
INSTITUT FÜR INFORMATIK
MEDIENINFORMATIK
PROF. DR. ANDREAS BUTZ, CHANGKUN OU, DAVID ENGLMEIER
COMPUTERGRAFIK 1, SOMMERSEMESTER 2020

Final: Exam Review

This is not an assignment but a document for you to prepare the exam.

1 Feedback

First of all, we would like to thank you for your participation in this online semester, and we would
love to hear further feedback from you regarding the course content after the course is complete.

To submit your feedback, write a short paragraph (< 300 words) and tell us your thoughts regarding
the following topics (mostly just one sentence for each subject):

• Your original expectation before joining the course. For example, “interested in CG”, “want to
know how to build a video game”, “interested in graphics modeling”, “just want to get ECTS”,
or any other possible reason from your side.

• The best, worst, most loved, and hated course content, including lectures and tutorials.

• Your suggestions to make this course better. For instance, “add more interesting topics about
XYZ”, “stop using JavaScript and switch to C++”, “no programming at all”etc.

• Your further plan (if you have one) to proceed with graphics knowledge after the course. For
example, “take another advanced graphics course”, “start building your new graphics project”,
“start creating your dreamed characters”, “doing a thesis in graphics”, “never touch graphics
again” etc.

• Anything that you would like to let us know.

Unlike the mid-term survey, this feedback is not anonymous, as we might want to do a follow up on
your feedback and hear more from your side. Thus, submit your feedback in a text file (.txt) to
Uni2Work if you would like to share your further feedbacks.

2 Course Overview

We prepared a mind map for the course overview, as shown in Figure 1. You can find a bigger version
here1. Note that the mind map is for your inspiration, and we recommend creating your version of
the course mind map because it helps you to see the connection between different topics.

In the mind map, the course is separated into four major parts: rasterization, rendering, animation,
and interaction, where the most frequently discussed topics are located in rasterization and rendering.
This does not mean that the animation and interaction are not essential for this course. Instead, they
are more advanced topics that go slightly beyond a basic computer graphics course. For instance, you
need more physics background (e.g., mechanics) to create a physically-based 3D world in animation
and more human side knowledge from psychology and even biology in interaction. You need to acquire
these pieces of wisdom from other courses that are not in the prerequisites.

1http://www.medien.ifi.lmu.de/lehre/ss20/cg1/tutorials/cg1-tutorial-appendix-mindmap.pdf

Computer Graphics, Summer semester 2020, LMU Munich Page 1 of 10

http://www.medien.ifi.lmu.de/lehre/ss20/cg1/tutorials/cg1-tutorial-appendix-mindmap.pdf

Assignment Exam Review

Computer	Graphics	1
LMU	Munich	SS20

Rasteriza)on

Transforma)on

Affine	Map

Iden)ty

Transla)on

Scaling

Rota)on
Euler	Angles Issue:	Gimbal	Lock

Quaternions

Camera	Map

Camera	Transla)on

Camera	Rota)on

Orthographic

Perspec)ve Applica)on:	Dolly	Zoom

Geometry

CSG Boolean	opera)on

Mesh

Curves Bézier	Curves
Algebraic	formula

de-Casteljau	algorithm

Surface Bézier	Patches

Tri	v.s.	Quads

Manifold	v.s.	Non-manifold

Normals
Face	normal

Vertex	normal

Mesh	Sampling	(LOD)

Upsampling Loop	Subdivision

Downsampling

Vertex	Clustering

Edge	Collapse

Progressive	Polygon	Reduc)on

Point	Cloud

Voxel

Culling

View	frustum	culling

Octrees

Bounding	Volume	Hierarchy

Axis-aligned	Bounding	Box

Back	face	culling

Occlusion	culling

Clipping
Cohen	&	Sutherland	algorithm

Liang-Barsky	Algorithm

Occlusion
Depth	buffer

Z-buffering

Z-figh)ng

Frame	buffer

Drawing

Lines Bresenham	algorithm

Polygons Scan	line	algorithm

Pixel	Sampling

Aliasing

An)aliasing

Wu’s	Algorithm

Super	sampling

MSAA

FXAA

TAA

DLSS

Graphics	API:	three.js

Renderer

Scene

Camera

OrbitControl

OrthographicCamera

Perspec)veCamera

Mesh

Geometry

PlaneGeometry

SphereGeometry

CylinderGeometry

...

Material

MeshPhongMaterial

ShaderMaterial

...

Graphics	API:	OpenGL	4.5

Drawing	Mode

Programmable	Shaders

Vertex	Shader

Fragment	Shader

Geometry	Shader

Compute	Shader

GLSL	3.0

in

out

abribute

uniform

discard

gl_Posi)on

...

GPU

Interac)on

Input	Devices

World	Naviga)onMoving	Modes

Objects	Interac)on

Anima)on

12	Principles

Squash	and	stretch

An)cipa)on

Staging

Straight	ahead	and	pose-to-pose

Follow	through

Ease-in	and	ease-out

Arcs

Secondary	ac)on

Timing

Exaggera)on

Solid	drawings

Appeal

Techniques

Key	framing
Linear	Interpola)on

Spline	Interpola)on

Mo)on	Capturing

Simula)on
Inverse	Kinema)cs

Par)cle	systems

Rendering

Texturing

Texture	map

Braycentric	interpola)on

Texture	coordinates

Texture	color

Normal	vectors

...

Texture	Sampling

Magnifica)on

Nearest

Bilinear

Bicubic

Minifica)onMipmap
Level

Trilinear	Interpola)on

Anisotropic	Filtering

Environment	mapSpherical	environment	map

Bump	map

ShadowingShadow	map

Shading

Lights

Point	Light

Area	Light

Direc)onal	Light

...

The	Blinn-Phong	Reflec)on	Model

AmbientAmbient	Shading	Hypothesis

DiffuseLamber)an	Diffuse	Term

SpecularBlinn-Phong	Specular	Term

Shading	Frequency

Flat	ShadingPer	Face

Gouraud	ShadingPer	Vertex

Phong	ShadingPer	Pixel

Global	Illumina)on

Ray	Cas)ng
Ray	equa)on

Ray	intersec)on	with	triangles

Light	transporta)on

Radiocity

Radiant	energy

Flux

Radiant	intensity

Irradiance

Radiance

The	reflectance	equa)onBRDF

Lamber)an

Glossy

Reflec)ve	/	Refrac)ve

Microfacet

The	rendering	equa)on

Direct	Illumina)on

Indirect	Iluumina)on

Bounce	Exploding

Whibed-style	ray	tracing

Path	tracing

Monte-carlo	Integra)on

Russian	Roulebe

Light	Sampling

Noise	Reduc)on

Figure 1: A CG1 mind map: This mind map is only for demonstration purpose.

In rasterization, we spend almost the entire tutorial (except the last one) on constructing the whole
graphics pipeline and also demonstrated an example regarding how a graphics API (OpenGL) builds
its pipeline to support user customization. The meaning of the word “shader”, in this context, has
been extended to manipulating produced interminate results along the graphics pipeline.

Along the pipeline, a rasterizer transforms the world in camera space, then projects the view frustum
into a canonical cube. With the canonical cube, we can rescale the scene into the viewport using x-y
coordinates, as well as testing occlusion with depth buffers using the z-coordinates in the subsequent
processing. Moreover, several techniques are applied to speed up the rasterization processing, e.g.,
culling and clipping, etc.

Computer Graphics, Summer semester 2020, LMU Munich Page 2 of 10

Assignment Exam Review

We bring everything in a frame buffer using drawing algorithms for the discretization to draw and
display everything on to our monitor. Finally, the frame buffer sends its content to our display.
Remember, the devil is in the details. We have oversimplified the rasterization process in this overview.
You should be aware of many related methods, e.g., sampling, antialiasing, etc.

For better appearance modeling, we also discussed texturing, and local illumination models in ren-
dering, where different types of textures play different roles for faking materials. Local illumination
models tell you the nature of light and shadows and how to mock them in real-time. Furthermore,
the discussion of global illumination with ray tracing opens a new rendering framework compared to
local shading. The ray tracing pipeline is different from the rasterization pipeline, and thus, severe
issues are intrinsically not easily solved with rasterization.

To sum up, in the “Online-Hausarbeiten”, you won’t get a task whose solution can be found directly
in the slides of the lecture/tutorial. Instead, you should be able to apply what you have learned and
understood in the lectures and tutorials to problems that were not discussed in detail, i.e., transfer
knowledge questions. For instance, you learned to keyframe a virtual camera along a spline curve with
rasterization and animation. It is reasonable for you to transfer this knowledge to move an arbitrary
object.

3 Question List

Maybe you were overwhelmed by this vast graphics field. There are so many topics, aren’t they? We
also created a list of questions for you to test yourself, use it for good.

3.1 Transformation

• What are the differences between point and vector?

• How to compute the vector norm?

• How to perform a vector dot/cross product?

• What is the geometric meaning of the cross product? Give an example

• How to perform matrix multiplication?

• How to express cross product using matrix notation?

• What is the geometric meaning of matrix multiplication? Give an example

• What are the span and basis?

• What is the geometric sense of span and basis? Give an example

• What is an orthonormal basis, and why do we need it?

• How to compute an orthonormal basis?

• What is a determinant?

• How to calculate 2x2, 3x3, and 4x4 determinants?

Computer Graphics, Summer semester 2020, LMU Munich Page 3 of 10

Assignment Exam Review

• What is the geometric meaning of a determinant? Give an example

• Name differences of left-handed coordinate frame and right-handed coordinate reference frame

• How to express coordinates in a spherical coordinate reference frame?

• What are homogeneous coordinates, and why do we need it?

• Why (x, y, z, 1) and (wx, wy, wz, w) are equivalent?

• What is a linear transformation, and how to verify a transformation is linear?

• How to express scale, rotation, shear, reflection, translation, as affine transformation?

• What are the properties of linear/affine/isometric transformation?

• What are the Euler angles?

• What are the types of Euler angles?

• How to express 3D rotations with Euler angles?

• What is a quaternion?

• How to represent 3D rotations with quaternions?

• What is a gimbal lock? Explain how it occurs

• How does using quaternions solve the gimbal lock issue?

• What is a scene graph, and how to compute a model (object) transformation?

3.2 Geometry

• What is CSG? Why and why not use it?

• What are the boolean operations? How to construct a geometry with CSG?

• What are the geometric primitives?

• Give an object example that can be constructed using extrusion

• Which geometric primitive is used in your case?

• What is a voxel, and when are they useful?

• What so special with point-based representation?

• What is interpolation?

• What is the Perlin noise, and how it works?

• How to draw a Bézier curve?

• What is the de Casteljau algorithm, and how it works?

• How to express a Bézier curve using Bernstein basis?

• What are the properties of Bézier curves?

Computer Graphics, Summer semester 2020, LMU Munich Page 4 of 10

Assignment Exam Review

• What is the piecewise Bézier curve, and why do we need it?

• What is a Bézier surface?

• Which data structure can be used to store a mesh?

• How to determine the front side of a polygon?

• Why triangles and why quads?

• Distinguish non-manifold from manifold surfaces

• What is the face normal and the vertex normal?

• What is mesh simplification?

• What is vertex clustering, and how it works?

• What are the drawbacks of vertex clustering?

• What is Melax’s progressive polygon reduction, and how it works?

• What is mesh subdivision?

• What is the loop subdivision, and how it works?

• Name a subdivision approach for quad-meshes

• Why do we need mesh simplification and subdivision?

• What are mesh downsampling and upsampling?

• What is mesh aliasing?

• What is LOD, and why do we need it?

3.3 Camera

• What is the motivation for camera view transformation?

• What is the orthographic projection?

• What are the advantages and disadvantages of orthographic projection?

• What are the parameters we need to define the view frustum in orthographic projection?

• What is perspective projection?

• What are the advantages and disadvantages of perspective projection?

• What is a vanishing point, and what is the maximum vanishing points in perspective projection?

• What are the parameters we need to define the view frustum in perspective projection?

• What are the differences between orthographic and perspective projection?

• How to derive the perspective projection matrix?

• What are MVP matrices?

Computer Graphics, Summer semester 2020, LMU Munich Page 5 of 10

Assignment Exam Review

• What is viewport transformation and how to compute it?

• What is Dolly Zoom, and how can it be implemented?

• Why is Dolly Zoom not always perfect?

• Describe the transformation pipeline from a 3D geometry to a 2D viewport

3.4 Rasterization

• What is the Painter’s algorithm, and what are the drawbacks?

• What is the depth buffer, and how it works?

• What problem can occur with depth buffer in perspective projection and how to solve it?

• What is frame buffer, and why do we need it?

• What are the types of culling, and what are their differences?

• What is BVH, and why is it better than Octrees in culling?

• What is AABB, and why is it more useful than the other types of bounding boxes?

• What is clipping, and what are the differences compare with culling?

• What are the purposes of clipping, and how is it involved in the transformation pipeline?

• What is Cohen and Sutherland algorithm, and how it works?

• What is the Liang-Barsky algorithm, and how it works?

• What is Bresenham’s algorithm, and how it works?

• What is the Scan-Line algorithm, and how it works for triangles?

• What is point aliasing, and how to deal with it?

• What is supersampling?

• Explain how MSAA works, and what is the cost of it?

Computer Graphics, Summer semester 2020, LMU Munich Page 6 of 10

Assignment Exam Review

3.5 Material

• What is a texture map?

• What is the barycentric interpolation, and why do we need it?

• How to compute barycentric coordinates given a triangle?

• How to interpolate colors using barycentric coordinates?

• How to interpolate texture coordinates?

• What is magnification/minification? Give three examples of different types of methods for it.

• What is mipmap, and why do we need it?

• What is the storage overhead of mipmap?

• How to select an appropriate level in a mipmap?

• What is the environment map, and what is the application of it?

• What is the bump map? Give an example and how it is applied then explain the limitation of
it.

• What is the shadow map, and how to create it?

• What are the types of shadow maps, and what are the limitations of them?

• What is BRDF, and how it relates to materials? What are the inputs and outputs of it?

• Draw a picture that demonstrates light reflection behavior regarding specular, glossy, diffuse
surface

• How to calculate and measure a BRDF?

3.6 Illumination

• What are the differences between local illumination and global illumination?

• What is shading? What is the difference comparing to shadowing?

• What are ambient, diffuse, and specular?

• What is ambient shading, and what is the assumption of ambient shading?

• What is the influence of the ambient coefficient?

• What is Lambertian shading, and what is the assumption of Lambertian shading?

• What is the influence of the diffusion coefficient?

• What is the impact of the specular coefficient?

• What are Phong, Blinn-Phong shading, and what is the assumption in the Phong and Blinn-
Phong shading term?

Computer Graphics, Summer semester 2020, LMU Munich Page 7 of 10

Assignment Exam Review

• What are the Phong and Blinn-Phong reflection model? Write the complete formula.

• What is the impact of the shininess factor?

• What are flat, Gouraud, and Phong shading, and what are their differences?

• What is the implied conclusion from shading frequency?

• What is point light, area light, directional light?

• What is the rendering equation? Draw a picture then mark the components and explain all
symbols

• What makes computing the rendering equation so hard?

• What is ray tracing, and how is it different from rasterization?

• What Whitted-style ray tracing, and what is wrong with it?

• What is radiant energy, and what is intensity?

• What is irradiance, and what is radiance?

• What is the difference between radiance and irradiance?

• What is direct illumination, and what is indirect illumination?

• What is path tracing, and what is different from (Whitted-style) ray tracing?

• What is the distributed ray tracing?

• What is the expected value, variance, bias, PDF, and CDF?

• What is Monte Carlo Integration, and how to calculate it?

• How is the Monte Carlo method used to solve the rendering equation?

• What is Russian Roulette, and why do we need it?

• What are biased and unbiased estimators?

• What is noise reduction, and why do we need it?

3.7 Animation & Interaction

• What are the 12 principles in animation?

• Give an animation example then explain each principle

• What is the keyframing and how to interpolate between those keyframes?

• What are splines, and why is it useful in creating animations?

• What are the types of splines commonly used in computer graphics?

• Why are these splines popular? What properties make them most useful?

• Which physical law do we need for object acceleration simulation? Write the complete formula.

Computer Graphics, Summer semester 2020, LMU Munich Page 8 of 10

Assignment Exam Review

• What is motion capturing?

• What is the difference between forward and inverse kinematics?

• What is the particle system? Name three examples.

• What must be concerned to create an input device for 3D interaction?

• How to perform world navigation in a 3D world? Name an example.

• Name an input device and explain how it applies to object interaction in a 3D world?

3.8 Graphics APIs: three.js and OpenGL

• When do we need to use const (const) other than variable (let)?

• What are the differences between a standard function and an arrow function?

• How to check the equality of two numbers in a flow control statement?

• What is the class, and what is the required method?

• What are the data types in JavaScript? Name two operations/methods for each of the data
types

• How to handle errors in JS?

• What is Node.js, and why do we need it?

• What is npm, and why do we need it?

• What are the required steps to create a scene in three.js?

• Explain these concepts: Scene, Camera, Renderer, Geometry, Material, Mesh, Face, OrbitCon-
trol.

• How to express rotation in three.js?

• How to animate objects/camera in three.js?

• How to load a model in three.js?

• How to perform texture mapping in three.js?

• How to connect customized GLSL shaders in three.js?

• Why are GPUs considerably more suitable than CPUs in graphics processing?

• What are the drawbacks of using a graphics API?

• What is the relationship and differences between OpenGL and GLSL?

• What are the stages in the OpenGL graphics pipeline?

• What are the geometric primitives in OpenGL?

• What are the drawing modes in OpenGL?

Computer Graphics, Summer semester 2020, LMU Munich Page 9 of 10

Assignment Exam Review

• What is a shader, and where is it executed?

• What are the programmable shaders in OpenGL?

• What are the inputs and outputs of different shaders in OpenGL?

• How to write an OpenGL shader?

• What are in/out/attribute/uniform/discard?

• What are the required variables in every vertex/fragment shader?

• What is missing in WebGL 1.0 and 2.0 regarding the OpenGL graphics pipeline?

4 Final Words

You have learned a lot in this course: In theory, you learned many topics start from absolute beginner
to several state-of-the-art techniques; In programming, you learned how to program and reproduce
pictures and scenes that you have seen using three.js and OpenGL shaders; in writing, you practiced
the skill to write Markdown in a plain-text file; ... now you should feel more comfortable with this
digital virtual world ;-)

Do not worry about the exam since you have go through a lot difficult topics. The exam will be
much easier than what you encountered along the semester, and you will pass the exam if 1) you can
answer 90% of questions that is listed in Section 3; 2) you can solve all non-programming tasks in
the assignments; 3) you can solve 50% of the programming tasks in the assignments. You will get an
excellent grade if you can also complete all programming tasks individually without double checking
the solution.

Good luck!

Computer Graphics, Summer semester 2020, LMU Munich Page 10 of 10

	Feedback
	Course Overview
	Question List
	Transformation
	Geometry
	Camera
	Rasterization
	Material
	Illumination
	Animation & Interaction
	Graphics APIs: three.js and OpenGL

	Final Words

