

University of Idaho

The Human Element in Computer Security Graphical Passcodes as a Means to Create Secure Authentication systems

Steffen Werner
University of Idaho

Why Research on User Authentication?

- The applied appeal
-Growing importance of stored assets
- Shift to web-based services, cybersecurity
-Increased need for computer security
- Increase in attacks
-Increasing rigor of authentication protocols

Why Research on Passwords?

- The theoretical appeal
-Ideal scenario for human-technology optimization
-Quantitative definition of engineering goals
-Problem open to multiple solutions
-Large body of relevant psychological literature
- Different types of memory systems
- Free recall vs. cued recall vs. recognition tests
- Visual perception, visual attention, visual memory

Overview of the Talk

- Approaches to authentication
- What makes a good password system?
- Maximization of actual password entropy
- Elimination of predictable user choices
- Elimination of other unsafe user behavior
- Overview of graphical approaches to password systems
- 4 studies evaluating aspects of our new CSA graphical password system against alternative approaches

Current Approaches to Authentication

- Passwords
- Token-based authentication
- Biometric authentication
- Behavioral analysis and combinations through ...
- Two-factor (multi-factor) authentication

Password Authentication is Cognitive Authentication

- The user possesses unique knowledge
- Relies on memory storage of information*
- Problems: forgetting, phishing, guessing, theft (shoulder surfing)

Account login 8

Email address

PayPal password

Log In

*unless written down

Hardware Token-based Authentication

- Token identifies user (passport)
- One-time passwords (OTP)
- Usually used in combination with pin or other password
- Problems: theft, loss, failure, difficult to replace (time, cost)

Biometric Authentication

- Authentication through a physical characteristic of the user
- Examples: fingerprint, retinal scan, iris scan, vascular patterns, voice recognition, DNA
- Problems: cost, limited replaceability, user acceptance, stability of biometric parameters

Authentication through Behavioral Analysis

- Authentication through a unique behavioral patter of the user
- Keystroke, mouse, or signature dynamics, voice recognition, gate, posture, etc.
- Problems: Changes (fatigue, illness), injury, aging

What Makes a Good Password?

- Increase effective password entropy
- Decrease forgetting of passwords
- Enable safe and fast entry of password
- The current password problem: Inverse relation between safety of password and memorability

Theoretical vs. Effective Entropy in Alphanumeric Passwords

$$
H(X)=-\sum_{i=1}^{n} p\left(X_{i}\right) \log _{2} p\left(X_{i}\right)
$$

- Theoretical password space $=\#$ chars ${ }^{\text {password length }}$
- Human users restrict their password choices to a small subset of possible passwords, reducing effective entropy
- preference for short passwords (6-7 characters)
- use of lower-case letters or digits only
- use of dictionary words and personally relevant dates

RockYou Password Leak The top 20 passwords of 32 million

Rank	password	total
1	123456	290731
2	12345	79078
3	123456789	76790
4	Password	61958
5	iloveyou	51622
6	princess	35231
7	rockyou	22588
8	1234567	21726
9	12345678	20553
10	abc123	17542

Rank	password	total
11	Nicole	17168
12	Daniel	16409
13	babygirl	16094
14	monkey	15294
15	Jessica	15162
16	Lovely	14950
17	michael	14898
18	Ashley	14329
19	654321	13984
20	Qwerty	13856
Imperva (2010). Consumer Password Worst Practices		

Distribution of Password Lengths

Distribution of Password Types

Theoretical bit-strength for different logins

Where do Security Policies come from? Analysis of 75 different (large) websites
 Dinei Florencio and Cormac Herley, Microsoft, 2010

- greater security demands not a factor
- size of site, num of users, value of assets protected and attack frequency show no correl with strength
- sites with most restrictive password policies don't have greater security concerns, they are simply better insulated from the consequences of poor usability
- median password policy strengths:
.com sites = 19.9 bits
banks $=31.0$ bits
$. e d u=43.7$ bits and $. g o v=47.6$ bits

What about Password Forgetting?

- Estimate of 4.3% of active Yahoo users forget their password within a three month period
- Company statistics are not publicly available
- User strategies to fight forgetting
-Choice of meaningful passwords
-Password reuse between multiple sites
-Password reset as a common procedure
-External storage of password

Summary of Current Status

- Inverse relation between security and memorability for alphanumeric passwords
- Users choose easily predictable passwords
- Users can't remember secure (complex and random) passwords
- Attempts to enforce secure password practice are often circumvented
- Content requirements Passwords are written down
- Change regimes inm Highly similar passwords
- Allowing user selection decreases security

The Promise of Graphical Passcodes

- Visual material is easy to remember Picture Superiority Effect
- Shepard (1967). Recognition memory for words, sentences, and pictures showed superiority of pictures
- Visual long-term memory has a vast capacity
-Standing et al (1970): 2,560 pictures tested
-Standing (1973): up to 10,000 pictures tested
- Visual long-term memory shows little decay
-Nickerson (I968): Retention tested up to I year

Graphical Passcodes: The Pesky Details I

Picture superiority requires heterogeneous set of stimuli Goldstein \& Chance (1970) testing memory for faces, snowflakes and crystals with poor memory performance

http://www.its.caltech.edu/~atomic/snowcrystals

Graphical Passcodes: The Pesky Details II

Visual information is often not encoded at all
Change blindness (Rensink et al., 1997; Simons and Levin, I997)

Graphical Passcodes: The Pesky Details II

Visual information is often not encoded at all
Change blindness (Rensink et al., 1997; Simons and Levin, I997)

Graphical Passcodes: The Pesky Details III

Human observers extract gist of pictures rapidly and remember gist well
Meaning of a scene can be identified within 0.1 l (Potter, 1975)

Graphical Passcodes: The Pesky Details IV

Object interactions and consistency within a scene guide scene interpretation
Coherent scenes are easier to interpret (Biederman et al., 1974)

Main Types of Graphical Authentication

- Visual recognition paradigm
- Enrollment: User learns password image set
- Authentication: User has to select the presented images
- Spatial passcodes - cued recall
- Enrollment: User learns sequence of locations within a visual scene / a set of images
- Authentication: User has to replay the sequence
- Gestural passcodes = cued or free recall
- User has to reproduce a specific set of doodles/signature
- Might use more procedural memory

VIP (De Angeli et al., 2005) "select the images from your password set"

Passfaces
 "select the face from your password set"

Deja Vu (Dhamija \& Perrig, 2000) "select the images from your password set"

PassPoints (Wiedenbeck et al., 2005)

"click on the points in the image that constitute your password"

Draw-a-Secret: Gestural Authentication (Jermyn et at., 1999)

"recreate the drawing that you use as a password"

Stubblefield \& Simons Inkblot Creatures (2004)

- Name each blob
- Determine the first and last letter of each name
- Concatenate the letters to form a password
http://research.microsoft.com/en-us/news/features/inkblots.aspx

Image-based Authentication through ImageShieldTM (formerly myVidoop)

- At registration the user selects categories of images
- At authentication, the user
- is presented with a grid of randomly generated images
- chooses the images that match their categories
- enters the corresponding letter or number
- This creates a secure, one-time access code

Confident

Category Selection at Registration

Image Search for Authentication

University of Idaho

Composite Scene Authentication (CSA)

 Johnson and Werner $(2006,2007)$- Composite Scenes as Passwords
- A scene combines n scene-elements into one picture
- Scene elements are randomly selected, one from n different categories
- Each scene-element needs to be selected out of m choices during authentication
- Strength of password (bits) $=n * \log _{2}(m)$
- Authentication
- Sequence of n challenge screens
- Each challenge screen is organized by category
- User has to select I scene-element per screen

Composite Scene Authentication (CSA)

 Johnson and Werner $(2006,2007)$- Advantages of a Scene
-Password elements are bound together by scene
-Each element carries multiple sources of information
- multiple semantic characteristics
- multiple visual characteristics
- interaction with other elements within the scene
- this leads to Redundancy

Composite Scene Authentication (CSA)

 Johnson and Werner $(2006,2007)$- Advantages of categorical order during authentication
-Category cues the relevant scene element
-Reduction of uncertainty in visual search
-Visual search space more homogeneous
- Recognition with additional cues

Categories of Passcode Elements

female person
child
male person
food item
wild animal
cat or dog
inanimate object
musical instrument
environmental setting

each password consists of 9 elements

A LEGACY OF LEADING
female person
food item
child
wild animal
male person
cat or dog
musical instrument
inanimate object
environmental setting
each password consists of 9 elements
a legacy of leading

female person	child
food item	wild person
animal	cat or dog
inanimate	musical object
eastrument password consists of 9 elements	

each password consists of 9 elements

University of Idaho

one character of the password

I bit

$$
\begin{aligned}
& 189 \\
& 181
\end{aligned}
$$

4 bit

Empirical Studies

- Comparative Evaluation
- How do grahical authentication systems fare?
- CSA pitted against three other well-known graphical authentication systems
- Graphical password interference
- What happens, if more than one graphical password have to be remembered?
- Different vs. same image sets for passwords
- Categorical structure of visual search
- Does categorical structure of authentication screens produce a benefit for recognition performance?

Comparative Evaluation of Composite Scene Authentication (CSA)

- 3 variations of CSA
- CSA composite
- CSA serial
- CSA serial + composite
- 3 alternative graphical authentication systems
- Spatial (Blonder, 1996,Wiedenbeck, 2005)
- Tiled (VIP, De Angeli et al. 2005)
- Facial (Passfaces ${ }^{\text {TM }}$, n.d.)
- Graphical and alphanumeric passwords of equal complexity

Comparative Evaluation of Composite Scene Authentication (CSA)

- Variation of Strength of Passwords
- (36 or 46.5 bits)
- Variation of Retention Interval
- (30 min, I week, 3 weeks)
- Graphical passwords
-36 bit $=15$ distracters per authentication grid
-46.5 bit $=35$ distracters per authentication grid
- Alphanumeric passwords
- 36 bit: 9 char password randomly drawn from hexadecimal character space ($\mathrm{n}=16$)
- 46.5 bit: 9 char password randomly drawn from entire alphanumeric character space $(\mathrm{n}=36)$

Comparative Evaluation of Composite Scene Authentication (CSA)

- Graphical Materials
- 324 images (36 in each category) for CSA and tiled groups
- 324 facial images for the facial passcode group
- 6 natural scenes for spatial passcode group
- Graphical Passwords
- 12 composite scenes for CSA composite
- 6 grids for tiled passcode group
- Alphanumeric Materials
- 24 alphanumeric character strings
- Virtual keyboard for password entry

CSA Composite

Password Image

Authentication Challenges

A LEGACY OF LEADING

CSA Serial

Password Elements
Authentication Challenges

University of Idaho

Tiled

Password Image
Authentication Challenges

Facial

Password Image
Authentication Challenges

Spatial

Password Image

Authentication Challenges

Alphanumeric Password

Password
Authentication Challenges

Comparative Evaluation of Composite Scene Authentication (CSA)

- Encoding and $\|^{\text {st }}$ test phase
- General instruction, demographics, informed consent
- Presentation of alphanumeric and graphical passcodes (either 36 or 46.5 bits)
- Short story (30 minute presentation)
- Recall / recognition test of memory for alphanumeric, graphical, and story information
- Story test was independent measure of participants' memory and served as exclusion criterion
- 2nd and 3rd test phase
- Recall / recognition test only

Comparative Evaluation of Composite Scene Authentication (CSA)

- Total number of initial participants = 33 I
- 79 participants excluded because they either did not produce any data or because they failed a manipulation check (memory test on separate material)
-252 valid participants, 170 females (Mean Age = 24)
- Participants compensated with extra course credit or a chance to win one of two cash prizes
- Total \#of participants for each retention interval: $\mathrm{t}_{1}: 252, \mathrm{t}_{2}: 223, \mathrm{t}_{3}: 163$
- Random assignment to one of 6 passcode groups
- Complexity randomly assigned within groups

Comparative Evaluation of Composite Scene Authentication (CSA)

Percent Successful Logins by Passcode Type

Comparative Evaluation of Composite Scene Authentication (CSA)

Composite Scene Authentication works best! (spatial / locimetric systems are deficient)

Password Interference and
 Composite Scene Authentication (CSA)

constant password strength $=36$ bit

- 2 variations of CSA
- CSA composite
- CSA serial + composite
- 2 alternative graphical authentication systems
- Tiled (VIP, De Angeli et al. 2005)
- Facial (Passfaces ${ }^{\text {TM }}$, n.d.)
- 2 Passwords (same type) to remember
- disambiguated through visual/semantic context
- Same vs. different set of images for authenticating with graphical passwords

Password Interference and Composite Scene Authentication (CSA)

University of Idaho

Password Interference:
 Two Different Contexts - Same Image Set

University of Idaho

Password Interference:

Two Different Contexts - Different Image Set

University of Idaho

Password Interference and
 Composite Scene Authentication (CSA)

constant password strength $=36$ bit

- Total number of initial participants $=387$
- 39 participants excluded because they failed a manipulation check (memory test on separate material)
- 348 valid participants for $\mathrm{T}_{\text {I }}$
-307 valid participants for $T_{1} \& T_{2}$
- I74 valid participants for $\mathrm{T}_{1}, \mathrm{~T}_{2}, \& \mathrm{~T}_{3}$
- Participants compensated with extra course credit
- Random assignment to one of 4 passcode groups
- Same image set / different image set randomly assigned within group

Password Interference and Composite Scene Authentication (CSA)

- Encoding and $I^{\text {st }}$ test phase
- General instruction, demographics, informed consent
- Presentation of 2 alphanumeric and 2 graphical passcodes
- Graphical passcodes were always of the same type
- Short story (30 minute presentation)
- Recall / recognition test of memory for alphanumeric, graphical, and story information
- Recall / recognition dependent on visual context (Pandora or Tax-site)
- Story test was independent measure of participants' memory and served as exclusion criterion
- 2nd test phase
- Recall / recognition test only
- Recall / recognition again dependent on visual context (Pandora or Tax-site)

Authentication Success for First Alphanum Password

Authentication Success for Second Alphanum Password

Max Information Retained (Both Alphanum Passwords)

Long-Term Retention of Passwords

Authentication Success for First Graphical Password

Authentication Success for Second Graphical Password

Max Information Retained (Both Graphical Passwords)

Long-Term Retention of Passwords

Scene context helps! Different image sets help!

(Passwords based solely on faces don't scale up) Alphanumeric passwords expectedly perform worst

Visual Search in Visually or Categorically homogeneous/heterogeneous Item Sets

- Variation of memory set size
- Participants had to remember I, 3, or 9 dissimilar items (presented for 5, 15 , or 45 sec per set)
- Each item in memory set belonged to a different category
- Each item in memory set had a different color
- 2x2 Variation of visual search set
- homogeneous color vs. heterogeneous color
- homogenous vs. heterogeneous category set
- Blocked Search Trials
- for each memory set, 32 blocked search trials (50\% present)

Visual Search in Visually or Categorically homogeneous/heterogeneous Item Sets

- Participants
- 29 UI undergraduate student volunteers
- 16 females, 13 males
- Ages $18-52$ ($\mathrm{M}=22.3, \mathrm{SD}=6.1$)
- Normal visual acuity and color vision
- Material
-9 categories * 9 colors * 17 exemplars $=1,377$ images
- From database (Art Explosion Photo Objects I50,000), image searches
- Base colors homogenized (Adobe Photoshop)

Memory Sets

Search Screens

Correct Responses by Condition

Response Times by Condition

Categories Matter!
 (and so do visual features)

Authentication by Category and Composite Scene Authentication (CSA)

constant password strength $=36$ bit

- | variation of CSA
- CSA serial + composite
- I alternative graphical authentication systems
- Tiled (VIP, De Angeli et al. 2005)
- 2 graphical passwords (same type) to remember
- disambiguated through visual/semantic context and challenge screens (always different sets of images)
- 2 alphanumeric passwords to remember
- disambiguated through visual/semantic context
- Categorical / no-categorical organization of authentication screens

Authentication by Category and Composite Scene Authentication (CSA)

constant password strength $=36$ bit

- Participants
- IIO UI undergraduate student volunteers participated in T_{1} and T_{2}
- I9 participants were excluded because of independent memory criterion
- Ages I8-29 ($\mathrm{M}=20.6, \mathrm{SD}=2.2$)
- All but I reported normal (or corrected to normal) vision
- All reported normal memory
- Material
- Images from database used by Johnson and Werner (2006) split into 2 distinct pools
- Passcodes (CSA, tiled, alphanumeric)
- PHP website for testing and data collection
- Short story and list of words for filler task

Authentication Success by Condition*

Categories matter in authentication, too! (scene context helps, too)

Strengths of Composite Scene Authentication (CSA)

- For I week retention interval,
- Categorically organized authentication screens create approximately +10\% successful login rate improvement
- Scene context creates approximately another +10\% successful login rate improvement over alternative systems
- longer retention intervals might lead to even higher benefits
- Restriction to semantically deficient images (faces, abstract images) leads to comparably poor performance
- Spatial passwords fare poorly (in our studies)
- Role of procedural memory might show benefit when used often \& regularly
- Well designed graphical authentication shows greatly improved performance over alphanumeric passwords

Open Questions

- Usability
- Speed of entry
- Prevention of shoulder-surfing
- Use on mobile devices
- Cost-benefit analysis of memory set vs. search screen size
- Scalability - under which circumstances do graphical passwords interfere with each other?

Thanks

Korey Johnson \mathfrak{i} usercentric Sergio Caltagirone United States Government
 Kylie Pfeifer (hp)
 Michael Teske Universityof Idaho

University of Idaho

