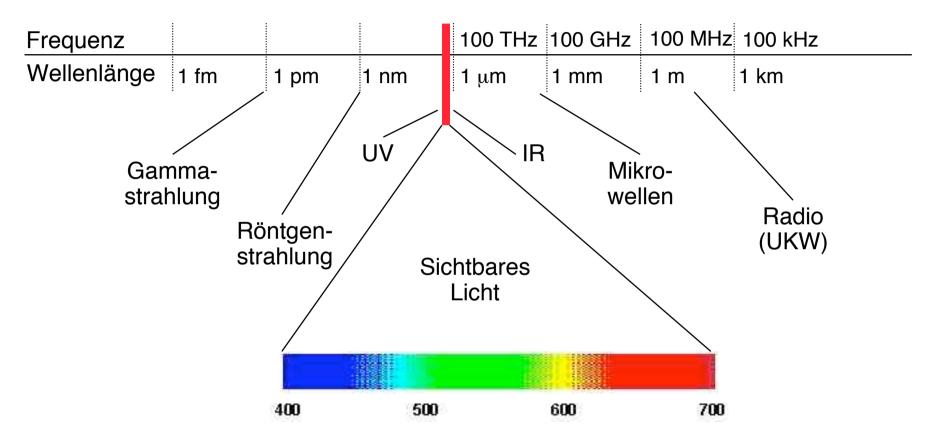
6. Licht, Farbe und Bilder

6.1 Licht und Farbe: Physikalische und physiologische Aspekte



- 6.2 Farbmodelle
- 6.3 Raster-Bilddatenformate
- 6.4 Verlustbehaftete Kompression bei Bildern
- 6.5 Weiterentwicklungen bei der Bildkompression

Licht

- Licht ist elektromagnetische Strahlung
 - Für Menschen sichtbares Licht: Wellenlängen zwischen 380 nm und 780 nm
- Licht hat dualen Charakter:
 - Welle: Brechung, Beugung, Dispersion, Streuung
 - Teilchen (Photonen): Absorption, Emission
- Zusammenhang Wellenlänge Frequenz:
 - Wellenlänge λ , Frequenz f, Periodendauer T
 - f = 1 / T [Hz]
 - $-T = \lambda / c$ [s]
 - $f = c / \lambda$ [Hz]
 - $-c = 2,998 \cdot 10^8$ m/s (Lichtgeschwindigkeit im Vakuum)

Spektrum der elektromagnetischen Strahlung

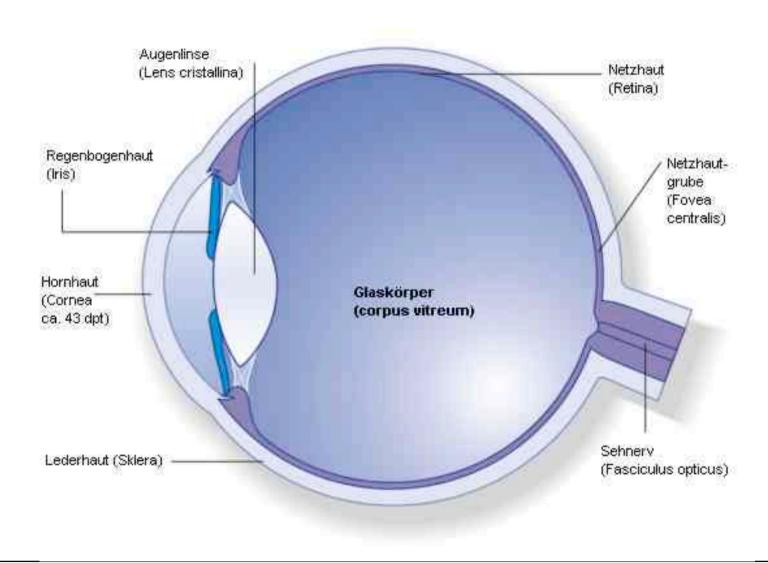
- Reale Strahlungsquellen strahlen fast immer eine Mischung verschiedener Frequenzen aus.
- Die Farbwahrnehmung ist ein rein physiologisches Phänomen. Farben existieren nur im Gehirn, nicht in der Natur.

Farbtemperatur

- In einem geschlossenen Hohlraum stellt sich eine elektromagnetische Strahlung genau berechenbarer Spektralverteilung ein, die nur von der Temperatur des Hohlraums abhängt.
- Idealer Schwarzer Körper:
 - Strahlt abhängig von der Temperatur
 - genau mit der Spektralverteilung eines geschlossenen Hohlraums
- Farbtemperatur (für selbstleuchtende Objekte): Temperatur, bei der ein Schwarzer Körper in der gegebenen Farbe strahlt.
- Farbtemperatur wichtiger Lichtquellen:

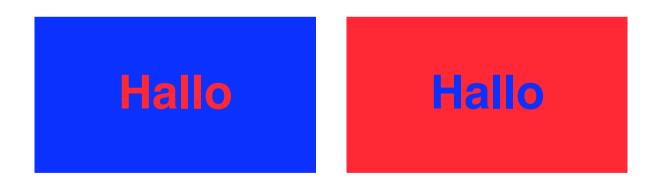
– Glühbirne2200 K

Leuchtstoffröhre 4400 K

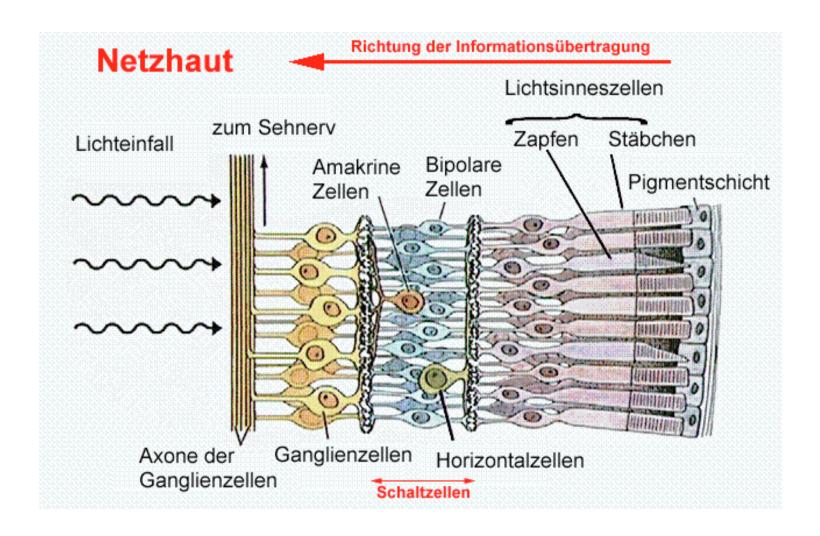

Sonnenlicht im Sommer 5500 K

- Subjektiv wahrgenommene Farben
 - Sind entweder reflektiert oder stammen von selbst leuchtenden Körpern
 - Farbeindruck hängt von der Farbtemperatur der Beleuchtungsquelle ab.

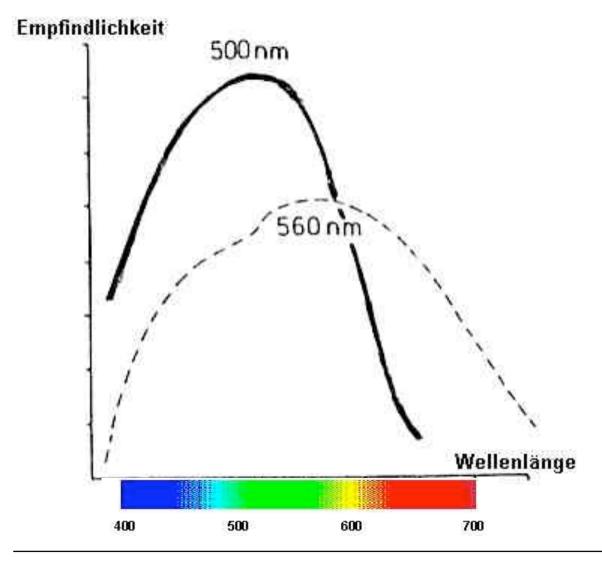
Eigenschaften von Licht


- Geradlinige Ausbreitung
- Reflexion: Einfallswinkel = Ausfallswinkel
- Oberflächen reflektieren unterschiedlich:
 - Reflexionskoeffizient (abhängig von der Wellenlänge)
 - Rauigkeit
- Optische Dichte von Materie, Beugung:
 - Brechungsindex beschreibt niedrigere Ausbreitungsgeschwindigkeit gegenüber Lichtgeschwindigkeit
 - Bei Eintritt in optisch dichtere Materie erfolgt Beugung des Lichtstrahls zur Senkrechten
 - Dispersion: Abhängigkeit des Brechungsindex von der Wellenlänge (Regenbogeneffekt)
 - Totalreflexion: Kein Licht dringt ein, alles wird reflektiert

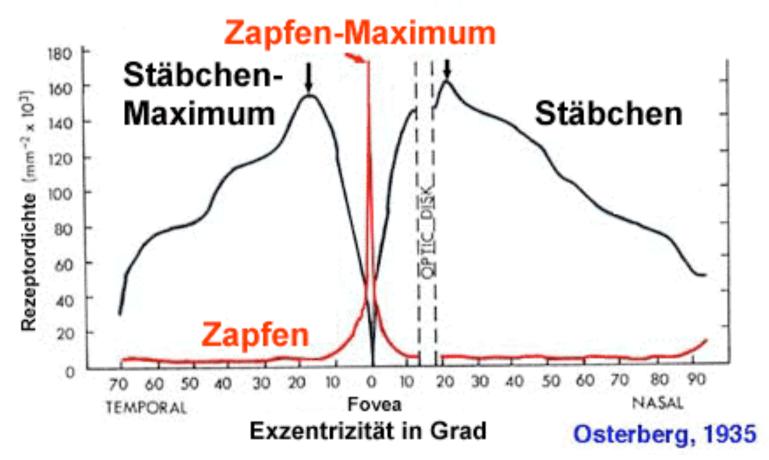
Das menschliche Auge



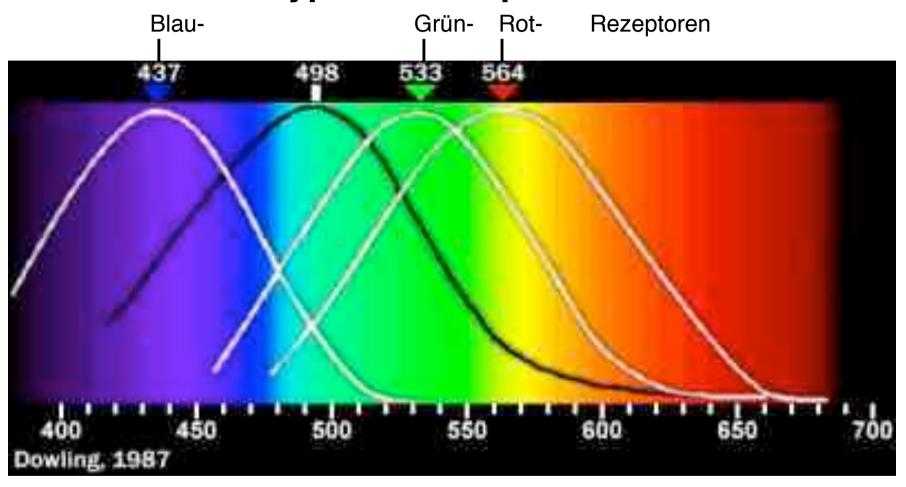
Beugung und Farbgestaltung


- Brennweite der Augenlinse ist abhängig von der Wellenlänge
 - groß im roten Bereich
 - klein im blauen Bereich
- Betrachtung eines Bildes mit roten und blauen Bereichen:
 - Auge ermüdet
- Rot vor blauem Hintergrund und umgekehrt vermeiden!

Die Netzhaut (Retina)



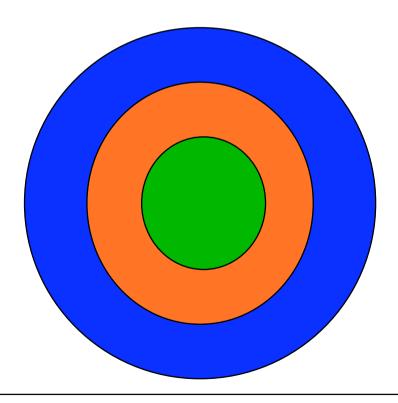
Stäbchen und Zapfen


- Durchgezogene Linie: Stäbchen (rods)
- gestrichelte Linie: Zapfen (cones)
- Stäbchen sind "farbenblind", aber lichtempfindlicher als Zapfen
- Dämmerungssehen mit Stäbchen: Blau = hellgrau, rot = schwarz
- Tagsehen mit Zapfen: Größte Empfindlichkeit für Gelb/orange-Töne

Verteilung von Stäbchen und Zapfen

- Stäbchen in der Peripherie
- Zapfen (Farbwahrnehmung) im Zentrum (fovea centralis)
- Dämmerungssehen in der Peripherie besser als im Zentrum

Verschiedene Typen von Zapfen



 Summe der drei Absorptionskuren beschreibt Empfindlichkeitskurve für Tagsehen

Verteilung der Zapfentypen auf der Retina

- Blaurezeptoren: Ca. 4%, nur peripher, nicht im Zentrum
- Grünrezeptoren: Ca. 32 %, im zentralen Bereich konzentriert
- Rot(bzw.-Gelb)rezeptoren:

Ca. 64%, mittlerer Abstand vom Zentrum

Konsequenzen für Farbgestaltung

- Drei Grundfarben (Rot, Grün, Blau) genügen für die Darstellung aller wahrnehmbaren Farben.
- Text oder andere detailreiche Information in reinem Blau ist anstrengend wahrzunehmen.
- Rote oder grüne Elemente in der Peripherie sind schwerer wahrzunehmen als blaue.

Farbsignalverarbeitung im menschlichen Gehirn

 Im Zwischenhirn werden die separaten Signale für Rot (R), Grün (G), Blau (B) in drei neue Signale umgewandelt:

Summensignal Y = R + GHelligkeit (Gelb)

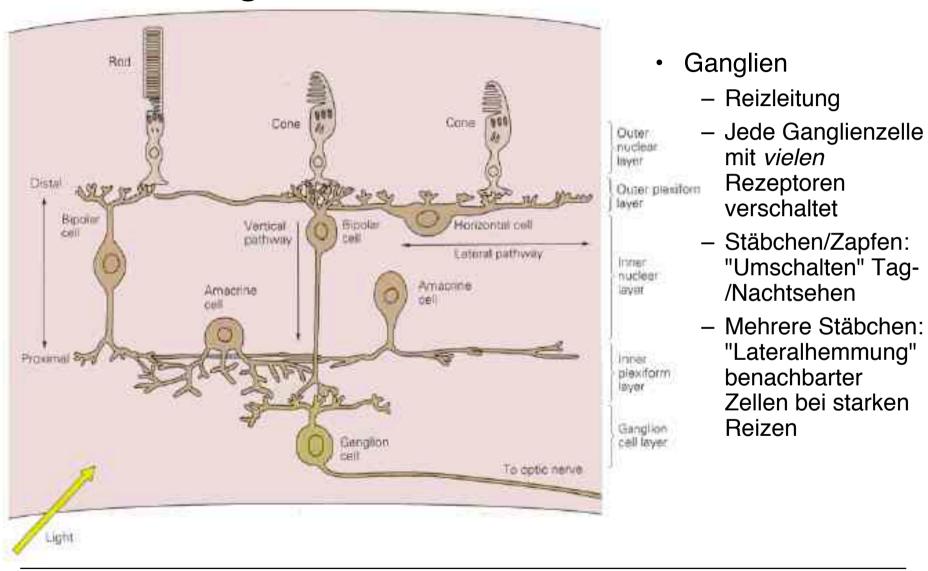
Diffferenzsignal R – G
 Rot/Grün-Unterscheidung

– Differenzsignal Y – B– Blau/Gelb-Unterscheidung

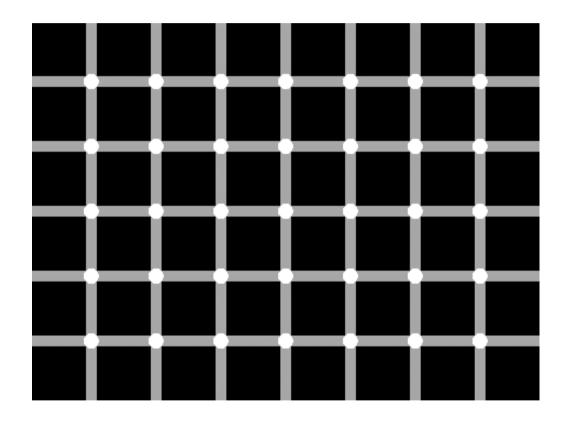
Y (Yellow) heißt Luminanzsignal

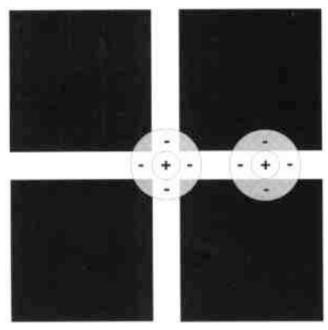
Konsequenzen:

- Gelb-Anteil ist wesentlich für Helligkeitswahrnehmung
- Blau-Anteil spielt keine Rolle bei der Helligkeitswahrnehmung
- Farbkontraste Rot/Grün und Blau/Gelb besonders klar erkennbar: oft unangenehm stark



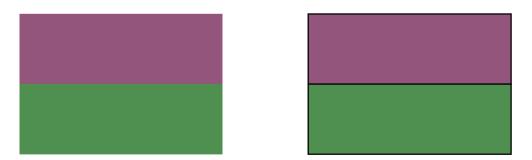
Anzahl wahrnehmbarer Farben


- Der menschliche Sehapparat kann unterscheiden:
 - 128 verschiedene Farbtöne (hues)
 - 130 verschiedene Farbsättigungen (Farbreinheit)
 - 16 (im gelben Bereich) 26 (im blauen Bereich) verschiedene Helligkeitswerte
- Insgesamt ca. 380 000 verschiedene Farben
- Sichere Unterscheidung gleichzeitig dargestellter Farben in Experimenten nur bei ca. 15 Farben

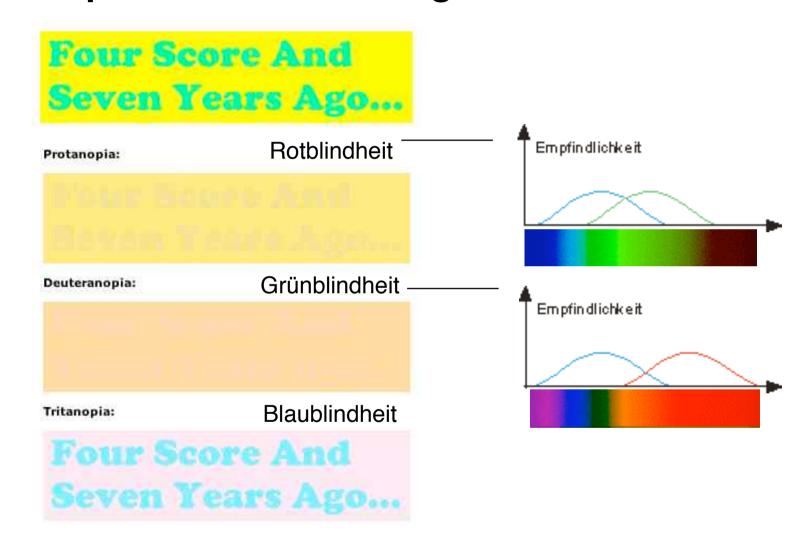

Verschaltung in der Netzhaut

Erklärung einer optischen Täuschung

• Hermann-Gitter (Ludimar Hermann 1870), auch Hering-Gitter

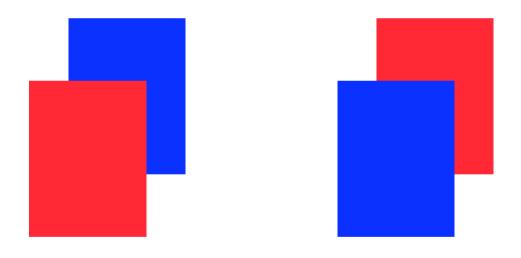


Rezeptive Felder: Reiz in der Peripherie hemmt Zentrum Starke Hemmung an Kreuzung


Kantensehen

- Kantenerkennung:
 - Beruht auf dem Vergleich der Rot/Grün-Differenz mit der Rot-Grün-Summe (der Helligkeit)
 - Rot-Grün-System arbeitet schneller als Blau-Gelb-System
 - Kanten vorwiegend durch Helligkeitsunterschiede erkannt
- Laterale Hemmung verstärkt die Kantenerkennung
 - Abhängig von der Helligkeit
- Kanten, die sich nur durch Farbunterschiede, v. a. im Blaubereich abheben: evtl. unscharf

 Grundregel für Gestaltung: Farbe nie als alleiniges Unterscheidungsmerkmal


Beispiele: Farbfehlsichtigkeit

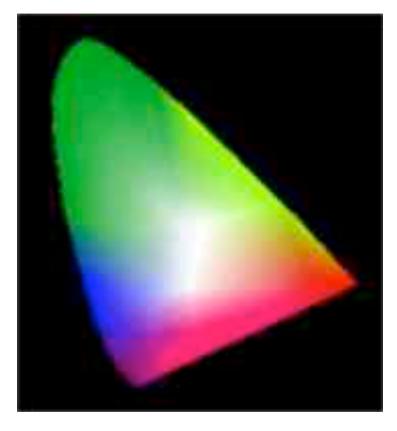
Siehe auch: http://www.ichbinfarbenblind.de/

Chromostereopsie

- Farben werden automatisch räumlich wahrgenommen:
 - Rot im Vordergrund
 - Blau im Hintergrund

6. Licht, Farbe und Bilder

- 6.1 Licht und Farbe: Physikalische und physiologische Aspekte
- 6.2 Farbmodelle

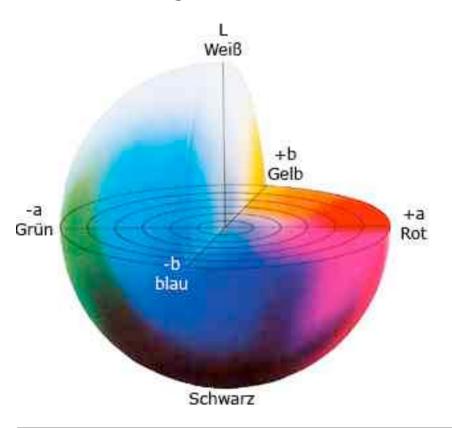


- 6.3 Raster-Bilddatenformate
- 6.4 Verlustbehaftete Kompression bei Bildern
- 6.5 Weiterentwicklungen bei der Bildkompression

Farbmodell

- Farbmodell:
 Eindeutige Beschreibung von Farben (d.h. Spektralverteilungen)
- Wegen der Eigenschaften des Auges genügen 3 Parameter
- Verschiedene Farbmodelle:
 - Allgemeine Farbmodelle: CIE-Farbraum, CIE-L*a*b
 - Hardwarebezogene Farbmodelle: RGB, CMY, CMYK, YUV, YIQ
 - Physiologisch orientierte Farbmodelle: HLS, HSV
- Ein Farbmodell muss nicht alle wahrnehmbaren Farben enthalten
- CIE (Commission Internationale de l' Éclairage)
 - Internationale Organisation mit Sitz in Wien
 - Legt Standards für Beleuchtung fest
 - http://www.cie.co.at
- Applets für Experimente mit Farbmodellen (z.B.):
 - http://www.nacs.uci.edu/~wiedeman/cspace/

CIE-Farbraum

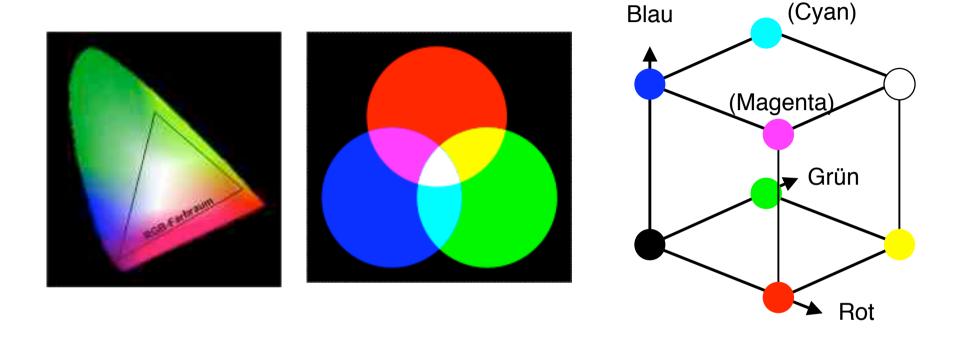

Alle Farbmodelle umfassen einen polygonalen Teilbereich des CIE-Farbraums (color gamut)

- Zweidimensionales Referenzsystem (1931) zur Beschreibung spektraler Verteilungen
- Faltung mit drei Gewichtsfunktionen für Wellenlängen ergibt Werte: X, Y, Z
- Y entspricht ungefähr der Gelbempfindung des Auges
- Darstellung durch Koordinaten in zweidimensionalem Diagramm:

$$x = \frac{X}{X + Y + Z} \qquad y = \frac{Y}{X + Y + Z}$$

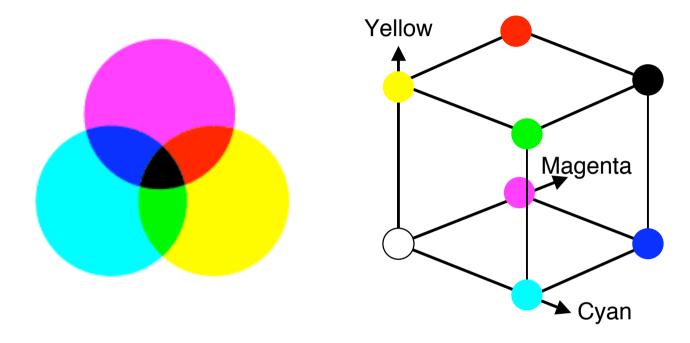
CIE L*a*b Farbraum

- 1976 verbessertes dreidimensionales Farbmodell der CIE:
 - Luminanz plus zwei Chrominanz-Werte
 - L = Luminanz, a = Grün/Rot, b = Blau/Gelb
- Darstellung meist als 3-dimensionales Diagramm



Idee:

Gleiche Abstände entsprechen empfindungsgemäß gleichen Farbabständen

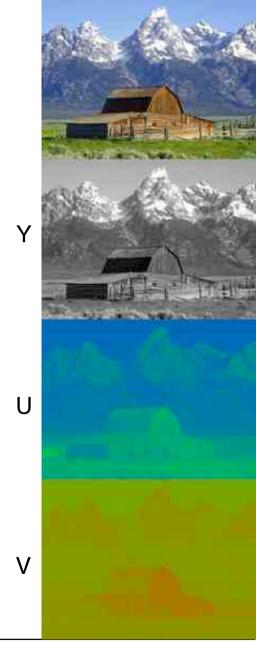

Bildquelle: www.win-seminare.de

Additive Modelle: RGB

- Meistverwendetes Modell für aktiv lichterzeugende Ausgabemedien (z.B. Displays)
- Spektrale Intensitäten der Komponenten werden addiert
- Bestimmte sichtbare Farben können nicht im RGB-Modell dargestellt werden.

Subtraktive Modelle: CMY(K)

- Meistverwendetes Modell zur Ausgabe auf reflektierenden Ausgabemedien (z.B. Farbdrucker)
- Anschaulich: Farbfilter subtrahieren Farbwerte
- Für Drucker oft vierte Komponente "schwarz" (black), deshalb CMYK
 - Tintenersparnis, präziseres Bild, vermeidet "Durchnässen" des Papiers


YUV + YIQ

- Bildinformation getrennt in:
 - Helligkeitssignal (Luminanz) Y
 - Zwei Chrominanz-Signale, bei YUV ungefähr:
 - » Differenz Blau Y
 - » Differenz Rot Y
- Herkunft: TV- und Videotechnik
 - YUV verwendet im PAL-Fernsehstandard
 - YIQ verwendet im amerikanischen NTSC-Fernsehstandard
- Getrenntes Luminanzsignal ermöglicht Abwärtskompatibilität zu Schwarz/Weiss-Fernsehen!

YUV

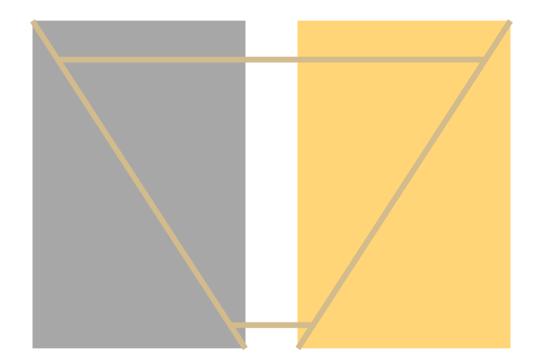
- Nicht zu verwechseln mit ähnlichen Modellen YPbPr (analog) und YCbCr (digital)!
- Umrechnung von RGB in YUV berücksichtigt ansatzweise das menschliche Farbensehen
 - Z.B. Gewichtung von Rot, Grün, Blau in Definition des Y-Signals

$$Y := 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

 $U := (B - Y) \cdot 0.493$
 $V := (R - Y) \cdot 0.877$

HSV + HLS

- Physiologische Farbmodelle
 - entsprechen menschlicher Wahrnehmung
 - relativ leichte Selektion von Farben
- HSV oder HSB:
 - Hue, Saturation, Value bzw. Brightness (Helligkeit)
- HLS:
 - Hue, Lightness, Saturation
- Saturation (Sättigung) ist "Reinheit" der Farbe: Je mehr "fremde" Spektralanteile enthalten, desto weniger gesättigt.


Farben in HTML

- Spezifikation von Farben nach dem RGB-Modell
 - Jeweils 8 bit, d.h. zweistellige Hexadezimalzahl: #rrggbb
 - Beispiel: "Kiefer" #006633
- Anbindung an HTML-Tags durch CSS
 - Hintergrundfarben, Textfarben, Farben für Pseudoformate (z.B. Verweise)
 - Beispiel: <body style="background-color:#CCFFFF">
- Websichere Farben:
 - Standardpalette von 216 RGB-Farben
 - RGB-Werte durch 51 teilbar
 - Eingeführt von Netscape
- Alternative:
 - 16 Standard-Farben des VGA-Schemas, mit standardisierten Namen (siehe n\u00e4chste Folie)

Standard-VGA-Farben und ihre HTML-Namen

black	#000000	gray	#808080	
maroon	#800000	red	#FF0000	
green	#008000	lime	#00FF00	
olive	#808000	yellow	#FFFF00	
navy	#000080	blue	#0000FF	
purple	#800080	fuchsia	#60000	
teal	#008080	aqua	#00FFFF	
silver	#c0c0c0	white	#FFFFFF	

Farbwahrnehmung ist relativ...

6. Licht, Farbe und Bilder

- 6.1 Licht und Farbe: Physikalische und physiologische Aspekte
- 6.2 Farbmodelle
- 6.3 Raster-Bilddatenformate

Grundbegriffe für Bildspeicherung und -Bearbeitung

- Verlustfrei komprimierende Formate
- 6.4 Verlustbehaftete Kompression bei Bildern
- 6.5 Weiterentwicklungen bei der Bildkompression

Literatur:

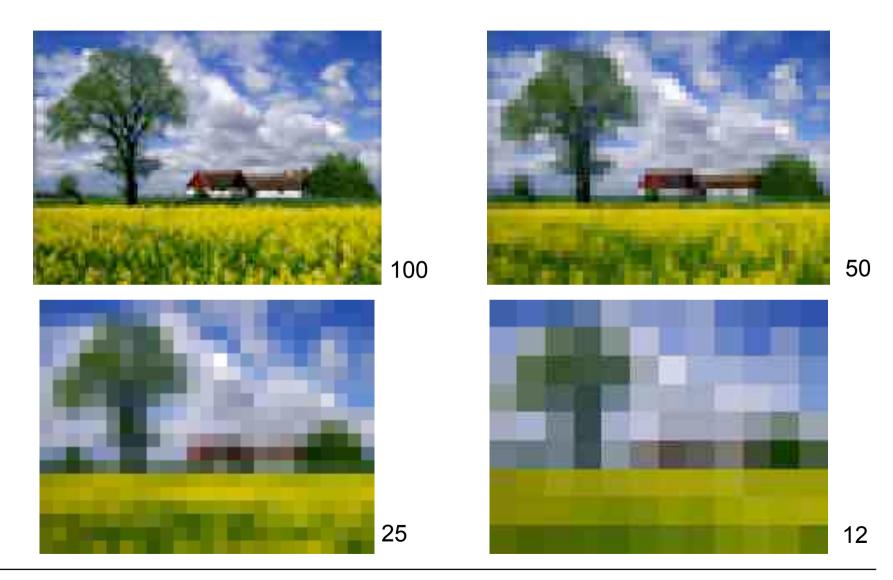
Quelle für Informationen zu diversen Dateiformaten: http://www.wotsit.org

John Miano: Compressed Image File Formats, Addison-Wesley 1999

Klassifikation von Bild-Dateiformaten

- Vektorgrafik
 - Enthält keine Rasterdaten, sondern Beschreibung von Einzelobjekten
 - Beispiele: SVG (Scalable Vector Graphics) und div. proprietäre Formate
- Rastergrafik (Bitmap)

- Speicherung der Rasterdaten eines Bildes
- Einfache verlustfreie Kompression
- Beispiele: BMP, TIFF
- "Meta-Files"
 - Kombination von Vektorgrafik und Rasterdaten
 - Beispiele: WMF (Windows Meta File), Macintosh PICT
- Erweiterte Bitmap-Formate
 - Bessere Kompression, zusätzliche Funktionalität (z.B. Animation)
 - Beispiele: GIF, PNG
- Stark komprimierende Formate
 - (Auch) verlustbehaftete Kompression
 - Beispiel: JPEG


Hinweis: Mehr Informationen zu SVG/Vektorgrafik später in der Vorlesung

Bildgröße und Auflösung

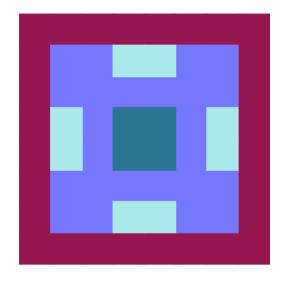
- Pixel (picture element): Kleinste Einheit eines Bildes, Bild, punkt
 - Die tatsächliche Größe eines Pixels hängt vom Ausgabegerät ab.
 - Seitenverhältnis (pixel aspect ratio) muss nicht 1 sein
- Bildgrösse für Bildschirmdarstellung in Pixel
 - Beispiel: Bild der Größe 131 x 148 Pixel
- Auflösung: Anzahl der Pixel, die auf einer bestimmten Strecke zur Darstellung zur Verfügung stehen
 - Angabe in ppi (pixel per inch), Standardwert 72 ppi
 (d.h. 1 Pixel = 1 Pica-Punkt)
- Zusammenhang Abmessungen / Auflösung / Pixelgröße:
 - Breite [px] = Breite [in] * Auflösung [ppi]
- Skalierung: Konversion des Bildes auf andere Auflösung (resampling)
 - Abwärtsskalierung, "Herunterrechnen": Bildung von Mittelwerten
 - Aufwärtsskalierung, "Hochrechnen":
 - » Nur eingeschränkt automatisch möglich
 - » Diverse Interpolationsalgorithmen (z.B. "Bi-kubische Interpolation")

Anschaulich: Anzahl der Pixel im Bild

Farbtiefen und Farbkanäle

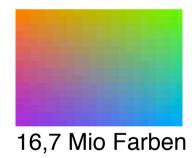
- Farbtiefe (color resolution): Anzahl der Farben, die pro Pixel gespeichert werden können
 - Typische Werte:
 - » 2 Farben (1 bit) = schwarz-weiss
 - » 16 Farben (4 bit)
 - » 256 Farben (8 bit)
 - » 16,7 Millionen Farben (24 bit)
 - "True Color":
 - » 24 bit Farbtiefe
 - » 1 Byte je Grundfarbe (R, G, B)
- Farbkanal: Teil der gespeicherten Information, der sich auf eine der Primärkomponenten des gewählten Farbmodells bezieht
 - Bei Rohdaten meist: Rot, Grün und Blau (RGB-Modell)
 - bei Druckvorbereitung auch CMY bzw. CMYK ("Vierfarbdruck")

Anschaulich: RGB Farbkanäle


Farbpaletten und indizierte Farben

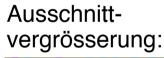
- Farbpalette: Die Menge der in einem konkreten Bild tatsächlich enthaltenen Farben
 - Teilmenge der insgesamt möglichen Farben
- Indizierte Speicherung:
 - Farbpalette (Tabelle) enthält die im Bild vorkommenden Farben
 - Pro Pixel wird nur der Index in die Palettentabelle gespeichert

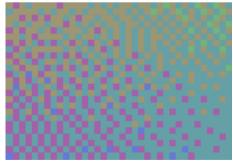
1	1	1	1	1	1	1	1
1	2	2	3	3	2	2	1
1	2	2	2	2	2	2	1
1	3	2	0	0	2	3	1
1	3	2	0	0	2	3	1
1	2	2	2	2	2	2	1
1	2	2	3	3	2	2	1
1	1	1	1	1	1	1	1

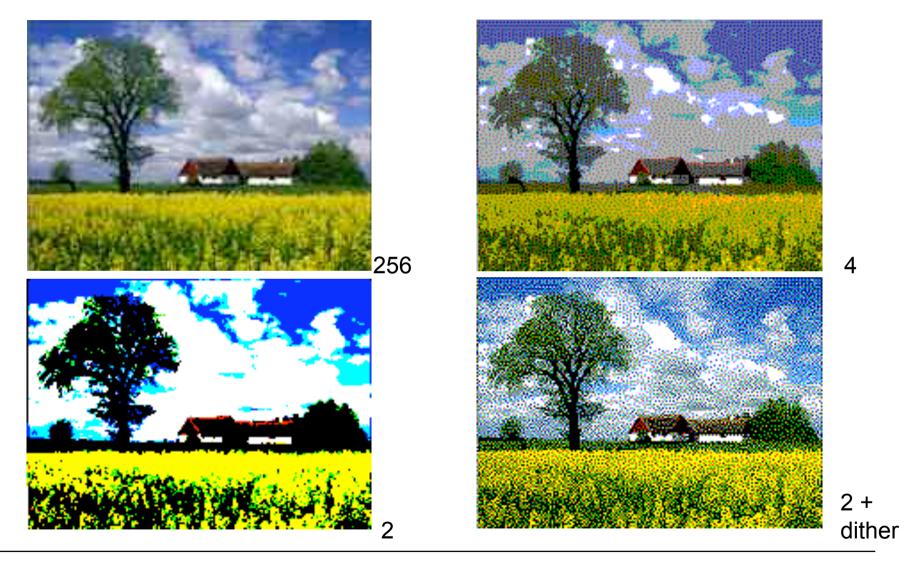

	R	G	В	
0	35	101	128	
1	128	0	64	
2	99	92	254	
3	156	227	227	

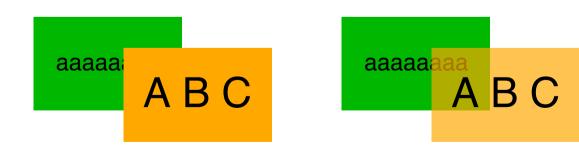
Speicherplatz:

Dithering


- Farbverläufe sind bei Reduzierung auf wenige Palettenfarben schlecht darstellbar
- Dithering: Darstellung von Verläufen durch Punktmuster höherer Auflösung, wobei die einzelnen Punkte Farben aus der verkleinerten Palette haben
 - Bekanntester Algorithmus: Floyd-Steinberg
 - Wird oft auch von Anzeigeprogrammen (z.B. Browsern) durchgeführt

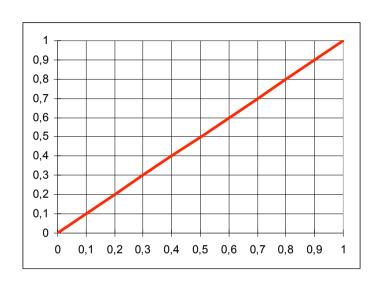


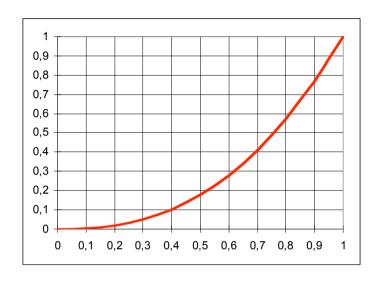

ohne Dithering



Beispiel: 2, 4, 256 Helligkeitsstufen je Farbkanal

Transparenz: Alphakanal


- Bilder bestehen oft aus verschiedenen Elementen, die sich überlagern
 - z.B. Hintergrund, Vordergrund
- Zum Überlagern müssen oft Objekte "transparent" (durchscheinend) werden
- Alphakanal: Zusätzliche Information zu einem Bild, die den Grad der Transparenz angibt
 - Sinnvoll vor allem bei der Zusammensetzung eines Bildes aus verschiedenen Ebenen (layers)
 - Häufig verwendet in Bildbearbeitungsprogrammen
 - Technisch: Zusätzliche Information pro Pixel ("RGBA-Farbmodell")



Gamma-Korrektur

- Jedes Ausgabegerät zeigt Farben geringfügig anders an
 - Phosphortypen bei Monitoren
 - Grafik-Subsysteme verschiedener Betriebssysteme (z.B. Macintosh vs. Windows)
- Gammawert: beschreibt das Verhältnis zwischen den gespeicherten und auf dem aktuellen Anzeigegerät angezeigten Farben
 - im Wesentlichen Änderung der Helligkeit, Details gleich!
- Gammakorrektur: Anpassung der angezeigten Farben an die beabsichtigten Farben
 - Bei der Anzeige auf einem bestimmten Monitor (ohne Monitoreinstellungen zu verändern)
 - Bei der Anzeige von Dateien aus "fremden" Plattformen, deren Gammawert bekannt ist
- Gammakorrektur wird realisiert in:
 - Bildbearbeitungsprogrammen
 - Anzeigeprogrammen für bestimmte Dateiformate (z.B. PNG)

Mathematische Beschreibung: Gamma

- Röhrenmonitor mit Phosphor als Leuchtstoff:
 - Steuerspannung u von 0,0 bis 1,0 * u_{max}
 - Helligkeit h von 0,0 bis 1,0 * h_{max}
- Verhältnis von Helligkeit eines Punktes zur Steuerspannung ist nicht linear, sondern exponentiell:

 $h = u^{\gamma}$ wobei γ (sprich: Gamma) = 2,5

Beispiel Bitmap-Format: Tagged Image File Format TIFF

- Entwickelt ca. 1980 von Aldus (Firma Aldus inzwischen von Adobe übernommen)
 - Portabilität, Hardwareunabhängigkeit, Flexibilität
- Unterstützt ca. 80 verschiedene Varianten zur Datenspeicherung und deren Kombination
 - z.B. schwach aufgelöstes "Preview"-Bild und hochaufgelöstes Bild
 - Farbmodell explizit angegeben
- Kann Metainformation (z.B. über Ursprungshardware) speichern
- Kompression möglich, aber nicht vorgeschrieben
- Grundstruktur:
 - Header
 - Liste von Image File Directories
 - » Image File Directory: Liste von Tags (jeweils pro Tag: Typ, Datentyp, Länge, Zeiger auf Daten)
 - Datenbereich