
LMU Munich CG1 SS20 | mimuc.de/cg1LMU Munich CG1 SS20 | mimuc.de/cg1 1

 Summer Semester 2020

 Ludwig-Maximilians-Universität München

Tutorial 7

Illumination
Computer Graphics

LMU Munich CG1 SS20 | mimuc.de/cg1

Agenda

2

● Whitted-style Ray Tracing

● Monte Carlo Ray Tracing

○ Monte Carlo Integration

○ Path Tracing

○ Light Sampling

○ Direct & Indirect Illumination

● Epilogue

LMU Munich CG1 SS20 | mimuc.de/cg1

Tutorial 7: Illumination

3

● Whitted-style Ray Tracing

● Monte Carlo Ray Tracing

○ Monte Carlo Integration

○ Path Tracing

○ Light Sampling

○ Direct & Indirect Illumination

● Epilogue

LMU Munich CG1 SS20 | mimuc.de/cg1

Revisit: Phong and Blinn-Phong's (Local) Model

4

What do we do about reflected light?

What do we do about shadows in these models?

…

Intuitively, they totally do not match the real world!

LMU Munich CG1 SS20 | mimuc.de/cg1

Whitted-style: An Improved (Global) Illumination Model

Simple idea: Ray tracing. Trace a ray’s path, sum up the intensity

5

Turner Whitted. 1980. An improved illumination model for shaded display. Commun. ACM 23, 6 (June 1980), 343–349. DOI:https://doi.org/10.1145/358876.358882

Intensity from
a reflected ray

Intensity from
a transmission ray

Diffuse TermAmbient Term Whitted Term

LMU Munich CG1 SS20 | mimuc.de/cg1

Whitted-style Ray Tracing (1980)

6

https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/

● Always perform specular reflections / refractions

● Stop bouncing at diffuse surface

http://www.youtube.com/watch?v=0KrCh5qD9Ho
https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/

LMU Munich CG1 SS20 | mimuc.de/cg1

Ray Tracing in Practice: Performance Issue

● Naive way to trace a ray

○ Exhaustively test ray intersections with every object (each object has many triangles)

○ Which object will be intersected?

○ Which triangle will be hit?

○ What are the coordinates of the hit position?

○ When a ray is reflected/refracted, should the intersection of all objects be considered for the new ray?

○ …

● Performance issue:

○ Naive ray tracing = #pixels x #triangles x #bounces

○ This is really slow, and why ray tracing is so hard

7

LMU Munich CG1 SS20 | mimuc.de/cg1

This Scene is Rendered using Ray Tracing (in Real-Time)

8Image source: Unreal Engine 5

● Each statue has more than 33 million triangles

● Naive ray tracing would not work here in any cases

● A clever acceleration structure is needed for sure

LMU Munich CG1 SS20 | mimuc.de/cg1

Can we fake it with Rasterization (in Real-Time)?

9

Glass:
Refraction
Effects

Metal:
Reflection

Effects

Shadows

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 a) Add Checkerboard
 constructor() {
 ...
 // TODO: create a checkerboard with red and yellow color
 const g = new PlaneGeometry(
 this.params.plane_width, this.params.plane_height,
 this.params.plane_width, this.params.plane_height
)
 for (let j = 0; j < this.params.plane_height*2; j+=2) {
 for (let i = 0; i < this.params.plane_width*2; i+=2) {
 g.faces[this.params.plane_height*2*j + i].materialIndex = (i/2+j/2) % 2 === 0 ? 0 : 1
 g.faces[this.params.plane_height*2*j + i+1].materialIndex = (i/2+j/2) % 2 === 0 ? 0 : 1
 }
 }
 this.p = new Mesh(g, [
 new MeshPhongMaterial({color: this.params.color_plane[0]}),
 new MeshPhongMaterial({color: this.params.color_plane[1]})
])
 this.p.position.copy(this.params.position.plane)
 this.p.rotateX(-Math.PI/2)
 this.scene.add(this.p)

 // enable shadows
 this.enableShadow()
 }

10

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 a) Add Glass Sphere
 constructor() {
 ...
 // TODO: create a glass sphere based on MeshBasicMaterial.
 this.refractionCamera = new CubeCamera(0.1, 5000, 512)
 this.refractionCamera.renderTarget.mapping = CubeRefractionMapping
 this.scene.add(this.refractionCamera)
 this.s1 = new Mesh(
 new SphereGeometry(this.params.radius, 100, 100),
 new MeshBasicMaterial({
 color: 0xffffff,
 envMap: this.refractionCamera.renderTarget,
 side: BackSide,
 refractionRatio: this.params.refractionRatio,
 reflectivity: this.params.reflectivity
 }),
)
 this.s1.position.copy(this.params.position.right)
 this.refractionCamera.position.copy(this.s1.position)
 this.scene.add(this.s1)

...
 }
 update() {
 // TODO: implement update if you needed (yes we need it).
 this.s1.visible = false
 this.refractionCamera.update(this.renderer, this.scene)
 this.s1.visible = true
 }

11

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 a) Add Metal Sphere and Shadows
 constructor() {
 ...
 // TODO: create a metal sphere based on phong material
 this.s2 = new Mesh(
 new SphereGeometry(this.params.radius, 100, 100),
 new MeshPhongMaterial({color: this.params.color_sphere, side: FrontSide}),
)
 this.s2.position.copy(this.params.position.left)
 this.scene.add(this.s2)

...
 }

 enableShadow() {
 // TODO: enable shadows for objects you have created
 this.renderer.shadowMap.enabled = true
 this.renderer.shadowMap.type = PCFSoftShadowMap
 this.s1.castShadow = true
 this.s1.receiveShadow = true
 this.s2.castShadow = true
 this.s2.receiveShadow = true
 this.p.receiveShadow = true
 }

12

LMU Munich CG1 SS20 | mimuc.de/cg1

A Fake Whitted-style

Live Demo: https://www.medien.ifi.lmu.de/lehre/ss20/cg1/demo/7-illumination/whitted/index.html

13

https://www.medien.ifi.lmu.de/lehre/ss20/cg1/demo/7-illumination/whitted/index.html

LMU Munich CG1 SS20 | mimuc.de/cg1

Other Possible Solutions

The demonstrated solution is not perfect, you could also come up with other solutions

using:

● Customized shaders

● Texture mapping

● …

Be more creative :)

14

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 b) What went wrong here?

15

No soft shadow

No caustics effect on glass sphere

No reflection on the
metal sphere

Cast shadow on the metal
sphere does not appear on the
class sphere

Shadow resolution
is low here

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 c) More physically-based Effects?

● Absorption

● Scattering

● Polarization

● Diffraction

● Interference

● …

None of them are possible with Whitted-style ray tracing.

16

LMU Munich CG1 SS20 | mimuc.de/cg1

Revisit: The Rendering Equation (1986)

17

James T. Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’86).
Association for Computing Machinery, New York, NY, USA, 143–150. DOI:https://doi.org/10.1145/15922.15902

https://doi.org/10.1145/15922.15902

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 d) Whitted-style is "wrong"

The rendering equation integrates the radiance from all incoming directions (hemisphere)

but the whitted style ray tracing does not consider other indirect effects (single ray path).

The rendering equation is "correct", at least more correct than Whitted-style.

But how to solve it?

18

LMU Munich CG1 SS20 | mimuc.de/cg1

Tutorial 7: Illumination

19

● Whitted-style Ray Tracing

● Monte Carlo Ray Tracing

○ Monte Carlo Integration

○ Path Tracing

○ Light Sampling

○ Direct & Indirect Illumination

● Epilogue

LMU Munich CG1 SS20 | mimuc.de/cg1

Revisit: Probability and Statistics

● (Continuous) random variables

● Probability

● Cumulative distribution function (CDF)

● Probability density function (PDF) , e.g. Gaussian

● Expected value

20

PDF: Gaussian CDF: Gaussian

https://en.wikipedia.org/wiki/Normal_distribution

https://en.wikipedia.org/wiki/Normal_distribution

LMU Munich CG1 SS20 | mimuc.de/cg1

Monte Carlo Integration

It can be too hard to solve a definite integration analytically. The Monte Carlo Integration is

a method to estimate the definite integral of a function by averaging random samples of

the function's value.

The rendering equation can be solved using the Monte Carlo integration:

The rendering equation using Monte Carlo integration is:

21

https://en.wikipedia.org/wiki/Monte_Carlo_integration

https://en.wikipedia.org/wiki/Monte_Carlo_integration

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 a) The Rendering Equation with Lambertian BRDF

In Assignment 6 - Task 3 a), we derived the BRDF for a Lambertian surface/material.

Note that the Lambertian material only takes into account diffuse incoming radiance, and

doesn't absorb or emit radiance, i.e.

So the rendering equation using Monte Carlo integration is:

22

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 b) Uniform Sampling on Hemisphere

Uniform sampling means the density function is a constant, thus

Due to the definition of the probability density function (PDF), we have:

23

The definite integral is on a hemisphere, with the spherical coordinates:

Therefore (i.e. 1 / surface area)

LMU Munich CG1 SS20 | mimuc.de/cg1

Solving The Rendering Equation (The Easy/Naive Case)

24

The rendering equation on a Lambertian surface, with uniform sampling on a hemisphere

can be simplified to:

A simple Monte Carlo estimation for the rendering equation (pseudocode):

// x is shading point, wo is the outgoing ray

shade(x, wo, bounces) {

Lo = 0

if bounces == 0 { return hit light ? light_emission : 0 } // termination condition of recursive function call

for each randomly sample N directions wi {

trace a ray

if ray hit the light: Lo += light_emission * cosine_theta

if ray hit object at q: Lo += shade(q, -wi, bounces-1) * cosine_theta // f_r = 1/pi, pdf(wi) = 1\2pi

}

return 2*Lo/N

}

Recursive depth == #bounces, thus #rays = N#bounces ⇒ explode!
When N=1: Path tracing, just a single ray
When N>1: Distributed ray tracing, tracing exploded #rays

LMU Munich CG1 SS20 | mimuc.de/cg1

Global Illumination via Path Tracing

Sampling multiple random directions can cause #ray to explode

But we can shoot multiple ray paths from a pixel to gain linear complexity

i.e. multiple samples per pixel (spp)

25

LMU Munich CG1 SS20 | mimuc.de/cg1

Global Illumination via Path Tracing (cont.)

26

What can we do about this?

// x is shading point, wo is the outgoing ray

shade(x, wo, bounces) {

Lo = 0

if bounces == 0 { return hit light ? light_emission : 0 }

randomly sample ONE direction wi

trace a ray

if ray hit the light: Lo += light_emission * cosine_theta

if ray hit object at q: Lo += shade(q, -wi, bounces-1) * cosine_theta // f_r = 1/pi, pdf(wi) = 1\2pi

return 2*Lo/N

}

What if we running out of the #bounces and could not hit the light?

The whole recursion will get 0 ⇒ inefficient. A lot of path are "wasted"

LMU Munich CG1 SS20 | mimuc.de/cg1

Recall the definition of a solid angle (it is the projected area on the unit sphere)

We can express dw by ds immediately using the definition:

Task 2 c) Sampling Area Light (Direct Illumination)

27

Area Light

LMU Munich CG1 SS20 | mimuc.de/cg1

The Rendering Equation by Sampling Light Source

In this case, the PDF is 1/S . The rendering equation is

The corresponding Monte Carlo solution that samples an area light:

28

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 d) Implementing A Simple Path Tracer

In the lecture, you learned that WebGL 2.0 does not support recursion, thus we need to

turn the accumulation to a non-recursive version. The pseudocode from Assignment 7

already tells you how to do it:

shade(wo) {
 Li = 0
 Lo = 0
 for i = 0; i < bounces; i++ {
 if wo not hit the world {
 return Lo
 }
 if wo hit light source {
 return Lo
 }
 Li = Li * hitted material color
 if light is not blocked in the middle {
 Lo += radiance at hit position // use the rendering equation
 }
 wo = randomly sample one direction
 }
 return Lo
}

 29

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 d) Implementing A Simple Path Tracer (cont.)
vec3 shade(in ray r) {
 vec3 Li = vec3(0); vec3 Lo = vec3(0); hit_record hit;
 float pdf_light = 1.0 / area_light_surface; // 1/S
 float f_r = 1.0 / pi; // lambertian
 // TODO: implement path tracing, return the emitted color of the given ray.
 for (int i = 0; i < 1+bounces; i++) {

1 if (!world_hit(r, hit)) { return Lo; }
2 if (hit.mat.type == light_source) { return i == 0 ? vec3(light.color) : Lo; }
3 vec3 Lpos = area_light.center + area_light.dimension * (2.*random3()-1.);
4 vec3 l = Lpos - hit.p;
5 float distance_sequre = dot(l, l); // |x-x'|^2
6 l = normalize(l);
7 ray shadow_ray = ray(hit.p, l);
8 Li = i == 0 ? hit.mat.color : Li * hit.mat.color;
9 float cosine_theta1 = dot(hit.normal, l); // cosθ
10 float cosine_theta2 = dot(area_light_normal, -l); // cosθ'
11 if (cosine_theta1 > 0.0 && cosine_theta2 > 0.0 && !shadow_hit(shadow_ray)) { // direct illumination
12 Lo += Li * light.color * f_r * cosine_theta1 * cosine_theta2 / distance_sequre / pdf_light;
13 }
14 r = ray(hit.p, sample_wi(hit.normal)); // randomly sample one direction, for the next trace

 }
 return Lo;
}
vec3 ray_generation(camera c, vec2 frag_cood) { // generating rays
 vec3 Lo = vec3(0);
 for (int i = 0; i < spp; i++) {
 ray r = ... // omitted here, see code skeleton
 Lo += shade(r);
 }
 return Lo / float(spp);
}

30

● 14 lines of code (can be shorter by remove intermediate variables)
● Indeed difficult to understand from beginning to the end
● Even not easy to debug
● But you can get a huge sense of accomplishment for sure if you did it right

LMU Munich CG1 SS20 | mimuc.de/cg1 31

Math and physics worked!

LMU Munich CG1 SS20 | mimuc.de/cg1

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 e) Changing Light Bounces

● Increasing light bounces introduces more indirect illumination to non emission materials

● Infinite light bounces won't make the scene become pure white as how real world light

behaves (or energy conservation: reflected radiance ≤ incoming radiance)

But how to decide the number of light bounces?

32

no light bounce, 20 spp 1 light bounce, 20 spp 2 light bounce, 20 spp

LMU Munich CG1 SS20 | mimuc.de/cg1

Biased vs. Unbiased Monte Carlo Estimator

● Unbiased: No systematic error, or the expected value of the Monte Carlo estimator is

equal to the definite integral

● Biased: otherwise

Without infinite light bounces, our calculated color is always biased.

What can we do about this?

33

LMU Munich CG1 SS20 | mimuc.de/cg1

Solution: Russian Roulette (Using Bernoulli Distribution)

Assume we don't set a limit to the number of light bounces, instead of manually giving a

probability p (0 < p < 1)

● With a probability p, we keep shooting (reflect) an accumulate ray at the Monte Carlo

integration, the accumulate radiance is divided by p: Li / p

● With a probability 1-p, we terminate bouncing the ray ⇒ returns radiance: 0

The expected value (i.e. Bernoulli 0-1 distribution):

Now we don't rely on the number of bounces and have an unbiased estimation

(even doesn't depends on the probability you have chosen anymore)

34

LMU Munich CG1 SS20 | mimuc.de/cg1

// x is shading point, wo is the outgoing ray

shade(x, wo) {

// direct illumination, contribution from the light source

Ldir = 0

ray = x - x' // x' is from light source

if ray is not blocked in the middle {

Ldir = light_color * f_r * cosθ * cosθ' / |x'-x|^2 / pdf_light // integrate over light source

}

// indirect illumination, contribution from non-emitting materials

Lindir = 0

if random() < p_rr { // p_rr is the given russian roulette probability

wi = sample(wo, n) // hemisphere sampling ONE incoming direction for the next ray

if wi hit non emitting object at q {

Lindir = shade(q, -wi) * f_r * cosθ / pdf_hemi / p_rr // task 2 b): pdf_hemi = 1/2pi

}

}

return Ldir + Lindir

}

Path Tracing (unbiased complete version, pseudocode)

35

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 f) Changing spp

● Increasing spp can reduce the sampling noise

● Because of the law of large numbers, we need infinite samples per pixel eventually

But what can we do about it?

36

2 light bounce, 1 spp 2 light bounce, 4 spp 2 light bounce, 16 spp

LMU Munich CG1 SS20 | mimuc.de/cg1

Denoising!

● An appropriate denoising approach can reduce the samples per pixel that we need

● Ideally, we want a denoised image that rendered with 1 spp (why?)

37
https://openimagedenoise.github.io/gallery.htmlRendered with 16 spp

https://openimagedenoise.github.io/gallery.html

LMU Munich CG1 SS20 | mimuc.de/cg1

Noise Reduction for Cornell Box

This cornell box is created using Blender, and denoised by Blender's built-in denoiser

38

512 spp, without denoiser 512 spp, with denoiser

https://www.blender.org/

LMU Munich CG1 SS20 | mimuc.de/cg1

Tutorial 7: Illumination

39

● Whitted-style Ray Tracing

● Monte Carlo Ray Tracing

○ Monte Carlo Integration

○ Path Tracing

○ Light Sampling

○ Direct & Indirect Illumination

● Epilogue

LMU Munich CG1 SS20 | mimuc.de/cg1

Topics not covered in detail (or where to go from here)

40

● Acceleration structure: find the right object

○ partially covered, see BVH in the Rasterization; volume rendering, see lecture slides

● Ray casting: find the right position

○ partially covered, see Liang's algorithm in the Rasterization, or read code in cornell box task carefully

● Importance sampling

○ advanced(?) math techniques for solving Monte Carlo integration more efficiently

● Noise reduction

○ advanced(?) math techniques for solving Monte Carlo integration with fewer spp ⇒ Real-time ray tracing!

● Global illumination approximation

○ calculate the rendering equation for different geometric structures (e.g. voxel) ⇒ Real-time ray tracing!

● Light transportation variances

○ More physical concern, e.g. photon mapping, metropolis light transport ⇒ Precise accurate offline rendering

LMU Munich CG1 SS20 | mimuc.de/cg1

Rasterization v.s. Ray Tracing in Real-Time

41

Vertex Generation

Vertex Processing
(Vertex Shader)

Primitive Generation
(Tessellation Shader)

Primitive Processing
(Geometry Shader)

Fragment Generation
(Rasterization)

Fragment Processing
(Fragment Shader)

Frame Buffer Ops

MemoryShaders in the pipeline:

● Vertex shader: transforming vertices

● Tessellation shader: subdividing meshes

● Geometry shader: generating new primitives

● Fragment shader: colorizing pixels

Shader not in the pipeline:

● Compute shader: for general purpose computing

Uniforms

Textures

Buffers

init frame buffer

init z buffer

for each triangle t in scene {

 tp = project(t)

 for each pixel p in frame buffer {

 if tp covers p {

 if z value at p is closer than z buffer at p {

 update z buffer and frame buffer

 }

 }

 }

}

flush frame buffer to monitor *This pipeline is standardized in OpenGL,
NVIDIA's hardware supports an implementation

...

LMU Munich CG1 SS20 | mimuc.de/cg1

Rasterization v.s. Ray Tracing in Real-Time
Shaders in the pipeline:

● Raygen shader: deal with rays and write final output to memory

● Intersection shader: handling ray-primitives intersection

● Closest-hitit shader: only on the closest hit position

● Any-hit shader: for all possible intersections

● Rmiss shader: invoke when no intersection is found

42

Ray Generation
(raygen shader)

Intersection
(intersection shader)

Acceleration
Structure Traversal

Closest Hit
(closest-hit shader)

Miss
(rmiss shader)

Any Hit
(any-hit shader)

Hit?

init frame buffer

for each pixel p in frame buffer {

 construct a ray from p

 for ray bounces is not over {

 for each triangle t in the scene {

 if ray hit t at x {

 keep x if closest and update the ray

 break

 }

 }

 }

 update frame buffer

}

flush frame buffer to monitor

Memory

BVH

Textures

Buffers

*This pipeline is proposed by NVIDIA,
implemented in RTX-series hardwares

...

LMU Munich CG1 SS20 | mimuc.de/cg1

Real-Time Ray Tracing (RTRT) Today

● Real-time rendering related research advances

○ Parallelized BVH construction and traversal algorithm research (approx. 2010-2013)

○ Deep neural networks based image denoising research (approx. 2008-2017)

○ Voxel-based global illumination research (approx. 2005-2012)

○ …

● Industrial practices

○ NVIDIA's RTX hardware implementation (2018-today)

■ Works for PCs

○ Epic Games' UE5 software implementation (2020-today)

■ Works for PlayStation 5, XBOX, ...

43

https://twitter.com/paniq/status/977582718040014848/photo/1

https://twitter.com/paniq/status/977582718040014848/photo/1

LMU Munich CG1 SS20 | mimuc.de/cg1

Take Away

● Path tracing is old fashioned (1986) but still the mostly used global illumination solution

for industrial photorealistic rendering, and have been largely applied for decades!

● Too many exciting advances which the course is too basic/short to contain :)

● RTRT is replacing (?) rasterization over the next generation (decade)

● We don't know the future, but what do you think?

● Check these books if you still interested in CG and want dive further:

44

LMU Munich CG1 SS20 | mimuc.de/cg1

Thanks!
What are your questions?

45

