Tutorial 1 **Survival Mathematics Computer Graphics**

Summer Semester 2020 Ludwig-Maximilians-Universität München

Welcome!

LMU Munich CG1 SS20 | mimuc.de/cg1

2

Agenda

- Point and Vector
- Coordinate Systems
- Scalar and Vector Operations
- Matrix and Determinant
- Basics of JavaScript

3

Tutorial 1: Survival Mathematics

• Point and Vector

- Coordinate Systems
- Scalar and Vector Operations
- Matrix and Determinant
- Basics of JavaScript

Point v.s. Vector

- A point encodes a specific *location*
 - An exact information Ο
 - A reference is needed Ο
 - In the Cartesian coordinate system, the reference point is the *origin* \bigcirc
- A vector encodes *direction* and *magnitude*
 - Given a reference point, a vector can look like a point, e.g. $\mathbf{v} = (x_1, x_2, x_3)^{ op} \in \mathbb{R}^3$ Ο

Task 1

- "The lecture was held at 10 a.m. yesterday" \Rightarrow *Point*
 - Reference point: today \bigcirc
 - Location: 10 a.m. \bigcirc
- "The exam lasts 90 minutes" ⇒ Vector
 - Direction: time lapse \bigcirc
 - Magnitude: 90 minutes \bigcirc
- "The metro station is 100 meters away to the south of the office" \Rightarrow **Point**
 - Reference point: the office \bigcirc
 - Location: 100 meters away to the south Ο
- "The highest standing jump is 1.651 meters" \Rightarrow *Vector*
 - Direction: jump up Ο
 - Magnitude: 1.651 meters Ο

Tutorial 1: Survival Mathematics

- Point and Vector
- Coordinate Systems
- Scalar and Vector Operations
- Matrix and Determinant
- Basics of JavaScript

Coordinate Systems

- Left handed coordinates v.s. Right handed coordinates
 - Y-axis upward (both)
- OpenGL: Right handed
 - positive Z-axis points at camera
- Direct3D: Left handed
 - Z-axis on the opposite side comparing to OpenGL =>
 - positive Z-axis points away from camera

- Why?
 - Historical reason: personal preference, random decision

LMU Munich CG1 SS20 | mimuc.de/cg1

Left Handed Coordinates

Right Handed Coordinates

Task 2: b) Left or right?

- x-axis points to the east
- y-axis points to the south
- z-axis points to the top
- \Rightarrow Left-handed
- OpenGL is *right-handed*

"each axis lies in the same line with respect to the corresponding axis"

 \Rightarrow no guarantees on directions!

Three possibilities:

- 1. if the direction of x- and z-axis remains: $(x,y,z) \Rightarrow (x,-y,z) \Rightarrow P = (3, -4, 5)$
- 2. if the direction of x- and y-axis remains: $(x,y,z) \Rightarrow (x,y,-z) \Rightarrow P = (3, 4, -5)$
- 3. if the direction of y- and z-axis remains: $(x,y,z) \Rightarrow (-x,y,z) \Rightarrow P = (-3, 4, 5)$

Task 2: c) Spherical coordinates

LMU Munich CG1 SS20 | mimuc.de/cg1

Tutorial 1: Survival Mathematics

- Point and Vector
- Coordinate Systems
- Scalar and Vector Operations
- Matrix and Determinant
- Basics of JavaScript

Linear Space: Vector Operation, Span

Vector: Norm

Essence of coordinates

If ${f e}_1$ and ${f e}_2$ are basis vectors, then the coordinates of $\,{f v}=(\lambda_1,\lambda_2)^ op$

LMU Munich CG1 SS20 | mimuc.de/cg1

Vector: Angle and Dot Product

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 3

a)
$$a\mathbf{v}_{1} + b\mathbf{v}_{2} + c\mathbf{v}_{3} = 1 \times (2, 1, 2)^{\top} + 2 \times (1, 1, 3)^{\top} - 3$$

 $= (2, 1, 2)^{\top} + (2, 2, 6)^{\top} - (3, 6, -6)$
b) $||\mathbf{v}_{1}|| = \sqrt{2^{2} + 1^{2} + 2^{2}} = 3$
 $||\mathbf{v}_{2}|| = \sqrt{1^{2} + 1^{2} + 3^{2}} = \sqrt{11}$
 $||\mathbf{v}_{3}|| = \sqrt{1^{2} + 2^{2} + (-2)^{2}} = 3$
c) $\angle (\mathbf{v}_{1}, \mathbf{v}_{2}) = \arccos\left(\frac{(2, 1, 2) \cdot (1, 1, 3)^{\top}}{3\sqrt{11}}\right) = \arccos\left(\frac{3\sqrt{11}}{11}\right)$
 $\angle (\mathbf{v}_{2}, \mathbf{v}_{3}) = \arccos\left(\frac{(1, 1, 3) \cdot (1, 2, -2)^{\top}}{3\sqrt{11}}\right) = \arccos\left(-\frac{\sqrt{11}}{11}\right) = \pi - \arg\left(-\frac{\sqrt{11}}{3\sqrt{11}}\right) = \pi - \arg\left(-\frac{\sqrt{11}}{3\sqrt{3}}\right) = \arccos\left(\frac{(1, 2, -2) \cdot (2, 1, 2)^{\top}}{3 \times 3}\right) = \arccos\left(-\frac{\pi}{2}\right)$

LMU Munich CG1 SS20 | mimuc.de/cg1

 $3 \times (1, 2, -2)^{\top}$ $5)^{\top} = (1, -3, 14)^{\top}$

 $\operatorname{arccos}\left(\frac{\sqrt{11}}{11}\right)$

 $+2\pi n, n \in \mathbb{N}$

Vector: Cross Product

For 3D vectors, by *definition*:

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

If **e** is a unit vector orthogonal w.r.t **a** and **b**:

What's the meaning of this definition?!?

Task 3

d)
$$\mathbf{v}_1 \times \mathbf{v}_2 = (1, -4, 1)^{\top}$$

 $\mathbf{v}_2 \times \mathbf{v}_1 = -\mathbf{v}_1 \times \mathbf{v}_2 = (-1, 4, -1)^{\top}$
e) $\mathbf{v}_1 \times (\mathbf{v}_2 + \mathbf{v}_3) = (-5, 2, 4)^{\top}$
 $\mathbf{v}_1 \times \mathbf{v}_2 + \mathbf{v}_1 \times \mathbf{v}_3 = \mathbf{v}_1 \times (\mathbf{v}_2 + \mathbf{v}_3) = (-5, 2, 4)^{\top}$

f) Do we really need calculate?? cross product results in an *orthogonal* vector

$$\mathbf{v}_1 imes \mathbf{v}_1 = \mathbf{v}_2 imes \mathbf{v}_2 = \mathbf{v}_3 imes \mathbf{v}_3 = \mathbf{0}$$
 (zero

Do we really need calculate?? cross product results in an orthogonal vector **g**)

$$\mathbf{v}_1^ op \cdot (\mathbf{v}_1 imes \mathbf{v}_2) = \mathbf{v}_2^ op \cdot (\mathbf{v}_1 imes \mathbf{v}_2) = 0$$
 (scale

LMU Munich CG1 SS20 | mimuc.de/cg1

$(-5, 2, 4)^{ op}$

o vector, not scalar)

ar zero, not vector)

Task 3 h) Jacobi Identity

Lemma: *Lagrange's identity*

(won't prove here)

$$\mathbf{v}_1 \times (\mathbf{v}_2 \times \mathbf{v}_3) = (\mathbf{v}_1^\top \cdot \mathbf{v}_3)\mathbf{v}_2 - (\mathbf{v}_1^\top \cdot \mathbf{v}_2)\mathbf{v}_3$$
$$\mathbf{v}_2 \times (\mathbf{v}_3 \times \mathbf{v}_1) = (\mathbf{v}_2^\top \cdot \mathbf{v}_1)\mathbf{v}_3 - (\mathbf{v}_2^\top \cdot \mathbf{v}_3)\mathbf{v}_1$$
$$\mathbf{v}_3 \times (\mathbf{v}_1 \times \mathbf{v}_2) = (\mathbf{v}_3^\top \cdot \mathbf{v}_2)\mathbf{v}_1 - (\mathbf{v}_3^\top \cdot \mathbf{v}_1)\mathbf{v}_2$$

$$\mathbf{v}_{1} \times (\mathbf{v}_{2} \times \mathbf{v}_{3}) + \mathbf{v}_{2} \times (\mathbf{v}_{3} \times \mathbf{v}_{1}) + \mathbf{v}_{3} \times (\mathbf{v}_{1} \times \mathbf{v}_{2})$$

$$= (\mathbf{v}_{1}^{\top} \cdot \mathbf{v}_{3})\mathbf{v}_{2} - (\mathbf{v}_{1}^{\top} \cdot \mathbf{v}_{2})\mathbf{v}_{3} + (\mathbf{v}_{2}^{\top} \cdot \mathbf{v}_{1})\mathbf{v}_{3} - (\mathbf{v}_{2}^{\top} \cdot \mathbf{v}_{3})\mathbf{v}_{1} + (\mathbf{v}_{3}^{\top} \cdot \mathbf{v}_{2})\mathbf{v}_{1} - (\mathbf{v}_{3}^{\top} \cdot \mathbf{v}_{1})\mathbf{v}_{3}$$

= 0 (zero vector, not scalar)

So your final result should be a 0 vector.

LMU Munich CG1 SS20 | mimuc.de/cg1

 $\overline{2}$

Tutorial 1: Survival Mathematics

- Point and Vector
- Coordinate Systems
- Scalar and Vector Operations
- Matrix and Determinant
- Basics of JavaScript

19

Span (again)

A space of all possible linearly combined basis vectors.

Orthonormal basis: basis vectors being orthogonal to one another.

Task 4 a) b) and c)

3-dimensional space $\operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathbb{R}^3$ orthonormal basis: unit vectors $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\operatorname{span}\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} = \sum_{i=1}^3 \lambda_i \mathbf{e}_i, \lambda_i \in [0, \Lambda]$

$$S' = \{ \mathbf{v} | \mathbf{v} = (2x + y, x + y, 2x + 3y)^{\top}, x, y \in \mathbb{R} \}$$

Note that S' is (isomorphic to) a 2D space, because $\mathbf{v}_1 + \mathbf{v}_2$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2$ Therefore $ext{span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_1+\mathbf{v}_2\}=\mathbb{R}^2$ is also acceptable and preferred (only for this course) orthonormal basis for \mathbb{R}^2 $(\mathbf{e}_1, \mathbf{e}_2) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

LMU Munich CG1 SS20 | mimuc.de/cg1

Matrix

Addition, subtraction, scalar multiplication are element-wise computed. Matrix multiplication is more interesting to us:

Matrix
$$\mathbf{C}_{m \times n} = \mathbf{A}_{m \times p} \cdot \mathbf{B}_{p \times n}$$
 where $c_{i,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}, 1 \le i \le m, 1$

Computation process is labor extensive, and boring.

 \Rightarrow code it!

What if
$$\mathbf{A}_{m \times p_1} \cdot \mathbf{B}_{p_2 \times n}$$
 where $p_1 \neq p_2$?? **Undefined.**

LMU Munich CG1 SS20 | mimuc.de/cg1

Task 4

d) *If we treat v^T as a 1x3 matrix multiplied by v^T as a 3x1 matrix,* the result is a 1x1 matrix: $\mathbf{v}_1^{\top} \cdot \mathbf{v}_1 = (9)$

Q: Hold on, 1x1 matrix? Shouldn't the result be a scalar?

A: No! You can multiply a scalar with an arbitrary matrix, but you cannot multiply a 1x1 matrix with an arbitrary matrix.

Q: What are you talking about? You said the *dot product* results in a scalar.

A: Clarification: we are running into a notation issue here.

Mathematically speaking, the dot product is different from matrix multiplication.

We are in a matrix multiplication context now. To address these notation conflicts, we

can use another notion to represent the dot product: $<{f v}_1,{f v}_2>$

Task 4

d) If we treat v_1 as a 3x1 matrix multiplied by v_1^T as a 1x3 matrix, the result is a 3x1 matrix:

$$\mathbf{v}_1 \cdot \mathbf{v}_1^{\top} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 2 & 1 \\ 4 & 2 \end{pmatrix}$$

e) Because the matrix multiplication 3x1 by 3x1 is **undefined**.

LMU Munich CG1 SS20 | mimuc.de/cg1

Determinant

For the determinant of a 2×2 matrix **B** is computed by:

$$\det(\mathbf{B}) = \begin{vmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{vmatrix} = b_{11}b_{22} - b_{21}b_{12}$$

And the determinant of 3×3 matrix **C** is computed by:

$$\det(\mathbf{C}) = \begin{vmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{vmatrix} = \begin{vmatrix} c_{11} & c_{22} & c_{23} \\ c_{32} & c_{33} & c_{33} \end{vmatrix} - \begin{vmatrix} c_{12} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{vmatrix}$$

Vector: Cross Product (Revisited)

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix} = (a_2 b_3 - a_3 b_2) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (a_3 b_1 - a_1 b_3)$$
$$= \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{e}_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{e}_2 + \begin{vmatrix} a_1 \\ b_1 \end{vmatrix}$$
$$= \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
mnemonic!

Vector: Cross Product (Revisited)

bottom surface

height

Task 4

f) -9

- g) Parallelepiped of $\mathbf{v}_1, \mathbf{v}_2, \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2$? They are on the same plane, no volume! Therefore det(V) = 0
- h) linear independent: $det(V) \neq 0 \Rightarrow$ geometric meaning: parallelepiped. linear dependent: $det(V) = 0 \Rightarrow$ geometric meaning: 2D plane

i) All equal to the volume of the parallelepiped

$$\mathbf{v}_1^{ op} \cdot (\mathbf{v}_2 imes \mathbf{v}_3) = \mathbf{v}_2^{ op} \cdot (\mathbf{v}_3 imes \mathbf{v}_1) = \mathbf{v}_3^{ op} \cdot (\mathbf{v}_3)$$

 $\mathbf{v}_1 \times \mathbf{v}_2$

More Determinants

Lemmas (won't prove here):

1.
$$\det(V) = \det(V^{\top})$$

2. If we swap two rows (columns), the determinant will change its sign.

$$\mathbf{c}^{\top} \cdot (\mathbf{a} \times \mathbf{b}) = (c_1, c_2, c_3)^{\top} \cdot \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
$$= \begin{vmatrix} c_1 & a_1 & b_1 \\ c_2 & a_2 & b_2 \\ c_3 & a_3 & b_3 \end{vmatrix} = - \begin{vmatrix} a_1 & c_1 & b_1 \\ a_2 & c_2 & b_2 \\ a_3 & c_3 & b_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \mathbf{a}^{\top} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b}^{\top} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c}$$

$= \det(\mathbf{a},\mathbf{b},\mathbf{c})$

$\mathbf{c}^{ op} \cdot (\mathbf{a} \times \mathbf{b})$

Task 4

j) (kinda) recursively defined. Watch the *sign*.

$$\begin{vmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{vmatrix} = c_{11}c_{22} - c_{21}c_{12}$$

$$\begin{vmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{vmatrix} = c_{11} \begin{vmatrix} c_{22} & c_{23} \\ c_{32} & c_{33} \end{vmatrix} - c_{12} \begin{vmatrix} c_{21} & c_{23} \\ c_{31} & c_{33} \end{vmatrix} + c_{13} \begin{vmatrix} c_{21} \\ c_{31} \end{vmatrix}$$

$$\begin{vmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{vmatrix} = c_{11} \begin{vmatrix} c_{22} & c_{23} & c_{24} \\ c_{32} & c_{33} & c_{34} \\ c_{42} & c_{43} & c_{44} \end{vmatrix} - c_{12} \begin{vmatrix} c_{21} & c_{23} \\ c_{31} & c_{33} \\ c_{41} & c_{43} \end{vmatrix}$$

$$c_{22} \\ c_{32}$$

$$\begin{array}{c|c} c_{24} \\ c_{34} \\ c_{44} \end{array} + c_{13} & \begin{array}{c} c_{21} & c_{22} & c_{24} \\ c_{31} & c_{32} & c_{34} \\ c_{41} & c_{42} & c_{44} \end{array} \\ \hline \left(\begin{array}{c} - c_{14} \end{array} \right) & \begin{array}{c} c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \\ c_{41} & c_{42} & c_{43} \end{array}$$

Tutorial 1: Survival Mathematics

- Point and Vector
- Coordinate Systems
- Scalar and Vector Operations
- Matrix and Determinant
- Basics of JavaScript

30

Basic Concepts in JavaScript

- **constant**: immutable data const c = 3.14
- *variable*: mutable data let v = 0
- *function*: a code block maps a list of parameters to a list of return values function F(p1, p2, p3) { ... } (normal function) const F = (p1, p2, p3) => { ... } (arrow function) Q: What are the differences?
- *flow control*: if/else/switch/for statements (in almost every-language)
- class: a special "function" with constructor() auto-executed when new C()

```
class Matrix {
                                          const m = new Matrix(1, 2,
  constructor(m, n, ...xs) {
                                                         1, 2,
    this.m = m
    this.n = n
                                                m.f()
    this.xs = [\dots xs]
  }
 f() { ... }
```

```
LMU Munich CG1 SS20 | mimuc.de/cg1
```

Data Types in JavaScript

- *number:* 3.1415
- string: "hello world!"
- *array*: [1, 2, 3, 4]
- object: {course: "MIMUC/CG1", year: 2020, difficulty: "very difficult"}

Error Handling in JavaScript

```
try {
 throw "throw an error!"
} catch(err) {
  console.log(err) // prints throwed value: "throw an error"
}
```

NodeJS

- What is it?
 - JavaScript is a language (standard), and Node.js is an implementation of it. 0
- Why do we want it?
 - Browser independent JS execution runtime
 - Better engineering, e.g. dependency management Ο

Node Package Manager

- "Standing on the shoulders of giants" -- Isaac Newton
- Manage declared dependencies in package.json, and save dependencies in node_modules. Basic usage:

\$ npm init

- \$ npm i <pkg_name>
- \$ npm i -D <pkg_name>

create package.json

install package <pkg name>, e.g. three.js

install dev package <pkg name>, e.g. webpack

Task 5: Vector3

```
class Vector3 {
 constructor(x1, x2, x3) { ... }
 sum(w) {
   this.x1 += w.x1
   this.x2 += w.x2
   this.x3 += w.x3
   return this
 }
 multiply(scalar) {
   this.x1 *= scalar
   this.x2 *= scalar
   this.x3 *= scalar
   return this
 }
```

```
dot(w) {
  return this.x1 * w.x1 + this.x2 * w.x2
  + this.x3 * w.x3
}
norm() { return Math.sqrt(this.dot(this)) }
cross(w) {
  const x = this.x2*w.x3 - this.x3*w.x2
  const y = this.x3*w.x1 - this.x1*w.x3
  const z = this.x1*w.x2 - this.x2*w.x1
  return new Vector3(x, y, z)
}
angle(w) {
}
}
```

return Math.acos(this.dot(w) / (this.norm()*w.norm()))

Task 5: Matrix.multiply

```
multiply(mat) {
    let C = new Matrix(this.m, mat.n, new Array(this.m*mat.n));
    for (let i = 0; i < this.m; i++) {</pre>
      for (let j = 0; j < mat.n; j++) {</pre>
          t total = 0;

or (let k = 0; k < this.n; k++) {

total += this.xs[i*this.n+k]*mat.xs[k*mat.n+j];} c_{i,j} = \sum_{k=1}^{p} \text{this}_{i,k} \text{mat}_{k,j}
         let total = 0;
         for (let k = 0; k < this.n; k++) {</pre>
         }
         C.xs[i*mat.n+j] = total;
      }
    }
    return C
}
```

Q: What is the time complexity of this implementation? \Rightarrow Optimizing matrix multiplication is a *hot* research topic!

Task 5: Matrix.det

```
det() {
    • • •
   if (this.m === 2) {
      return this.xs[0]*this.xs[3] - this.xs[1]*this.xs[2]
   }
       this.m === 3
   //
   return this.xs[0] * (new Matrix(2, 2,
                 this.xs[4], this.xs[5],
                 this.xs[7], this.xs[8])).det()
           - this.xs[1] * (new Matrix(2, 2,
                 this.xs[3], this.xs[5],
                 this.xs[6], this.xs[8])).det()
           + this.xs[2] * (new Matrix(2, 2,
                 this.xs[3], this.xs[4],
                 this.xs[6], this.xs[7])).det()
 }
                                              \det(\mathbf{C}_{3\times3}) = c_{11} \begin{vmatrix} c_{22} & c_{23} \\ c_{32} & c_{33} \end{vmatrix} - c_{12} \begin{vmatrix} c_{23} \\ c_{33} \end{vmatrix}
```

$$\begin{vmatrix} c_{21} & c_{23} \\ c_{31} & c_{33} \end{vmatrix} + c_{13} \begin{vmatrix} c_{21} & c_{22} \\ c_{31} & c_{32} \end{vmatrix}$$

Take Away

- Figure out the geometric meaning behind a formula
- Be thoughtful about your answers, think and write all possibilities
- Programming is important for this course, and you won't be able to follow along if you refuse to code

ole to follow along if you

Thanks! What are your questions?

LMU Munich CG1 SS20 | mimuc.de/cg1