Beyond-the-Desktop Interactive Visualizations

Hauptseminar "Information Visualization - Wintersemester 2008/2009"

Steffen Wenz LFE Medieninformatik February 16/17 2009

> Ludwig LIVI Maximilians-Universität München

Introduction

Ludwig— Maximilians-Universität— München—

Hauptseminar WS 2008/2009 wer

Scatt

ML2D JD Sca

wenzs@cip.ifi.lmu.de

Slide 3 / 15

Screen Size Input Data Type Task Technique

Criteria should...

Criteria

- …reflect device the visualization was designed for (screen size, input)
- \equiv ...reflect the type of visualization (data type)
- Image: Image:
- ➡ → How are common visualizations adapted to different devices?

			-	-		rasks	T		
inguitantieres	Small screen?	Large screen?	Overview	Zoom	Filter	Details-on-Demand	Relate	Luga	Sore .
ini PhotoMesa	1	0	0	Ø					
immer	1	0			0	0	0		
	0	1	0	Ø	0		0		
ZUI	1		0	Ø	-				
0	1	0		õ		-			
	0		0	ŏ		-			
olot	1			-		1			
			0	0		0			
erplot	1	0	9		0	-	-		
	0	1	0	0	1	-			

Ludwig——	
Maximilians-	
Universität	
München	

⇒ Which screen size & usage behavior was an application designed for?

Criteria

Screen Size

LMU Department of Media Informatics

Hauptseminar WS 2008/2009

wenzs@cip.ifi.lmu.de

Slide 5 / 15

Input

- Input devices = Combinations of sensors
- Linear/rotary axes
- E Continuous/discrete (also buttons)
- Example: Mouse 2 continuous linear sensors (mouse position), 1 discrete sensor (mouse wheel), 3 discrete/binary sensors (buttons)
- ⇒ Can an application in principle be ported to another device with compatible methods of input?

Source: S. Card, J. Mackinlay, and G. Robertson: "A morphological analysis of the design sp	ace of
input devices."	

Stylus	2D (+ 1D strength?)
Multi-touch	2*2D (two fingers)
Tilt-sensor	3D

Criteria

Screen Size Input	Data Type	Task	
\equiv Characterizes data that is visualized	1D	Text	
Also indicates typical tasks	2D	Images	6
	3D	Archite	ectural models
\equiv \rightarrow Are visualizations compatible with ot	her Temporal	Timelir	ne with events
kinds of data?	Multi-dimens	sional Databa	ase records
	Tree	Hierard	chies

Network

Source: B. Shneiderman: "The eyes have it: a task by data type taxonomy for information visualizations."

LMU Department of Media Informatics

Computer networks

visualizations."

Source: B. Shneiderman: "The eyes have it: a task by data type taxonomy for information

wenzs@cip.ifi.lmu.de

Slide 7 / 15

- Tasks supported by application to help user achieve his goal (i.e. find a piece of information)
- Based on Shneiderman's information seeking mantra: "Overview first, zoom and filter, then details-on-demand"
- ➡ → What tasks can applications offer on certain device types?

Overview	
Zoom	
Filter	
Details-on-demand	
Relate	
History	
Extract	

Criteria

LMU Department of Media Informatics

Hauptseminar WS 2008/2009

wenzs@cip.ifi.lmu.de

Slide 8 / 15

→ How does a visualization deal with device limitations?

■ "Clutter reduction techniques" - techniques

employed by application to use screen

Three categories: Appearance, spatial

Source: G. Ellis and A. Dix: "A Taxonomy of Clutter Reduction for Information Visualisation"

Sampling	
Filtering	
Change point size	
Change opacity	
Clustering	
Point/line displacement	
Topological distortion	
Space-filling	
Pixel-plotting	
Dimensional reordering	
Animation	

space efficiently

distortion, temporal

Technique

Ludwig Maximilians-Universität München

Example: PengYo

- Social interaction tool for iPhone
- \equiv Map visualization
- Panning/zooming via multi-touch interface
- \equiv Map as plane in three-dimensional space
- \equiv Viewing angle controlled by tilting

Screen Size	Input	Data Type	Tasks	Techniques
Small	Multi-touch (2*2D), tilt (3D)	Map (2D), overlay (2D)	Overview, zoom	Change point size, topological distortion

Source: M. Gross, H. Mangesius, D. Filonik, A. Hackel, and M. Bilandzic: "Pengyo: A mobile application to support phatic communication in the hybrid space"

LMU Department of Media Informatics

Hauptseminar WS 2008/2009

wenzs@cip.ifi.lmu.de

Ludwig Maximilians-Universität München

Example: Flux

- Photo collection visualization for tabletop computers
- Photos manipulated directly using two fingers/pens, simulate physical properties
- \equiv Photos can be clustered in workspaces

Screen Size	Input	Data Type	Tasks	Techniques
Large	Multi-touch (2*2D)	Photo collection (1D temporal, 1D quality, 1D similarity)	Overview, zoom, filter, relate	Filtering, change point size, clustering, point/line displacement, animation

Source: D. Baur, O. Hilliges, and A. Butz: "Flux: Enhancing Photo Organization through Interaction and Automation."

LMU Department of Media Informatics

wenzs@cip.ifi.lmu.de

Example: Mobile Liquid 2D Scatter Space

- Scatterplot visualization for PDAs (stylus)
- "Liquid browsing" Neighboring items move aside when an item is selected → no overlap
- Details on demand when item is tapped

Screen Size	Input	Data Type	Tasks	Techniques	
Small	Stylus (2D) + strength (1D)	Multi-dimensional (3D visualized at the same time)	Overview, filter, details-on- demand, relate	Filtering, change point size, change opacity, point/line displacement, non-uniform topological distortion, dimensional reordering, animation	
Source: C. Waldeck, D. Balfanz, C. Center, and G. ZGDV. "Mobile liquid 2D					

Source: C. Waldeck, D. Balfanz, C. Center, and G. ZGDV. "Mobile liquid 2D scatter space (ML2DSS)"

LMU Department of Media Informatics

Observations

- Nine visualizations examined altogether
- All require at least 2-dimensional input: Data items are directly manipulated in screen space
- Common tasks: Overview, zoom, animate
 - Map visualizations only support overview & zoom
 - Photo collections offer more tasks, such as filter & relate
 - \equiv Scatterplots support details-on-demand
- On average, visualizations on medium/large screens...
 - …supported more tasks
 - …employed fewer clutter
 - reduction techniques

	Small	Medium/large
Tasks	2,7	4,0
Techniques	4,3	3,7

Ludwig LN Maximilians-Universität München

Discussion

Photo collections

- \equiv On desktop computers: Interface largely based on file browsers
- \equiv On other devices: Forced to develop different interfaces due to *limitations*
- \equiv New concepts actually more suitable for photo collections!

Map visualizations


- \equiv On desktop computers: Pan & zoom with mouse as always
- \equiv On other devices: New interface concepts due to new input *possibilities* (multi-touch, tilt sensors etc.)
- \equiv Already started to influence desktop computers: Multi-touch in MacBooks, Windows 7

Scatterplots

- \equiv On desktop computers: Mostly used for scientific/business visualizations
- \equiv Potential for mobile applications, because screen space is used very efficiently

Conclusion

- \equiv Criteria led to some interesting insights
- \equiv Data type criterion not always clear: Photo collections?
- \equiv Tasks & clutter reduction techniques matter of interpretation

Ludwig—____ LN Maximilians-Universität—___ München—___

- P. Baudisch and R. Rosenholtz. Halo: a Technique for Visualizing Off-Screen Locations. In CHI-CONFERENCE-, pages 481–488. ASSOCIATION FOR COMPUTING MACHINERY INC, 2003.
- D. Baur, O. Hilliges, and A. Butz. Flux: Enhancing Photo Organization through Interaction and Automation.
- G. Bieber, C. Tominski, and B. Urban. TiDi browser: a novel photo browsing technique for mobile devices. In Proceedings of SPIE, volume 6507, page 650700. SPIE, 2007.
- T. Büring, J. Gerken, and H. Reiterer. User Interaction with Scatterplots on Small Screens A Comparative Evaluation of Geometric-Semantic Zoom and Fisheye Distortion. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, pages 829–836, 2006.
- S. Card, J. Mackinlay, and G. Robertson. A morphological analysis of the design space of input devices. ACM Transactions on Information Systems (TOIS), 9(2):99–122, 1991.
- L. Chittaro. Visualizing Information on Mobile Devices. COMPUTER, pages 40–45, 2006.
- G. Ellis and A. Dix. A Taxonomy of Clutter Reduction for Information Visualisation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, pages 1216–1223, 2007.
- C. Forlines and C. Shen. DTLens: multi-user tabletop spatial data exploration. In Proceedings of the 18th annual ACM symposium on User interface software and technology, pages 119–122. ACM New York, NY, USA, 2005.
- M. Gross, H. Mangesius, D. Filonik, A. Hackel, and M. Bilandzic. Pengyo: A mobile application to support phatic communication in the hybrid space. In Proceedings of the 6th International Conference on Information Technology: New Generations. IEEE Computer SocietyWashington, DC, USA, 2009.
- A. Khella and B. Bederson. Pocket PhotoMesa: a Zoomable image browser for PDAs. In Proceedings of the 3rd international conference on Mobile and ubiquitous multimedia, pages 19–24. ACM New York, NY, USA, 2004.
- E. SAHLING. Interactive 3D Scatterplots–From High Dimensional Data to Insight. PhD thesis, Masters Dissertation, Institute of Computer Graphics and Algorithms, 2002.
- B. Shneiderman. The eyes have it: a task by data type taxonomy for informationvisualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages 336–343, 1996.
- C. Waldeck, D. Balfanz, C. Center, and G. ZGDV. Mobile liquid 2D scatter space (ML2DSS). In Information Visualisation, 2004. IV 2004. Proceedings. Eighth International Conference on, pages 494–498, 2004.
- J. Wang and J. Mankoff. Theoretical and architectural support for input device adaptation. In Proceedings of the 2003 conference on Universal usability, pages 85–92. ACM Press New York, NY, USA, 2002.