
LMU Munich CG1 SS20 | mimuc.de/cg1LMU Munich CG1 SS20 | mimuc.de/cg1 1

 Summer Semester 2020

 Ludwig-Maximilians-Universität München

Tutorial 3

Geometry
Computer Graphics

LMU Munich CG1 SS20 | mimuc.de/cg1

Agenda

2

● Geometric Representations

○ Constructive Solid Geometry

○ Polygonal Mesh

● Bézier Curves and Interpolation

○ Bézier Curve

○ The de Casteljau Algorithm

○ Piecewise Bézier Curves

○ Bézier Patches

● Mesh Sampling

○ Mesh Simplification

○ Mesh Subdivision

LMU Munich CG1 SS20 | mimuc.de/cg1

Tutorial 3: Geometry

3

● Geometric Representations

○ Constructive Solid Geometry

○ Polygonal Mesh

● Bézier Curves and Interpolation

○ Bézier Curve

○ The de Casteljau Algorithm

○ Piecewise Bézier Curves

○ Bézier Patches

● Mesh Sampling

○ Mesh Simplification

○ Mesh Subdivision

LMU Munich CG1 SS20 | mimuc.de/cg1

Constructive Solid Geometry (CSG)

CSG allows to represent complex models as a series of boolean operations between

primitives.

4

union
(OR)

intersection
(AND)

difference
(NOT)

exclusive or
(XOR)

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 a) Representation: CSG Tree

5

CSG objects can be represented by

binary trees, where leaves represent

primitives and nodes represent

operations

LMU Munich CG1 SS20 | mimuc.de/cg1

Why CSG and Why not CSG?

● Why?

○ Minimum steps: represent solid objects as hierarchy of boolean operations

○ A lot easier to express some complex implicit surface

○ Less storage: due to the simple tree structure and primitives

○ Very easy to convert a CSG model to a polygonal mesh but not vise versa

○ …

● Why not?

○ Impossible to construct non-solid shape, e.g. organic models

○ Require a great deal of computation to derive boundaries, faces and edges ⇒ needed for interactive

manipulation

○ ...

6

LMU Munich CG1 SS20 | mimuc.de/cg1

Polygonal Mesh

By definition, polygonal mesh is a collection of vertices, edges and faces that defines the

shape of a polyhedra object.

7

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 b)

8

v1 f1 f2 f3

v2 f1 f3 f4

v3 f1 f4 f2

v4 f2 f4 f3

f1 v1 v3 v2

f2 v1 v4 v3

f3 v1 v2 v4

f4 v4 v2 v3

Q: What's the order when list vertices and faces? Which vertex and face should be listed first?

A: Depends. But the order should be consistent e.g. in .OBJ, it is counterclockwise.

Face List Vertex List

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 c) Apparently this is a mesh...

9

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 d)

A hilly terrain can be derived from a x-y plane by changing the z value of each vertex. In

three.js, one can use PlaneGeometry.

10

⇒

LMU Munich CG1 SS20 | mimuc.de/cg1

Perlin Noise

11

Ken Perlin. 1985. An image synthesizer. SIGGRAPH Comput. Graph. 19, 3 (Jul. 1985), 287–296. DOI:https://doi.org/10.1145/325165.325247

Ken Perlin. 2002. Improving noise. ACM Trans. Graph. 21, 3 (July 2002), 681–682. DOI:https://doi.org/10.1145/566654.566636

● Motivation: smoothly random interpolation

● How?

⇒

P

P1 P2

P3 P4

a1

a2

a3 a4
Perlin v.s. random noise

Then P equals linear interpolation of P1-P4

https://doi.org/10.1145/325165.325247
https://doi.org/10.1145/566654.566636

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 e)
export default class Terrain extends Renderer {

 ...

 init() {

 ...

 // TODO: Implement a terrain. Hint: use PerlinNoise.

 const l = new PointLight(params.lightColor, 1, 100)

 l.position.copy(params.lightPos)

 this.scene.add(l)

 const g = new PlaneGeometry(params.size, params.size, params.fragment, params.fragment)

 const plane = new Mesh(g, new MeshStandardMaterial({flatShading: true, side: DoubleSide}))

 plane.rotateX(Math.PI/2)

this.scene.add(plane)

 }

}

12

Q: What happens if you don't give these two parameters?
flatShading: make sure color doesn't change on a single face
DoubleSide: the plane is colored on both sides

You will learn more about shading behaviors in the future lectures.

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 e)
export default class Terrain extends Renderer {

 ...

 init() {

 ...

 // TODO: Implement a terrain. Hint: use PerlinNoise.

 const l = new PointLight(params.lightColor, 1, 100)

 l.position.copy(params.lightPos)

 this.scene.add(l)

 const g = new PlaneGeometry(params.size, params.size, params.fragment, params.fragment)

 const plane = new Mesh(g, new MeshStandardMaterial({flatShading: true, side: DoubleSide}))

 plane.rotateX(Math.PI/2)

 const n = new PerlinNoise()

 for (let i = 0; i < g.vertices.length; i++) {

 g.vertices[i].z = 2*n.gen(g.vertices[i].x, g.vertices[i].y) // Add noise to z coordinate of each vertex

 }

 this.scene.add(plane)

 }

}

13

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 1 f) Why triangles?

● The most basic polygon

● Other polygons can be turned into triangles

● Unique properties

● Guaranteed to be planar

● Well-defined interior (Q: How to check if a point is inside a triangle?)

● Easier to compute interaction with rays (later in ray tracing)

● … too many reasons!

14

LMU Munich CG1 SS20 | mimuc.de/cg1

● Quad meshes is a lot easier for modeling smooth and deformable surface

● Converting quadrangles to triangles is a simple process

● Quad meshes have many sub-regions with grid-like connectivity (flow line or edge loop)

● Quad meshes are better for subdivisions than tri-meshes

● …

⇒ Many subdivided surfaces are quad meshes (spline surface, e.g. Bézier patches)

… Bézier patches?

Task 1 f) Why quadrilateral?

15

LMU Munich CG1 SS20 | mimuc.de/cg1

Tutorial 3: Geometry

16

● Geometric Representations

○ Constructive Solid Geometry

○ Polygonal Mesh

● Bézier Curves and Interpolation

○ Bézier Curve

○ The de Casteljau Algorithm

○ Piecewise Bézier Curves

○ Bézier Patches

● Mesh Sampling

○ Mesh Simplification

○ Mesh Subdivision

LMU Munich CG1 SS20 | mimuc.de/cg1

Cubic Bézier Curve - de Casteljau

4 control points

17

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 a)

18

t = 0.5 ⇒ midpoint

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 b)

19

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 c) de Casteljau Algorithm

20

Take cubic Bézier as an example:

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 c) de Casteljau Algorithm

21

Take cubic Bézier as an example:

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 c) de Casteljau Algorithm

22

Take cubic Bézier as an example:

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 c) de Casteljau Algorithm

23

Take cubic Bézier as an example:

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 c) de Casteljau Algorithm

24

Take cubic Bézier as an example:

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 c) de Casteljau Algorithm

25

 createDeCasteljauPointAt(t) {

 // TODO: implement de Casteljau's algorithm

 // use this.controlPoints to access the given control points

 const n = this.controlPoints.length

 const tc = new Array(n)

 for(var i = 0; i < n; i++){

 tc[i] = this.controlPoints[i].clone()

 }

 for (let j = 0; j < n; j++) {

 for (let i = 0; i < n-j-1; i++) {

 tc[i].x = (1-t)*tc[i].x + t*tc[i+1].x

 tc[i].y = (1-t)*tc[i].y + t*tc[i+1].y

 }

 }

 return tc[0]

 }

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 c) de Casteljau Algorithm - Result

26

LMU Munich CG1 SS20 | mimuc.de/cg1

Bézier Curve - Algebraic Formula

Quadratic Bézier curve

27

LMU Munich CG1 SS20 | mimuc.de/cg1

Bézier Curve - Algebraic Formula

Quadratic Bézier curve

Cubic Bézier curve

28

LMU Munich CG1 SS20 | mimuc.de/cg1

Bézier Curve - Algebraic Formula

Quadratic Bézier curve

Cubic Bézier curve

…

General Bézier curve

Bernstein basis

29

combination

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 d) Properties of Bézier Curves

1. Affine transform curve by transforming control points (try to verify by yourself)

No need to transform every point on a curve/surface ⇒ good performance!

2. Curve is within convex hull of control points

3. Interpolates endpoints

30

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 e) Piecewise Bézier Curves

31

Cubic Bézier curve with
4 control points

● The Cubic Bézier curve with 4 control

points is widely used (almost every design

software)

● The connection of the two head/tail

control points forms a tangent of the

Bézier curve

● A "seamless" curve is guaranteed if all

given points are differentiable

⇒ Left and right tangent slopes are equal for

a connecting point

C1 continuity

differentiable

non-differentiable

C0 continuity

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 f) Higher-order Bézier Curves

32

Very hard to control!

Can you imagine which control point

influences which part of the curve?

N-order Bézier Curve Playground:

https://www.desmos.com/calculator/xlpbe9bgll

https://www.desmos.com/calculator/xlpbe9bgll

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 2 g) Bicubic Bézier Surface (Patch)

4 cubic Bézier curves determines a bicubic Bézier surface:

Each cubic Bézier curve needs 4 control points, with 4 curves, 4x4 = 16 control points in total.

Then on an orthogonal direction, each Bézier curve contributes one control point.

33

http://acko.net/blog/making-mathbox/

http://acko.net/blog/making-mathbox/

LMU Munich CG1 SS20 | mimuc.de/cg1

Tutorial 3: Geometry

34

● Geometric Representations

○ Constructive Solid Geometry

○ Polygonal Mesh

● Bézier Curves and Interpolation

○ Bézier Curve

○ The de Casteljau Algorithm

○ Piecewise Bézier Curves

○ Bézier Patches

● Mesh Sampling

○ Mesh Simplification

○ Mesh Subdivision

LMU Munich CG1 SS20 | mimuc.de/cg1

Mesh Simplification (downsample)

35

How to get there?

Reducing #polygons while preserving the overall shape

LMU Munich CG1 SS20 | mimuc.de/cg1

Mesh Simplification: Vertex Clustering

1. Divide 2D/3D space into grids

2. For each cell

a. replace all nodes by their barycenter

b. reconnect all edges to the barycenter

36

Rossignac, J. and Borrel, P., 1993. Multi-resolution 3D approximations for rendering complex scenes. In Modeling in computer graphics (pp. 455-465).
Springer, Berlin, Heidelberg.

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 a) and b)

37

● Before simplification: #triangles = 22

● After simplification: #triangles = 15

● Reduction ratio = (before - after) / before = (22-15)/22 ≈ 31.8%

LMU Munich CG1 SS20 | mimuc.de/cg1

Vertex Clustering: Inconsistency

Depending on the position of vertices, the same geometry can lead to inconsistent results:

38

Kok-Lim Low and Tiow-Seng Tan. 1997. Model simplification using vertex-clustering. In Proceedings of the 1997 symposium on Interactive 3D graphics
(I3D ’97). Association for Computing Machinery, New York, NY, USA, 75–ff. DOI:https://doi.org/10.1145/253284.253310

https://doi.org/10.1145/253284.253310

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 c)

39

● If you are doing simplification, details will be lost for sure

● Major drawback: geometric topology has changed

LMU Munich CG1 SS20 | mimuc.de/cg1

Geometry vs. Topology

Geometry: The vertex is at (x, y, z) ⇒ distance relevant

Topology: These vertices are connected ⇒ distance irrelevant

40

Manifold & Non-Manifold

closed fan open fan

non-manifolds

Manifold: Each edge is incident to one or two faces, and faces incident to a vertex from a

closed or open fan.

manifolds

LMU Munich CG1 SS20 | mimuc.de/cg1

Topology Change?

● Manifold → Non-manifold

● Non-manifold → Manifold

● ...

41

From non-manifold to manifold Not even a face anymore

Non-manifold often causes problematic editing and rendering

Q: Can you name an example that vertex clustering change manifold to non-manifold?

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 d) Ways into source code

Most of the modern developments rely on a huge number of dependencies, these

dependencies are written by others. All you can do is to trust(?) their implementation.

Most of the time, you don't have to worry about the things that you have used. But if a

problem occurs, you will need to ask for help. In the worst case, nobody can help you (e.g.

lack of response, abandoned by maintainer, etc.) then you will have to read the source code

on your own and understand what's under the hood.

42

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 d) Ways into source code

● With open source, you have the freedom

to explore everything you need to

understand

● Where can I find the SimplifyModifier

and SubdivisionModifier?

43

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 d) Looking for examples

44

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 d) Find where the dependency is introduced

45

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 d) Read source code

Thankfully, the code is well

documented.

SimplifyModifier uses

Progressive Polygon Reduction

by Stan Melax

46

https://github.com/mrdoob/three.js/blob/dev/examples/jsm/modifiers/SimplifyModifier.js

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 d) Read source code

Same way, SubdivisionModifier uses

Loop Subdivision

47

https://github.com/mrdoob/three.js/blob/dev/examples/jsm/modifiers/SubdivisionModifier.js

LMU Munich CG1 SS20 | mimuc.de/cg1

Mesh Simplification & Subdivision in three.js

Melax, S., 1998. A simple, fast, and effective polygon reduction algorithm. Game

Developer, 11, pp.44-49.

Loop, C.T., 1987. Smooth subdivision surfaces based on triangles, Master's thesis

Department of Mathematics. University of Utah.

48

LMU Munich CG1 SS20 | mimuc.de/cg1

Face Normal & Vertex Normal

Face normal: unit length and orthogonal with given face

Vertex normal: interpolation vector from surrounding face normals

(computation depends on the definition)

Why? Influence shading (later lectures for more details)

flatShading uses face normals, smooth shading uses vertex normals

49

LMU Munich CG1 SS20 | mimuc.de/cg1

Edge Collapse

Basic Idea: Collapse an edge then merge one vertex into the other

Q: How many vertices, faces and edges are removed in each edge collapse?

50

Melax, S., 1998. A simple, fast, and effective polygon reduction algorithm. Game Developer, 11, pp.44-49.

LMU Munich CG1 SS20 | mimuc.de/cg1

How much does it cost to collapse an edge?

A possible way: cost = edge length * curvature

where Tu is the set of triangles that contains u, Tuv is the set of triangles that contains

both u and v.

curvature by definition: 1 - f.normal.dot(n.normal)

Pick an Edge

51

Melax, S., 1998. A simple, fast, and effective polygon reduction algorithm. Game Developer, 11, pp.44-49.

LMU Munich CG1 SS20 | mimuc.de/cg1

Pseudocode
const u = Vector3(...)
const v = Vector3(...)
const Tu = [...] // faces contains u
const Tuv = [...] // faces contains u and v

let maxCurvature = 0
for (let i = 0; i < Tu.length; i++) {
 let minCurvature = 1
 for (let j = 0; j < Tuv.length; j++) {
 const curvature = 1 - Tu[i].normal.dot(Tuv[j].normal)
 if (curvature < minCurvature) {
 minCurvature = curvature
 }
 }
 if (minCurvature > maxCurvature) {
 maxCurvature = minCurvature
 }
}

const cost = u.sub(v).norm() * maxCurvature

52

LMU Munich CG1 SS20 | mimuc.de/cg1

Melax's Progressive Polygon Reduction - Optimization

We know the cost of collapse an edge.

But if we collapse an edge, costs of neighbors can also be affected (why?)

How to efficiently simplify a mesh progressively?

Data structure: priority queue or min-heap.

● cost of access min element: O(1)

● cost of affected elements manipulation: O(log(n))

53

LMU Munich CG1 SS20 | mimuc.de/cg1

Mesh Subdivision (Upsample)

54

Increase #polygons that smoothly approximate its shape

Triangle: Loop

Quad: Catmull-Clark

How to get there?

https://en.wikipedia.org/wiki/Catmull%E2%80%93Clark_subdivision_surface

LMU Munich CG1 SS20 | mimuc.de/cg1

Mesh Subdivision: Loop Subdivision

55

Basic idea: interpolating at every midpoint

#poly *= 4^(subdivision number)

LMU Munich CG1 SS20 | mimuc.de/cg1

What if...

56

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 e)
export default class Bunny extends Renderer {
 constructor() {
 super()
 this.scene.add(new AmbientLight(0x333333))
 const light = new PointLight(0xffffff, 0.8, 1000);
 light.position.copy(new Vector3(100, 50, 100))
 this.scene.add(light)

 const loader = new GLTFLoader()
 loader.load('assets/bunny.glb', model => {
 const simplifier = new SimplifyModifier()
 const subdivision = new SubdivisionModifier(2)
 const reduceRatio = 0.95
 const N = 10

 // TODO: Implement repetitive subdivision and simplification.
 const addBunny = (g, i) => {
 const bunny = new Mesh(g, new MeshStandardMaterial())
 bunny.rotateX(Math.PI/2)
 bunny.scale.copy(new Vector3(40, 40, 40))
 bunny.translateX(8*i)
 this.scene.add(bunny)
 }
 // original model
 const original = model.scene.children[0]
 original.scale.copy(new Vector3(40, 40, 40))
 this.scene.add(original.clone())

 let g = new Geometry().fromBufferGeometry(model.scene.children[0].geometry)
 g.mergeVertices()
 for (let i = 1; i <= N; i += 2) {
 g = subdivision.modify(g)
 addBunny(g, i)
 g = simplifier.modify(g, Math.floor(g.vertices.length*reduceRatio))
 g = (new Geometry()).fromBufferGeometry(g)
 addBunny(g, i+1)
 }
 })
 }
} 57

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 e)

If subdivision number = 2, reduction ratio of number of vertices = 95%:

58

Iteration Vertices Faces

0 2503 4968

1 (subdivision) 39826 79488

2 (simplification) 1990 3816

3 (subdivision) 30853 61056

4 (simplification) 1387 2592

5 (subdivision) 21061 41472

6 (simplification) 789 1438

7 (subdivision) 11763 23008

8 (simplification) 537 978

9 (subdivision) 7962 15648

10 (simplification) 370 616Q: Is it possible to preserve the #faces and mesh quality when

repeating simplification and subdivision?

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 e)

If subdivision number = 2, reduction ratio of number of vertices = 90%:

59

Iteration Vertices Faces

0 2503 4968

1 (subdivision) 39826 79488

2 (simplification) 3981 7798

3 (subdivision) 62715 124768

4 (simplification) 6075 11545

5 (subdivision) 93357 184720

6 (simplification) 3561 6710

7 (subdivision) 54051 107360

8 (simplification) 2658 5009

9 (subdivision) 40176 80144

10 (simplification) 2666 5002Neither number of vertices nor faces were below the original model;

Observation: Shape is still not exactly preserved.

LMU Munich CG1 SS20 | mimuc.de/cg1

More about mesh sampling

Other possibilities:

1. subdivision → simplification → subdivision → simplification → …

#vertices/#faces is reduced over iteration

#vertices/#faces is increased over iteration

2. simplification → subdivision → simplification → subdivision → …

#vertices/#faces is reduced over iteration

#vertices/#faces is increased over iteration

We encourage you to explore and verify by yourself :)

60

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3 f) Mesh Aliasing

● The method for upsampling or downsampling is not an inverse to one another

⇒ Aliasing errors can occur if the sampling pattern is not perfectly aligned to features in

the original geometry

61

LMU Munich CG1 SS20 | mimuc.de/cg1

Take Away

● A lot of open problems in geometry remains unsolved, and they are utterly hard

● If you are interested in practical 3D modeling, now you have enough basic knowledge.

Check out the Blender (an amazing free and open source software), find a tutorial that

fits your taste then get started.

● If you are more interested in technical geometric analysis, check out these fascinating

books, and enjoy :)

62

https://www.blender.org/

LMU Munich CG1 SS20 | mimuc.de/cg1

Thanks!
What are your questions?

63

LMU Munich CG1 SS20 | mimuc.de/cg1

Appendix

64

LMU Munich CG1 SS20 | mimuc.de/cg1

If you met this issue… 😄
SimplifyModifier does not compute vertex normals, this means your simplified model

will not be shaded unless you use flat shading. Two possible fixes:

1. manually compute vertex normals:
const addBunny = (g, i) => {
 g.computeVertexNormals()
 const bunny = new Mesh(g,
 new MeshStandardMaterial(),
)
 bunny.rotateX(Math.PI/2)
 bunny.scale.copy(new Vector3(40, 40, 40))
 bunny.translateX(8*i)
 this.scene.add(bunny)
}

2. Or create a Geometry from a BufferGeometry (used in the provided solution):
for (let i = 1; i <= N; i += 2) {
 g = subdivision.modify(g)
 addBunny(g, i)
 g = simplifier.modify(g, Math.floor(g.vertices.length*reduceRatio))
 g = new Geometry().fromBufferGeometry(g)
 addBunny(g, i+1)
}

65

LMU Munich CG1 SS20 | mimuc.de/cg1

Midterm Survey

Submit your feedback before 08.06.2020, the results will be available to you later when
the evaluation is done.
Link: https://forms.gle/XqWC5cctM56GBvZV9

66

https://forms.gle/XqWC5cctM56GBvZV9

