## Ein Anforderungskatalog für die Gestaltung von Laubbäumen in 3D

Abschlussvortrag Projektarbeit

Jörg Moldenhauer LFE Medieninformatik 09.02.2010





## Gliederung

- 1. Das Projekt "Virtueller Förster"
- 2. Grundlagen des biologischen Baumaufbaus
- 3. Modellierung Allgemein
  - 3.1 Erstellen der Geometrien
  - 3.2 Erstellen der Texturen
- 4 Die Bäume
  - 4.1 Birke
  - 4.2 Fiche
  - 4.3 Buche
- 5. Vergleich mit generischer Baumerzeugung
  - 5.1 Das Prinzip von L-Grammatiken
  - 5.2 Tools
  - 5.3 Vorteile der jeweiligen Herangehensweise



#### Das Projekt "Virtueller Förster"

- Zielgruppe: Förster, Studenten der Forstwirtschaft, private Waldbesitzer
- Ziel: Erlernung gezielter und effektiver Durchforstung von Wäldern
- Synthetisch erzeugter Wald
- Möglichkeit, die Durchforstung in einer virtuellen Umgebung durchzuführen und die Ergebnisse unmittelbar nach dem Handeln zu betrachten
- Zusammenarbeit von LMU und MDH
- Meine Rolle im Projekt: polygonbasiertes modellieren von Laubbäumen



## Bäume in Computerspielen

Gothic 3 (2006)



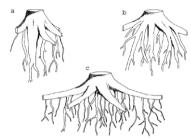
(Quelle: http://www.speedtree.com/)

Oblivion (2006)



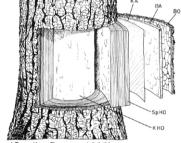


## Gliederung

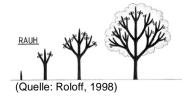

- 1. Das Projekt "Virtueller Förster"
- 2. Grundlagen des biologischen Baumaufbaus
- 3. Modellierung Allgemein
  - 3.1 Erstellen der Geometrien
  - 3.2 Erstellen der Texturen
- 4. Die Bäume
  - 4.1 Birke
  - 4.2 Eiche
  - 4.3 Buche
- 5. Vergleich mit generischer Baumerzeugung
  - 5.1 Das Prinzip von L-Grammatiken
  - 5.2 Tools
  - 5.3 Vorteile der jeweiligen Herangehensweise

#### Grundlagen des biologischen Baumaufbaus

Ludwig Maximilians-Universität\_\_\_


München

- Wurzel: a) Pfahlwurzelsystem
  - b) Herzwurzelsystem
  - c) Senkerwurzelsystem




(Quelle: Braun, 1998)

- Stamm: für die Gestaltung nur die äußerste Schicht (Borke) wichtig
- Äste und Zweige
  - bilden die Krone
  - verschiedene Architektur-Modelle



(Quelle: Braun, 1998)









Blätter



### Gliederung

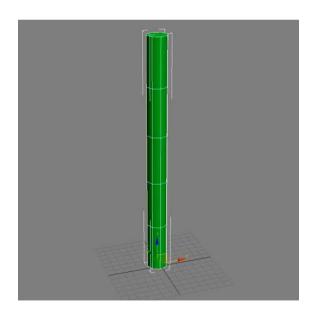
- 1. Das Projekt "Virtueller Förster"
- 2. Grundlagen des biologischen Baumaufbaus
- 3. Modellierung Allgemein
  - 3.1 Erstellen der Geometrien
  - 3.2 Erstellen der Texturen
- 4. Die Bäume
  - 4.1 Birke
  - 4.2 Eiche
  - 4.3 Buche
- 5. Vergleich mit generischer Baumerzeugung
  - 5.1 Das Prinzip von L-Grammatiken
  - 5.2 Tools
  - 5.3 Vorteile der jeweiligen Herangehensweise

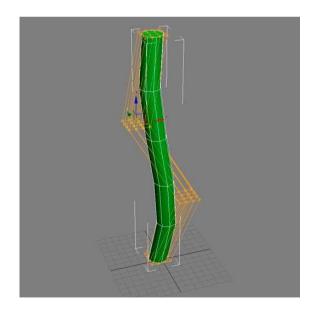


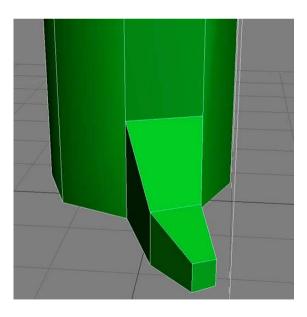
Ludwig—

Maximilians—
Universität

München


- Unterteilung in drei Arten von "Bauteilen":
  - Stamm (inkl. Hauptäste und Wurzeln)
  - Äste
  - Zweige und Blätter
- Varianz durch unterschiedliche Kombinationen
- Arbeitsschritte:
  - Modellieren der Teile
  - Erstellen von Texturen
  - Zusammensetzen

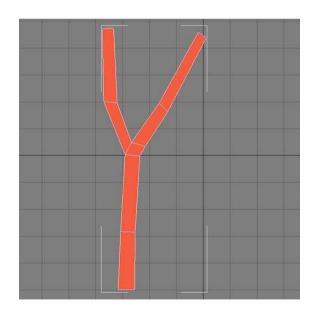


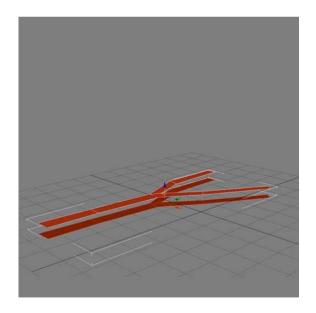


München\_\_\_

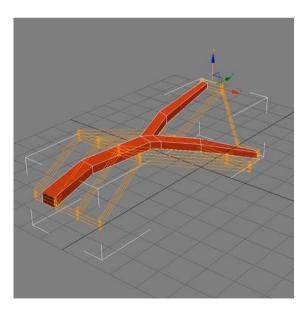
## Modellierung des Stamms

- Ausgangsobjekt: Zylinder
- Krümmung durch Modifikator
- Wird nach oben hin dünner, gabelt sich eventuell
- Gegebenenfalls Wurzeln
- Eventuell Hauptäste





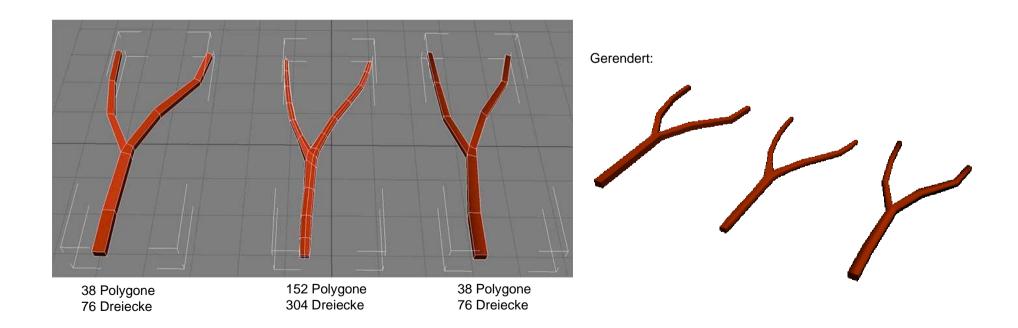




## Modellierung der Äste

- 2-Dimensionale Form erstellen
- Flächen kopieren, nach unten verschieben
- Untere und obere Flächen verbinden
- Mit Modifikator verziehen

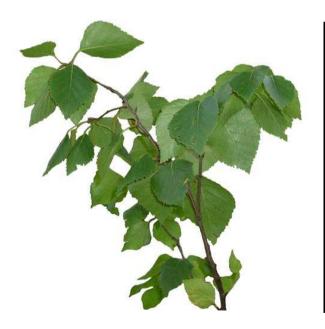




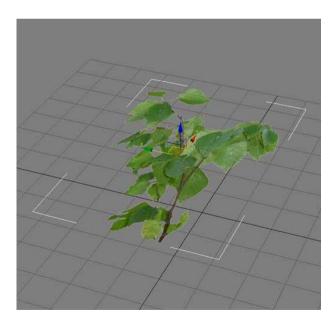





## Polygone sparen


- Runde Flächen/Kurven werden durch eckige Polygone angenährt
- Je mehr Polygone, desto glatter, aber auch desto mehr Rechenaufwand
- Lösung: Smoothing Groups
- Legen fest, wie Oberflächen zu rendern sind, ohne die Anzahl Polygone zu erhöhen






## Zweige und Blätter

- Nicht einzeln modelliert
- Ebenen mit Textur
- Zwei Teile:
  - Das eigentliche Bild
  - Opacity Map







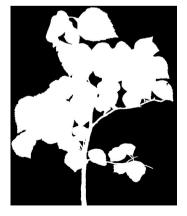


München\_\_\_

## Bauteile Beispiel






#### Erstellen der Texturen

- Aus Fotos
- Stamm/Äste:
  - aneinander gelegt
  - Nahtstellen an den Rändern ausgleichen
- Zweige/Blätter:
  - Bild ausschneiden
  - Für Opacity-Map Kontrast erhöhen, Farben umkehren















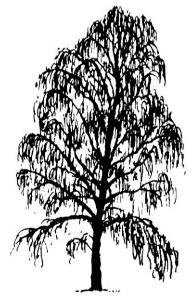
### Gliederung

- 1. Das Projekt "Virtueller Förster"
- 2. Grundlagen des biologischen Baumaufbaus
- 3. Modellierung Allgemein
  - 3.1 Erstellen der Geometrien
  - 3.2 Erstellen der Texturen
- 4. Die Bäume
  - 4.1 Birke
  - 4.2 Eiche
  - 4.3 Buche
- 5. Vergleich mit generischer Baumerzeugung
  - 5.1 Das Prinzip von L-Grammatiken
  - 5.2 Tools
  - 5.3 Vorteile der jeweiligen Herangehensweise



München\_\_\_

#### Die Birke


• Höhe: 30m

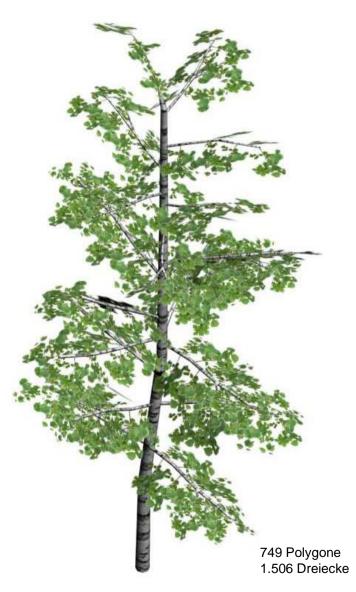
• Stammdurchmesser: 60cm

Krone licht und schlank

• Dünne Äste

- Modellierung:
  - Stamm ohne Wurzeln und Hauptäste
  - Eventuell Gabelung im oberen Bereich
  - Äste: große u. kleine, jeweils 4 verschiedene




(Quelle: Mitchell & Wilkinson, 2004)



## Fertige Birken













München\_\_\_

#### Die Eiche

• Höhe: 40m

• Stammdurchmesser: 2,6m

Krone weit ausladend

Stark ästig

• Modellierung:

• Stamm mit Gabelung und dicken Hauptästen

• Äste: große u. kleine, jeweils 3 verschiedene



(Quelle: Mitchell & Wilkinson, 2004)



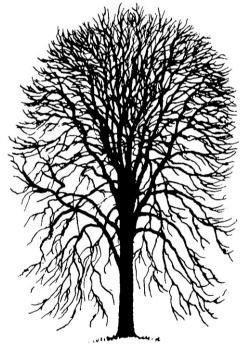
## Fertige Eiche





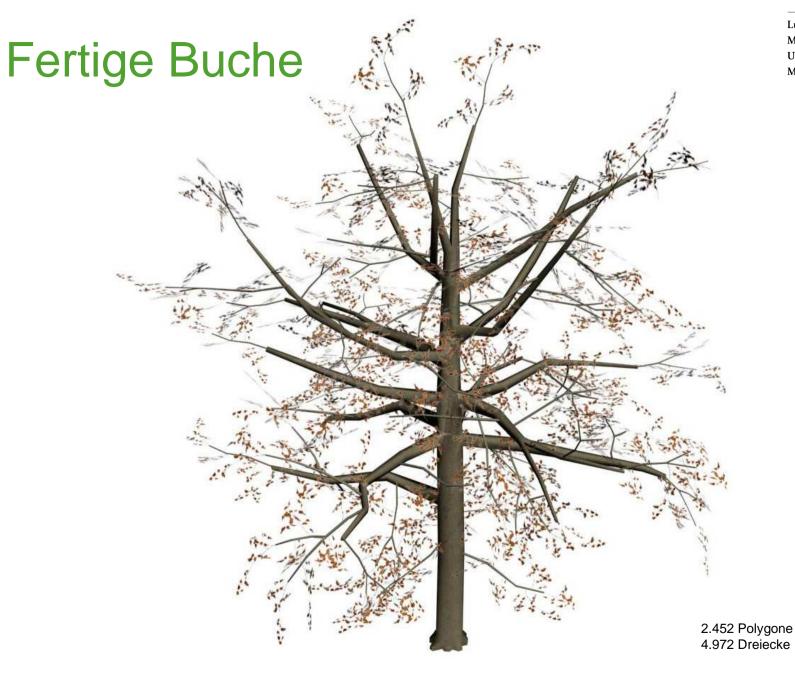


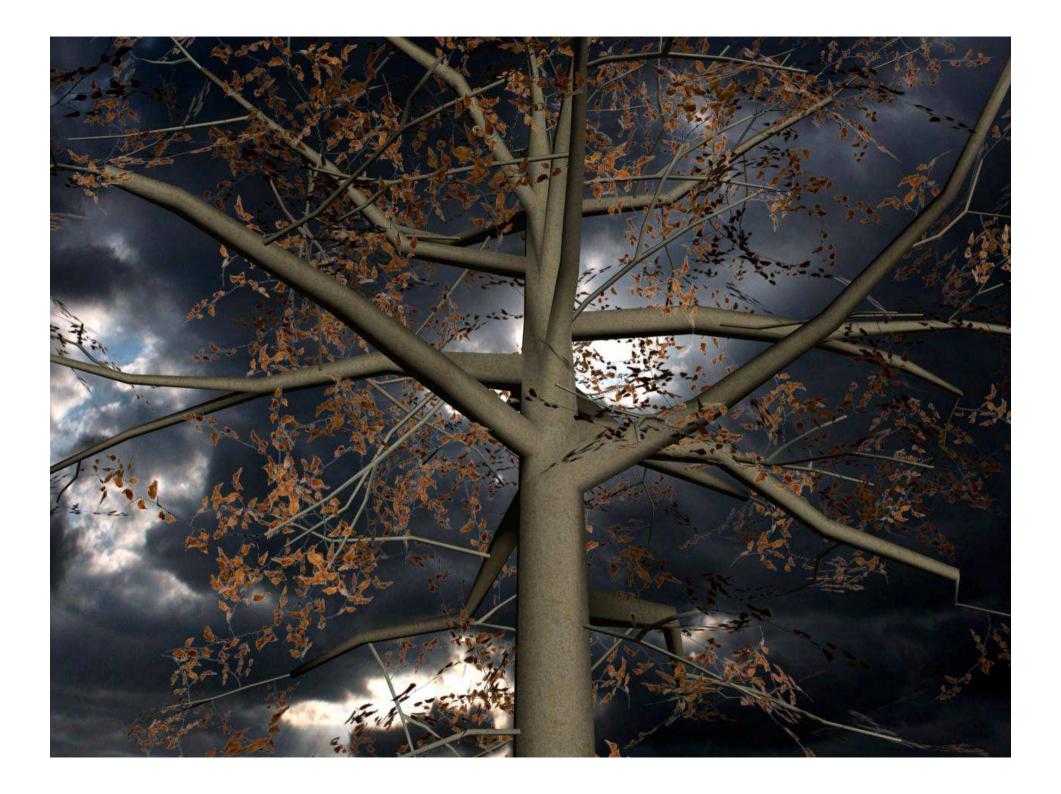
München\_\_\_


#### Die Buche

• Höhe: 45m

• Stammdurchmesser: 2,9m


Tiefe Beastung


- Dünne Äste
- Hauptwurzeln auch über der Oberfläche zu erkennen
- Modellierung
  - Stamm mit Gabelung und Hauptästen
  - Wurzeln
  - Äste: große u. kleine, jeweils 3 verschiedene



(Quelle: Mitchell & Wilkinson, 2004)



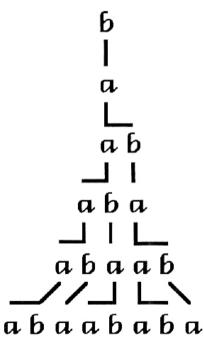






### Gliederung

- 1. Das Projekt "Virtueller Förster"
- 2. Grundlagen des biologischen Baumaufbaus
- 3. Modellierung Allgemein
  - 3.1 Erstellen der Geometrien
  - 3.2 Erstellen der Texturen
- 4. Die Bäume
  - 4.1 Birke
  - 4.2 Fiche
  - 4.3 Buche
- 5. Vergleich mit generischer Baumerzeugung
  - 5.1 Das Prinzip von L-Grammatiken
  - 5.2 Tools
  - 5.3 Vorteile der jeweiligen Herangehensweise

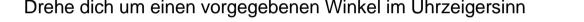

moldenhauer@cip.ifi.lmu.de

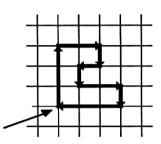


#### Das Prinzip von L-Grammatiken

- Mathematische Theorie über Pflanzenwachstum
- Parallele Ersetzungen ausgehend von einem simplen Initial-Objekt
- Bestandteile eines L-Systems:
  - Ein Alphabet
  - Ein nicht leeres Anfangswort (Axiom)
  - Eine Menge von Ersetzungsregeln (Produktionen)
- Beispiel:
  - Axiom: b
  - Produktionen: a -> ab

b -> a



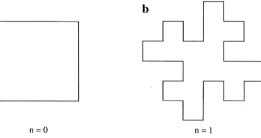


(Quelle: Prusinkiewicz & Lindenmayer, 1990)

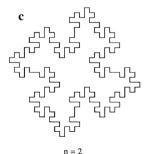


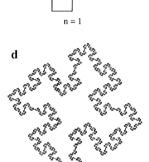
#### Das Prinzip von L-Grammatiken

- Durch L-Systeme erzeugte Befehle werden von einem Turtle interpretiert
- Befehle:
  - Mache einen Schritt der Länge d und zeichne eine Linie
  - f Mache einen Schritt der Länge d ohne eine Linie zu zeichnen
  - Drehe dich um einen vorgegebenen Winkel gegen den Uhrzeigersinn
  - Drehe dich um einen vorgegebenen Winkel im Uhrzeigersinn







FFF-FF-F-F+F+FF-F-FFF


• Beispiel: Koch-Schneeflocke

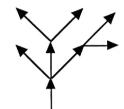
F-F-F-F Axiom:

F -> F-F+F+FF-F-F+F • Produktion:








Start



#### Das Prinzip von L-Grammatiken

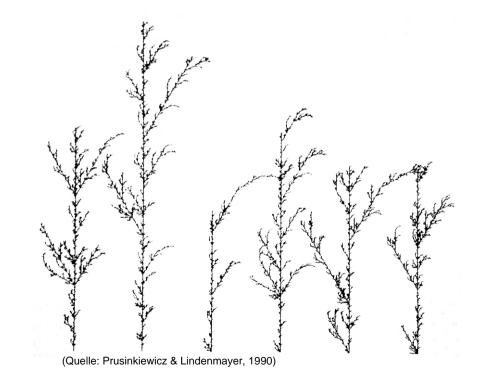
Ludwig Maximilians-Universität\_\_\_ München

- Speichern des gegenwärtigen Status des Turtle auf einem Stack
  - speichere Status auf Stack
  - hohle Status vom Stack • ]



F[+F][-F[-F]F]F[+F][-F]

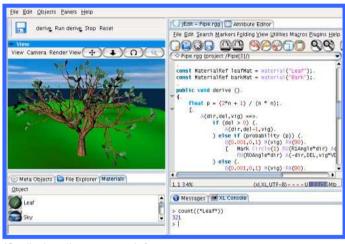
Varianz durch Produktionswahrscheinlichkeiten

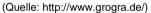

$$\omega : F$$

$$p_1: F \stackrel{.33}{\rightarrow} F[+F]F[-F]F$$
 $p_2: F \stackrel{.33}{\rightarrow} F[+F]F$ 
 $p_3: F \stackrel{.34}{\rightarrow} F[-F]F$ 

$$p_2: F \stackrel{.33}{\rightarrow} F[+F]F$$

$$p_3: F \stackrel{.34}{\rightarrow} F[-F]F$$


- Kontextsensitivität
- Parameter






#### Tools

- GroIMP
  - Java-ähnliche Syntax
  - Nicht nur für Bäume
  - Open Source Software





#### SpeedTree

- Sehr ausgereift
- Im kommerziellen Bereich häufig verwendet
- Lizenzpflichtig





#### Vorteile der Herangehensweisen

- Vorteil des Modellierens
  - Exakte Kontrolle
- Vorteile generischer Erzeugung
  - Natürlichkeit
  - Geschwindigkeit
  - Varianz
- Fazit: Sofern möglich sollte heutzutage zur Erstellung von Bäumen ein generisches Tool verwendet werden



# Fragen?



#### Bibliographie

Braun, H. (1998): "Bau und Leben der Bäume". Freiburg im Breisgau: Rombach

Mitchell, A. & Wilkinson, John (2004): "Pareys Buch der Bäume". Stuttgart: Franckh-Kosmos Verlags-GmbH & Co. KG

Prusinkiewicz, P. & Lindenmayer, A. (1990): "The Algorithmic Beauty of Plants". New York: Springer-Verlag

Rodd, T. & Stackhouse, J. (2008): "Wissen neu erleben – Bäume". München: BLV Buchverlag GmbH & Co. KG

Roloff, A. (1989): "Kronenentwicklung und Vitalitätsbeurteilung ausgewählter Baumarten der gemäßigten Breiten". Frankfurt am Main: J.D. Sauerländer's Verlag

Roloff, A (2004): "Bäume – Phänomene der Anpassung und Optimierung". Landsberg am Lech: Ecomed Verlagsgesellschaft AG & Co. KG

Schütt/Weisgerber/Schuc/Lang/Stimm/Roloff (Hrsg.) (2006): "Enzyklopädie der Laubbäume". Hamburg: Nikol Verlagsgesellschaft mbH & Co. KG