2. Visual Perception

Optimizing Information Visualization regarding the human visual system

Dr. Thorsten Büring, 25. Oktober 2007, Vorlesung Wintersemester 2007/08

Maximilians-Universität____ München____

Outline

- \equiv Perception Definition & Context
- \blacksquare Preattentive processing
- \equiv Gestalt Laws
- \equiv Change Blindness
- \equiv Data encoding glyphs
- \equiv Data encoding color
- \equiv Characteristics of Visual Properties

Perceptual Processing

- \equiv Design visual information to be efficiently perceivable quick, unambiguous
- \equiv Need to understand how human visual perception and information processing works
- \equiv Perception science related to:
 - Physiology: study the physical, biochemical and information processing functions of living organisms
 - Cognitive psychology: studying internal mental processes how do people learn, understand, solve problems with regard to sensory information?

Ludwig____ LMU

Maximilians– Universität ____ München

Model of Perceptual Processing

- \equiv Numerous other models exist
- Simplified 3-stage model: many subsystems involved in human vision
- Stage 1 rapid parallel processing to extract low-level properties of a visual scene
 - Detection of shape, spatial attributes, orientation, color, texture, movement
 - ∃ Billions of Neurons work in parallel, extracting information simultaneously
 - \equiv Occurs automatically, independent of focus
 - Information is transitory (though briefly held in a short-lived visual buffer)
 - Often called "**preattentive**" processing

Image taken from Ware 2001

Maximilians-Universität___ München

Model of Perceptual Processing

- \equiv Stage 2 pull out structures via pattern perception
 - Visual field is divided in simple patterns: e.g. continuous contours, regions of the same color / texture
 - ∃ Object recognition
 - Slower serial processing
- **≡** Stage 3 sequential goal-directed processing
 - Information is further reduced to a few objects held in visual working memory
 - \equiv Used to answer and construct visual queries
 - \equiv Attention-driven forms the basis for visual thinking
 - \equiv Interfaces to other subsystems:
 - \equiv Verbal linguistic: connection of words and images
 - Perception-for-action: motor system to control muscle movement

Image taken from Ware 2001

Universität___ München

Example

- \blacksquare Route between the two letters?
- Stage 1: automatic parallel extraction of colors, shapes, position etc.
- \equiv Stage 2:
 - Pattern finding of black contours (lines) between two symbols (letters)
- \equiv Stage 3:
 - \equiv Few objects are held in working memory at a time
 - ∃ Identify path sequentially (formulate new visual query)
- In this lecture we will focus on aspects related to stage 1 & 2 of the model

Outline

- \equiv Perception Definition & Context
- \equiv Preattentive processing
- \equiv Gestalt Laws
- \equiv Change Blindness
- \equiv Data encoding glyphs
- \equiv Data encoding color
- \equiv Characteristics of Visual Properties

Preattentive Processing

- \equiv A limited set of basic visual properties are processed preattentively
- \equiv Information that "pops out"
- \equiv Parallel processing by the low-level visual system (Stage 1 in the model)
- \equiv Occurs prior to conscious attention
- \equiv Important for designing effective visualizations
 - \equiv What features can be perceived rapidly?
 - \equiv Which properties are good discriminators?
 - \equiv What can mislead viewers?
 - \equiv How to design information such that it pops out?

Example: Find the 3s

1424164963575984759217659684748917284822859588198294 5096850485069584761212404407467489898517149596912456 7659608020860608365416496457590643980479248576960781 2859607999187128452681014959691245677818742416496457 5765960814959691245670128596079916496457512787991871 2845298496912223591649645759588198250963576596080596

Example: Find the 3s

142416496**3**575984759217659684748917284822859588198294 5096850485069584761212404407467489898517149596912456 7659608020860608**3**65416496457590643980479248576960781 2859607999187128452681014959691245677818742416496457 5765960814959691245670128596079916496457512787991871 284529849691222**3**59164964575958819825096**3**576596080596

Universität___ München

Preattentive Processing

- \equiv How to find out if a visual attribute is preattentive?
- \equiv Measure response time for tasks
 - \equiv Detection of a target among distractors Is the target present?
 - Boundary detection Do items form two groups?
 - \equiv Counting How many targets are there?
- \equiv Detection of targets on a large multi-element display (Healey)
 - \equiv < 200 to 250 ms are considered preattentive
 - \equiv Eye movement takes at least 200 ms to initiate
- \equiv Example: is there a red target present in the images?

Color

 \equiv Is there a red circle present in the image?

Color

 \equiv Is there a red circle present in the image?

Color is preattentively processed!

Shape

 \equiv Is there a red circle present in the image?

Shape

 \equiv Is there a red circle present in the image?

Shape is preattentively processed!

Color & Shape

 \equiv Is there a red circle present in the image?

Color & Shape

 \equiv Is there a red circle present in the image?

Conjunction search is usually not preattentive!

Boundary Detection

 \equiv Do items form a boundary? If yes, based on which attribute(s)?

Boundary Detection

 \equiv Do items form a boundary? If yes, based on which attribute(s)?

Maximilians– Universität___ München

Common Preattentive Properties

						-	-
For	n		Colo	or	122222	151	24
≣	Line orientation		≣	Hue	1222	222	12
Ξ	Line length		≣	Intensity			2 -
≣	Line width		Mot	ion	101405	222	2 2
≡	Size		≣	Flicker	1221-7	22.2	= 51
≣	Curvature		≣	Direction of motion	22-233	5272	27
≣	Shape		Spa	tial Position			
≣	Spatial grouping		≣	2D position			••
≡	Bur		≣	Stereoscopic depth			•
			≣	Convexity / Concavity	••••		
						275	
						228	
	lass see the lass fragment but	<i>11</i>					1000 1000

Images taken from http://www.csc.ncsu.edu/faculty/healey/PP/index.html

LMU Department of Media Informatics

Universität___ München

Conjunction Search

- A target with a unique visual property (e.g. shape OR color) "pops out"
- \equiv Conjunction target is made up of non-unique features
- \equiv Requires a time-consuming serial search, e.g.
 - \equiv For every red colored item: is it a circle?
 - \equiv For every cricular item: is it red?
- \equiv Exception: preattentive conjunctions involving:
 - Motion
 - ≣ Depth
 - Color
 - orientation

Outline

- \equiv Perception Definition & Context
- \blacksquare Preattentive processing
- \equiv Change Blindness
- \equiv Data encoding glyphs
- \equiv Data encoding color
- \equiv Characteristics of Visual Properties

Cognition and Gestalt Laws

- Recap: step 2 of the visual information processing model pattern and object recognition using the raw data collected in step 1
- \equiv Based on which visual properties to we structure the data?
- \equiv Gestalt school of psychology founded in 1912 formulated Gestalt laws
- \equiv "The whole is greater than the sum of parts" (Koffka 1935)
- \equiv Laws still useful today, but not the neural mechanisms proposed
- Perception: An introduction to the Gestalt-theorie (Kurt Koffka, 1922): http://psychclassics.yorku.ca/Koffka/Perception/perception.htm

What do you see?

- \equiv Can you find the dog?
- Dalmatinian exploring a leave covered forest floor
- Once you have found it, try to think of the picture as a simple pattern of black and white again
- \blacksquare Does it work?
- Mind tries to detect anything meaningful by identifying patterns
- \equiv Different tools are tried sequentially
- Perceptual organization is a powerful mechanism

GL: Grouping by Spatial Proximity

- \equiv Columns or rows?
- \equiv Small difference in spacing causes change in perception
- \equiv Use proximity to emphasize between display items
- To which group (top / bottom) does the x dot belong? Spacing is equal for both groups!
- \equiv Spatial concentration principle: we group regions of similar element density (Slocum1983)

GL: Similarity

- \blacksquare Rows or columns?
- \equiv Similar elements tend to be grouped together

GL: Connectedness

- Palmer & Rock 1994
- \equiv Potentially more powerful organizing principle than proximity, color, size, shape

GL: Continuity

- \equiv Smooth and continuous visual elements are likely to be perceived as an entity
- \equiv Abrupt changes in direction create the opposite effect
- \equiv What are the two shapes the figure is assembled from?

GL: Continuity

 \equiv Example circuit design - understanding how components are connected

GL: Symmetry

- \equiv Symmetric forms are perceived much more as a holistic figure
- \equiv Symmetry makes us see a cross in front of a rectangle

www.medien.ifi.lmu.de

thorsten.buering@ifi.lmu.de

GL: Symmetry

- Example of how symmetry detection may be exploited for visual data mining
- Support the search for similar patterns in time-series plots (measurements of deep ocean drilling cores)

Image taken from Ware 2001

Universität___ München____

GL: Closure

- \equiv We see a closed contour as an object
- \equiv Tendency to close contours that have gaps
- \equiv Mind reacts to patterns that are familiar
- \equiv Illusory contours

GL: Area

- \equiv Smaller components of a pattern tend to be perceived as an object
- \equiv White propeller and black propeller

GL: Figure & Ground

- Figure: something object-like that is perceived being in the foreground
- \equiv Ground: whatever lies behind the figure
- \equiv Fundamental perceptual act of identifying objects
- All Gestalt laws contribute, e.g. in upper image: closed contour, symmetry, area
- \equiv Equally balanced cues for figure and ground can result in bistable perception

GL: Common Fate

- \equiv Objects moving in the same direction are perceived as an entity
- Example taken from: http://tepserver.ucsd.edu/~jlevin/gp/time-example-common-fate/

Outline

- \equiv Perception Definition & Context
- \blacksquare Preattentive processing
- \equiv Gestalt Laws
- \equiv Change Blindness
- \equiv Data encoding glyphs
- \equiv Data encoding color
- \equiv Characteristics of Visual Properties

Ludwig—— Maximilians– Universität___ München____

Change Blindness (CB)

- \equiv Example: old style aircraft altimeter
 - \equiv Thinnest hand indicates number of tens of thousands of feet
 - \equiv Next larger hand number of thousands of feet
 - Quick glance after interruption results in misinterpretation if the change in the display is not noticed
 - \equiv Difference of ten thousand feet
- \equiv Phenomenon: inability to detect changes in visual scenes
 - \equiv mid-eye movement
 - ≣ mid-blink
 - \equiv Flicker (short blanking of screen)
 - ∃ Gradual change

Maximilians– Universität___ München

Change Blindness (CB)

- Participants of a study were found unable to detect a change from one person to another in midconversation (Simson & Levin 1998)
- Sample principle: insensitivity to changes of objects in movie scenes interrupted my a cut (Levin & Simons 1997)
- \equiv Various examples:

http://viscog.beckman.uiuc.edu/djs_lab/demos.html

- Problem related to the short-lived visual buffer and the very limited capacity of our visual working memory
- \equiv Need to emphasize changes
- In some applications changes may be distracting, e.g. ambient information visualization -> utilize CB

Levin & Simons 1997

CB: Flicker Example 1

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

LMU Department of Media Informatics

www.medien.ifi.lmu.de

CB: Flicker Example 2

CB: Gradual Change Example

CB Resources

■ Various theories about CB, see for instance

http://cvcl.mit.edu/IAP05/Simons_2000a.pdf

- http://viscog.beckman.uiuc.edu/djs_lab/demos. html
- http://viscog.beckman.uiuc.edu/change/demoli nks.shtml
- \equiv Visual Perception Phenomena
 - Demonstrator tool: Visuelle Welt, Prof. Dr.
 Ronald Hübner
 - http://www.uni-konstanz.de/psychologie/agkog/viwog.htm

Geometrie: Zöllner-Täuschung

Die Zöllner-Täuschung ist eine *Orientierungstäuschung*. Die schrägen Linien scheinen unterschiedliche Orientierungen zu haben. Läßt man aber durch Anklicken der Kontrolltaste die kurzen horizontalen und vertikalen Striche verschwinden, dann sieht man, daß die schrägen Linien parallel verlaufen.

Zöllner, F. (1860). Über eine neue Art von Pseudoskopie und ihre Beziehungen zu den von Plateau und Oppel beschriebenen Bewegungsphänomenen. *Poggendorff's Annalen der Physik und Chemie*, **110**, 500-523.

Outline

- \equiv Perception Definition & Context
- \blacksquare Preattentive processing
- \equiv Gestalt Laws
- \equiv Change Blindness
- \equiv Data encoding glyphs
- \equiv Data encoding color
- \equiv Characteristics of Visual Properties

Encoding Data with Glyphs

- \equiv Glyph: graphical object designed to convey multiple data values
- Multidimensional discrete data, e.g. a collection of cars with several attributes each, e.g. horsepower, weight, acceleration etc.
- \equiv What visual properties can be mapped to the attributes?
- FilmFinder example
 - \equiv Color to film genre
 - \equiv X-position to year of release
 - \equiv Y-position to popularity
- Additional properties
 - Lightness
 - Shape
 - Orientation
 - ∃ Texture
 - Motion
 - Blinking

FilmFinder (www.cs.umd.edu/)

Encoding Data with Glyphs

- \equiv Limitations of low-level graphical attributes for glyph design
- \equiv Easily resolvable steps of a visual property
 - \equiv 12 colors (for preattentive processing only 8 colors)
 - \equiv About 4 orientation steps
 - \equiv At most 4 size steps
 - \equiv Binary blink coding (on / off)
 - ∃ Texture unknown
 - Shape unkown
- Mixing visual properties
 - E Properties are not independent from each other, e.g. blink coding interferes with motion coding
 - \equiv Conjunctions are usually non-preattentive
 - \equiv Some dimensions are **integral**
 - \equiv Best to restrict the mapping to color, shape, spatial position (and motion)
- \equiv Denotes the need for interaction to enable dynamic glyph encoding

Ludwig Maximilians-Universität München

Integral & Separable Dimensions

- \equiv Problem when designing glyphs: perceptual dependency of visual properties
- Example:
 - \equiv Does color interfere with shape when representing two variables?
- \equiv Concept of integral vs. separable dimensions (Garner 1974)
 - Integral dimensions: two or more properties of a visual object are perceived holistically (dependency), e.g. width and height of a rectangle
 - Separable dimensions: properties are perceived as independent, allows for separate judgment of the properties, e.g. size and color
- \equiv How to classify visual properties?
- \equiv Evaluation via restricted classification tasks

Maximilians– Universität____ München

Restricted Classification Task

- \equiv Sets of thee glyphs
- Two of the glyphs are identical on one variable (A and B)
- Third glyph C is closer to B in feature space, buth is different to the other glyphs in both dimensions
- \equiv Evaluation task: group by similarity
- Integral dimensions: B and C are grouped together (closer in feature space)
- Separable dimensions: A and B are grouped together (identical values for one dimension)

Ware 2004

Maximilians– Universität<u>–</u> München

Integral & Separable Dimensions

- \equiv Visual properties are never fully separable
- Concept nevertheless provides a useful and simple design guideline
- List pairs of visual properties ordered in an integralseparable continuum

-		
Integral dimension pairs	Red-green	Yellow-blue
	Red-green	Black-white
T	Shape height	Shape width
	Shape	Size
	Color	Size
	Direction of motion	Shape
	Color	Shape
	Color	Direction of motion
Separable dimension pairs	XY position	Size, shape, or color

Universität___ München____

Outline

- \equiv Perception Definition & Context
- \blacksquare Preattentive processing
- \equiv Gestalt Laws
- \equiv Change Blindness
- \equiv Data encoding glyphs
- \equiv Data encoding color
- \equiv Characteristics of Visual Properties

Maximilians– Universität___ München

Color Vision & Model

- Human color vision
 - \equiv Sensory response to electromagnetic radiation in the spectrum 0.4 0.7 micrometers
 - Based on three dimensions (three different types of color receptors in human retina)
- Powerful encoding potential: compared to gray scales the number of just noticeable differences is much higher
- \equiv About 10% of the male and 1% of the female population are color-blind
- \equiv Color Model HSV (aka HSB)
 - \equiv Hue blue, green, etc. (X axis)
 - \equiv Saturation intensity of color (Y axis)
 - \equiv Value light/dark (slider)

HSV 2D color picker

HSV cone representation

LMU Department of Media Informatics

Color Scales

- Definition: pictorial representation of a set of distinct categorical or numerical values, where each value is assigned its own color (Levkovitz 1996)
- \equiv Desired properties of perception
 - \equiv Preserve the order of the data values, if any
 - Uniform distance between adjacent values (i.e. equally spaced numerical steps are perceived as equally spaced perceptual steps)
 - \equiv No artificial boundaries that do not exist in the data (i.e. continuously present continuous values)

Color Rules I

- Always ensure a reasonable luminance contrast between foreground and background color – chromatic variation may not enough!
- Always ensure a reasonable luminance contrast between foreground and background color – chromatic variation may not enough!
- \equiv Black and white borders around colored symbols can reduce contrast effects
- \equiv Canonical colors (close to an ideal) are easier to remember
- \equiv Only a small set of basic colors should be used for nominal (distinct) labeling
 - ∃ At most 12 colors: red, green, yellow, blue, black, white, pink, cyan, gray, orange, brown, purple
 - \equiv The first four colors are "hard-wired" into the human brain should be used with priority

www.medien.ifi.lmu.de

Grayscale

- \equiv Usually not considered a color scale, but very common
- \equiv Provides simple and natural sense of order

■ Disadvantages

- \equiv Limited number of just-noticeable-differences (JNDs) of about 60 to 90
- \equiv Contrast effects can significantly reduce accuracy
- Luminance channel is fundamental to much of perception grayscale encoding may be considered *"a waste of perceptual resources"* (Ware, 2000)
- Rather not use

Rainbow for Ordering Data?

- \equiv Most common: rainbow scale for ordinal and quantitative (spectral colors)
 - Continuous spectrum
 - Common arbitrary division in 8 or less named colors (red, orange, yellow, green, cyan, blue, indigo, violet)
- \equiv Problems with rainbow scale
 - \equiv Can you order the color blocks from low to high?
 - Yellow (in the middle of the scale) may draw too much attention, when users are seeking for extreme values
 - Perception of non-existing boundaries

Recommended Color Scales

\equiv Ordinal data

- \equiv Low saturation to high saturation (single hue) also very limited JNDs
- \equiv Dark to light (single hue)
- \equiv Red to green, yellow to blue, red to blue
- \equiv Ratio (hardly feasible) / diverging data
 - \equiv Neutral value (e.g. white) to represent zero
 - Increases in saturation toward distinct colors for positive and negative values (double-ended multiple hue)

Universität___ München

Redundant Color Scales

- \equiv Use multiple color properties to redundantly represent data
- \equiv Visual reinforcement of steps
- \equiv Overcome visual deficiencies
- \equiv Redundant model components: data values are mapped to both hue and brightness
- \equiv Heated-object scale
 - \equiv Going from black to white passing through orange and yellow
 - Monotonic increase in brightness provides more natural ordering than rainbow scale
- \equiv Linearized optimal color scale
 - \equiv Scale maximizing the number of JNDs while preserving a (more or less) natural order

LMU Department of Media Informatics

www.medien.ifi.lmu.de

Color Scale

 \equiv US presidential elections - Bush & RNC's campaign funding

http://fundrace.huffingtonpost.com/moneymap.php?cand=Bush&zoom=County

LMU Department of Media Informatics

www.medien.ifi.lmu.de

Color Scale

Vote distribution of 2004 US presidential election - the darker the color, the more of a landslide it was for the winning party
Republican

http://fundrace.huffingtonpost.com/moneymap.php

LMU Department of Media Informatics

Color Scale

Universität___ München____

Sheelagh Carpendale

LMU Department of Media Informatics

www.medien.ifi.lmu.de

Maximilians-

General Barkymetric Chart of the Oteans, International Hydrographic Organization (Ottawa, Canada, 5th edition, 1984). 5.06.

Universität___

München

Sheelagh Carpendale

LMU Department of Media Informatics

Color Tools

- \equiv ColorBrewer: generates color palettes based on data type and number of classes
- http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer.html
- More complex tool: ColorMap applet: http://infovis.uni-konstanz.de/tools/colormap/index.html

Maximilians-Universität___ München

Application example

- Nasdaq diverging data encoded by color: http://screening.nasdaq.com/heatmaps/heatmap_100.asp
- \equiv Price of companies in the NASDAQ-100 Index at a glance
- \equiv Green means stock price is up
- \equiv Red means stock price is down
- \equiv The more saturated a color is, the bigger the move
- Red-green sequence has been found most effective (Spence & Efendor, 2001)

Nasdaq prices valid as of Sep. 5, 2007 Market Closed									
QQQQ -1.01%									
AAPL	ADBE	ADSK	AKAM	ALTR	AMAT	AMGN	AMLN	AMZN	APOL
-5.13%	0.69%	0.56%	-0.56%	0.86%	-2.20%	1.91%	-0.06%	1.27%	-0.14%
ATVI	BBBY	BEAS	BIIB	BRCM	CDNS	CDWC	CELG	CEPH	CHKP
-1.36%	-1.51%	0.00%	-1.07%	-1.16%	0.32%	-0.13%	-1.14%	-0.75%	2.11%
CHRW	CKFR	CMCSA	COST	CSCO	CTAS	CTSH	CTXS	DELL	DISCA
-1.14%	-0.04%	-0.66%	-4.24%	-0.31%	-1.09%	-2.72%	-0.90%	-0.74%	-0.71%
DISH	EBAY	ERIC	ERTS	ESRX	EXPD	EXPE	FAST	FISV	FLEX
-0.56% ଅ	1.85%	-2.16%	-1.87%	-0.66%	-2.26%	-1.64%	-0.13%	-1.67%	1.36%
FWLT	GENZ	GILD	6006	GRMN	IACI	INFY	INTC	INTU	ISRG
-1.57%	-1.33%	-1.78%	0.50%	1.36%	-1.07%	-1.52%	-0.73%	-2.02%	-1.16%
JAVA	JNPR	JOYG	KLAC	LAMR	LBTYA	LINTA	LLTC	LOGI	LRCX
-2.36%	2.03%	0.75%	-1.49%	-0.53%	-0.45%	-0.94%	-0.29%	-2.58%	-2.83%
LVLT	MCHP	MICC	MNST	MRVL	MSFT	MXIM	NIHD	NTAP	NVDA
-3.20%	-1.84%	-4.50%	-0.84%	0.53%	-1.15%	-0.07%	-3.63%	0.00%	-0.76%
ORCL	PAYX	PCAR	PDCO	PETM	PTEN	QCOM	RIMM	ROST	RYAAY
0.05%	-0.73%	-1.63%	-0.81%	-2.46%	-2.20%	-2.70%	-2.44%	-1.34%	-2.05%
SBUX	SEPR	SHLD	SIAL	SIRI	SNDK	SPLS	SYMC	TEVA	TLAB
-1.01%	-1.69%	-4.48%	-1.07%	4.32%	-3.87%	-0.42%	-1.57%	0.25%	-2.98%
UAUA	VMED	VRSN	VRTX	WFMI	WYNN	XLNX	XMSR	XRAY	YHOO
-1.88%	-0.79%	-1.76%	1.06%	-2.49%	-0.14%	-0.57%	4.17%	1.84%	0.54%
-5.13 % Change 5.13 © 2001-2004 SS&C Technologies - <u>www.heatmaps.com</u> Last update: 1:10:03 PM, CEST									
Color scheme Green/Red 💽 Go									
Sort order Ticker Symbol, Ascending 🔄 Go									
Launch this Heatmap in a new window Launch									

Color Rules II

- \equiv For larger areas on a white background use low-saturation light colors
- \equiv Small color-coded objects should be given high saturation
- \equiv Use red and green in the center of the field of view (edges of retina not sensitive for these)
- \equiv Use black, white, yellow in periphery
- \equiv Use color for grouping and search
- E Color Blindness Simulator: http://www.etre.com/tools/colourblindsimulator/
- \equiv Generation of color families
 - \equiv Use canonical colors
 - \equiv Family members should differ by saturation
 - \equiv Better: saturation and lightness

Bivariate Color Coding

- \equiv Recap: color is three-dimensional
- Two data dimensions may be mapped to different color dimensions (e.g. hue and saturation, hue and lightness)
- Problem: bivariate color coding has been found notoriously difficult to read (Wainer & Francolini, 1980)
- \equiv The same applies to multidimensional color coding
 - E.g. amount of red, amount of green, amount of blue for coding colored dots in scatterplot (Ware & Beatty 1988)
 - \equiv Clusters could be easily identified by the participants of a user test
 - \equiv Precise decoding of the color components difficult

Ludwig____ LMU

Maximilians– Universität___ München

Example: Bivariate Color Coding

LMU Department of Media Informatics

www.medien.ifi.lmu.de

Outline

- \equiv Perception Definition & Context
- \blacksquare Preattentive processing
- \equiv Gestalt Laws
- \equiv Change Blindness
- \equiv Data encoding glyphs
- \equiv Data encoding color
- \equiv Characteristics of Visual Properties

Ludwig LIVI Maximilians-Universität

München

Characteristics of Visual Properties

- \equiv Some properties possess intrinsic meaning
 - \equiv Density with Grayscale: the darker the more
 - \equiv Size / Length / Area: the larger the more
 - \equiv Position: depending on culture, in Europe the leftmost / topmost are first
 - \equiv Color: depending on culture, e.g. white associated with death in Japan
- Accuracy of representations for quantitative measures (empirically verified by Cleveland & McGill, 1985)

2D position	Х	
Orientation		Х
Line width		х
Size		Х
Shape		Х
Curvature		х
Enclosure		Х
Hue		Х

Ouantitative

Х

(Few, 2004)

Qualitative

Х

www.medien.ifi.lmu.de

Intensity

Attribute

Line length

Characteristics of Visual Properties

- Jaques Bertin: Semiology of Graphics, 1983 (english translation)
- Guidance on retinal variables (encoding mechanisms) and measurement properties

Reproduction of Bertin's diagram by Spence 2004

www.medien.ifi.lmu.de

Characteristics of Visual Properties

- Ranking of perceptual tasks by Mackinlay 1986 (estimation, not empirically verified)
- \equiv Tasks in gray boxes are not relevant to these types of data

Ludwig— Maximilians-

Universität___ München

Sources & Literature

 \equiv Obligatory paper to read and summarize:

C. Healey: "Perception in Visualization" http://www.csc.ncsu.edu/faculty/healey/PP/index.html

- C. Ware: "Information Visualization. Perception for Design", 2.
 Auflage, 2004.
- J. Mackinlay: "Automating the design of graphical presentations of relational information", ACM Transactions on Graphics, Volume 5, Issue 2, p. 110-141, 1986.
- Perception: An introduction to the Gestalt-theorie (Kurt Koffka, 1922):

http://psychclassics.yorku.ca/Koffka/Perception/perception.htm

■ Lecture material, John Stasko

