= sum\{1..N\}(\cos \theta (x_{i} x_{i}^{t} + y_{i} y_{i}^{t}) + sin \theta (y_{i} x_{i}^{t} x_{i} y_{i}^{t}))$
 - = $\cos \theta \, sum\{1..N\}(x_i \, x_i^t + \, y_i \, y_i^t) + \sin \theta \, sum\{1..N\}(y_i \, x_i^t \, x_i \, y_i^t)$

```
= a \cos \theta + b \sin \theta
with a = sum\{1..N\}(x_i x_i^t + y_i y_i^t)
```


and b = sum{1..N}($y_i x_i^t - x_i y_i^t$)

- Remaining task: θ = argmin(a cos θ + b sin θ) = argmin(f(θ))
 Find extremum of f by deriving f w.r.t. θ and setting f'(θ) = 0:
 -a sin θ + b cos θ = 0 ⇔ a sin θ = b cos θ
 ⇔ sin θ / cos θ = b / a = tan θ
 - ⇔ θ = atan (b / a)


Display and Touch Screen Technologies


Liquid Crystal Display (LCD)

- An LCD cell is a voltage-controlled "light valve"
- Twisted nematic effect
 - Orientation of molecules controls orientation of polarized light
 - Off: Liquid crystal molecules form helix structure, 90° rotation
 - On: Electric field aligns molecules, second polarizer blocks light

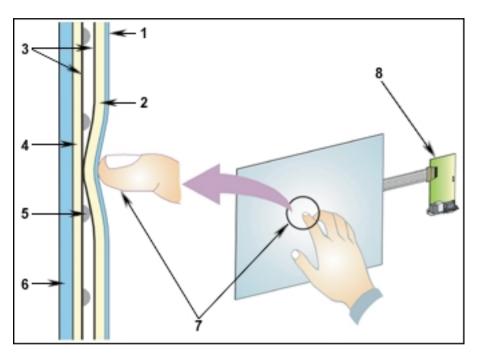
Liquid Crystal Display (LCD)

Off state

Source: Wikipedia

Mensch-Maschine-Interaktion 2

Liquid Crystal Display (LCD)

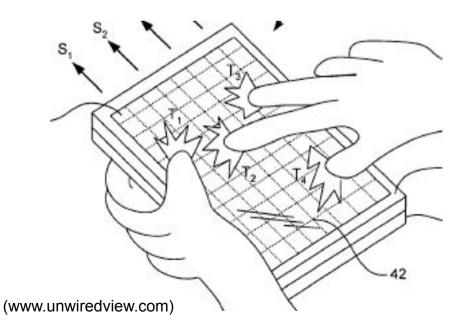

Advantages

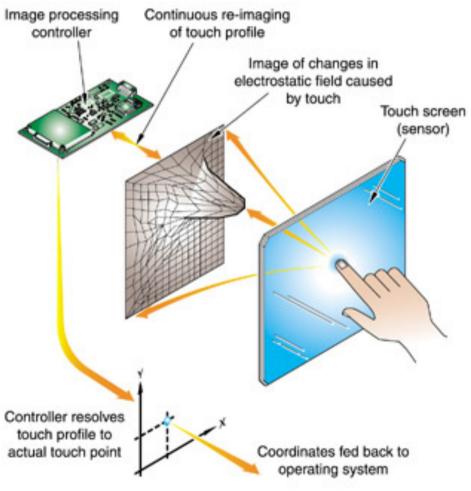
- Low power consumption for controlling the twisted nematic effect
 - Low operating voltages (batteries)
 - Now current flow required
- Cheap
- Compact: light, small, low depth
- Flicker free, sharp, undistorted image
- Disadvantages
 - Backlight illumination consumes significant amounts of power
 - Difficult manufacturing process (dead pixels, defective panels)
 - Fixed pixel resolution
 - Limited contrast and viewing angles (early LCDs)

Touch Screens

- Resistive
 - Suitable for stylus input
- Capacitive
 - Direct finger input, e.g., iPhone
- Surface Acoustic Wave (SAW)
 - Senses diffraction of waves on surface
- Frustrated Total Internal Reflection
 - Jeff Han's multitouch table

Resistive Touch Screens

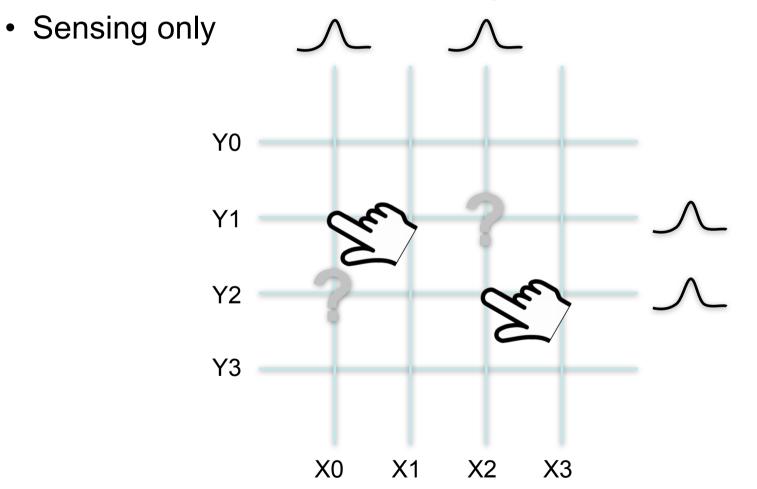



(www.fastpoint.com)

- 1. Polyester film
- 2. Upper resistive circuit layer
- 3. Conductive metal coating
- 4. Lower resistive circuit layer
- 5. Insulating dots
- 6. Glass/acrylic substrate
- Touching the overlay surface causes (2) to touch (4), producing a circuit switch from the activated area
- Touchscreen controller measures voltages through resistive layers and converts them into the digital X and Y coordinates of the activated area.

Capacitive Touch Screens

- Senses capacitive changes
 - Only works with finger, not with stylus
- iPhone
 - Uses additional grid for better multitouch disambiguation

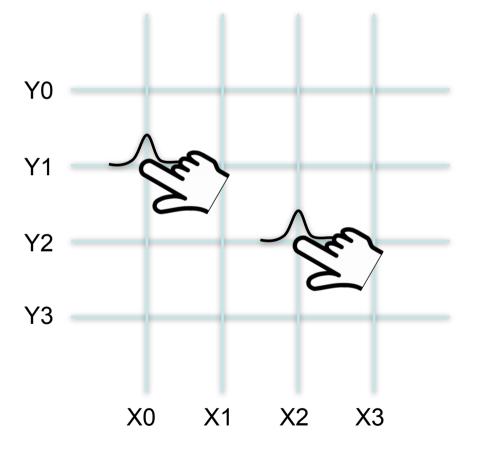

Self-Capacitance Touch Screen

- Detects only a single touch point
- Measures capacitance of electrode to ground
- Finger near electrode: human body capacitance changes self-capacitance of electrode
- Materials: copper, indium tin oxide (ITO), printed ink
 ITO: (almost) transparent capacitive electrodes
- Rows isolated from columns in grid arrangement
- Size and spacing between electrodes determines precision

Gary Barrett and Ryomei Omote: Projected-Capacitive Touch Technology. Information Display 3/10, pp. 16-21

Self-Capacitance Touch Screen

• Scans each electrode individually


Mensch-Maschine-Interaktion 2

Mutual Capacitance Screen

- Unlimited number of touch points
- Measures capacitance of intersections of electrodes
- Human-body capacitance changes capacitance of intersections ("steals" charge)
- High resolution
- Less sensitive to EMI than self-capacitance
- Typically 9 columns, 16 rows = 144 electrode intersections
- Interpolation achieves 1024x1024 (10 bit) resolution

Mutual Capacitance Screen

- Senses each pair (X_i, Y_i) of electrodes individually
- Driving and sensing

Mensch-Maschine-Interaktion 2

It's Easy:

 <u>http://mediathek.daserste.de/daserste/servlet/content/</u> 6099692

Pico Projectors

- Standalone or integrated in mobile phones
- Interesting for collaborative applications
 - Example: sharing media
- Problems (current technology)
 - Availability of projection space
 - Ambient light
 - Power consumption
 - Focusing

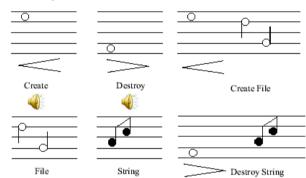
Audio and Haptics

Partly based on slides by Stephen Brewster: Haptics, audio output and sensor input in mobile HCI. Stephen Brewster. Tutorial at Mobile HCI 2008.

Multimodality

- Involve different senses through different modalities
 - Audio, tactile
 - Suit different users, tasks, and contexts
- Problems of visual modality
 - Screen space small
 - Eyes heavily used when mobile
- Reasons for multimodality
 - Sole use of one modality not effective
 - Particular modality may not always be available all of the time
 - User involved in other tasks \rightarrow Attention may be occupied

Multimodal Interaction


- Allow people to do everyday tasks while using mobile technology
 - "Eyes-free" or "hands-free"
- Interaction techniques that suit real environments
 - Non-speech audio and tactile feedback
 - Sensors for gestural input
 - Speech input

Non-Speech Audio

- Earcons (Blattner)
 - Musically structured sounds (abstract)
- Auditory Icons (Gaver)
 - Natural, everyday sounds (representational)
- Sonification
 - Visualization using sound
 - Mapping data parameters to audio parameters (abstract)

Earcons

- Structured audio messages based on abstract sounds
 - Created by manipulation of sound properties: timbre, rhythm, pitch, tempo, spatial location (stereo, 3D sound), etc.
- Composed of motives
- Can be compound
 - Sub-units combined to make messages
- Or hierarchical
 - Sounds manipulated to make complex structures

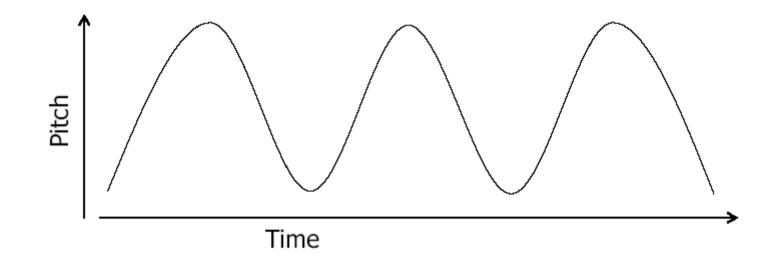
Examples from: http://www.dcs.gla.ac.uk/~stephen/earconexperiment1/earcon_expts_1.shtml

Close

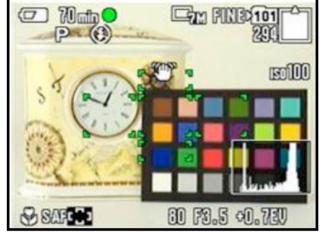
Open

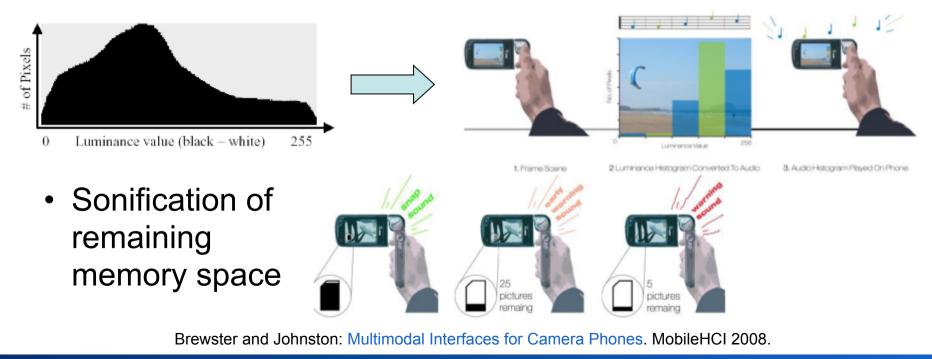
Undo

Auditory Icons


- Sounds mapped to interface events by analogy to everyday sound-producing events
 - E.g., selecting tapping; copying filling
 - Iconic v. symbolic mapping
- Auditory icons can be parameterized
 - E.g. material for type, loudness for size
 - Multiple layers of information in single sounds
 - Reduces repetition and annoyance
- The SonicFinder
 - Selecting, copying, dragging

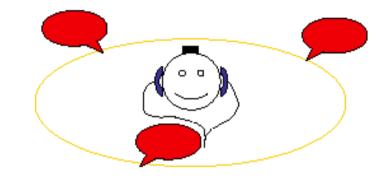
Gaver, W. W., (1986). Auditory icons: Using sound in computer interfaces. Human-Computer Interaction, 2, 167-177.


Sonification


- Mapping of data values to auditory parameters
- Most commonly x-axis to time, y-axis to pitch

Sonification of Luminance Histograms in Digital Cameras

- Difficult to focus visual attention on subject and technical parameters
 - Exposure, aperture, battery life, image mode, etc.
- Idea: Sonified luminance histogram



Mensch-Maschine-Interaktion 2

3D Audio Interaction

- Increase the audio display space
- 3D audio
 - "Cocktail party effect"
 - Provides larger display area
 - Monitor more sound sources
- "Audio Windows" (Cohen)

Cohen. Integrating graphics and audio windows. Presence: Teleoper. Virtual Environ. 1, 4 (Oct. 1992), 468-481.

- Each application gets its own part of the audio space
- Pie Menus (Brewster, CHI'03, Marentakis, CHI'06)
 - Audio items placed around the head

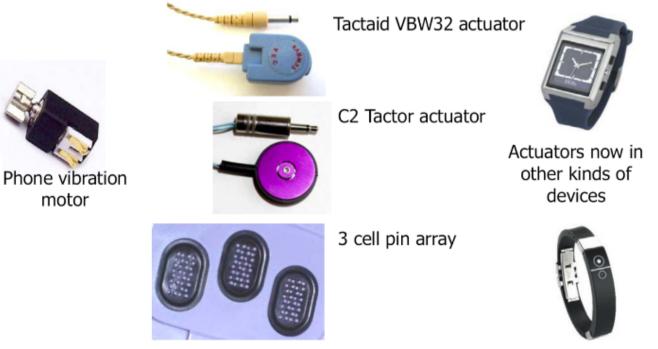
Brewster, Lumsden, Bell, Hall, Tasker. Multimodal 'eyes-free' interaction techniques for wearable devices. CHI '03. Marentakis, Brewster. Effects of feedback, mobility and index of difficulty on deictic spatial audio target acquisition in the horizontal plane. CHI '06.

Haptics

- Definition: Sense and/or motor activity based in the skin, muscles, joints, and tendons
- Two parts
 - Kinaesthesis: Sense and motor activity based in the muscles, joints, and tendons
 - Touch: Sense based on receptors in the skin
 - Tactile: mechanical simulation of the skin

Why Haptic Interaction?

- Has benefits over visual display
 - Eyes-free
- · Has benefits over audio display
 - Personal not public
 - Only the receiver knows there has been a message


- People have a tactile display with them all the time
 - Mobile phone

Tactile Technologies

- Vibration motor with asymmetric weight
 - Eccentricity induces vibrations
 - Speed controls vibration frequency
 - Precision limited (several ms startup time)

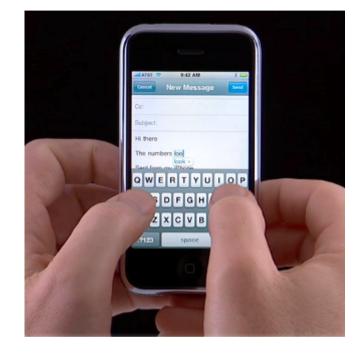
PMD 310 vibration motor

Design of Tactons

- Tactons = tactile icons
 - Structured, abstract messages that can be used to communicate non-visually (Brown, 2005)
 - Tactile equivalent to Earcons
- Encode information using parameters of cutaneous perception
 - Body location
 - Rhythm
 - Duration
 - Waveform
 - Intensity

Tacton Parameters

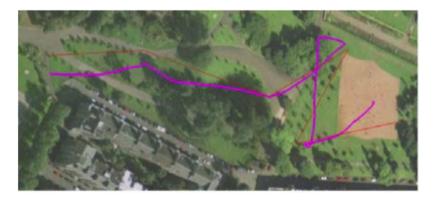
- Spatial location (on forearm, waist, hand) very effective
 - Good performance with up to 4 locations
 - Wrist and ankle less effective, especially mobile


Tacton Parameters

- Rhythm very effective
 - Easily identified with three levels
- Waveform
 - Carefully designed sine, square, and sawtooth wave forms very effective (tuned to capabilities of actuator)
- Intensity
 - Two levels
 - Hard to use and may need to be controlled by user

Example: Tactile Button Feedback

- Touchscreen phones have no tactile feedback for buttons
 - More errors typing text and numbers
- Performance comparison of physical buttons, touchscreen, and touchscreen+tactile
 - In lab and on subway
- Touchscreen+tactile as good as physical buttons
 - Touchscreen alone was poor



Example: Tactile Navigation

- Non-visual interface for GPS + compass
- Belt of 4 actuators
 - Placed north, south, east, west
- Vibrations gave direction and distance
- Users could follow paths accurately without a screen

Source: Haptics, audio output and sensor input in mobile HCI by Stephen Brewster. Tutorial Mobile HCI 2008.

Mensch-Maschine-Interaktion 2

