
Important examples of modern team collaboration problems and
published user interface software solutions

Martin Kraft

Abstract— Designing programs and user interfaces for multi-user, multi-device and multi-application (mmm) setups demands very
specific attention to problems that single user applications do not have to cope with. In this paper I discuss a few of the challenges in-
volved in one of the major tasks of mmm programs, the modern software and project development with teams of multiple collaborators
using different hard- and software.

Index Terms—multi-user, collaboration, development process, design process, user interface

1 INTRODUCTION

In the last 25 years the standard procedure for a team of collab-
orators working together from different locations, using different
hardware and software has changed dramatically. The requirements
for programs and user interfaces for multi-user, multi-device, multi-
application setups and the interaction with the programs had to be de-
veloped from scratch and led to the discovery of important yet very
different aspects, solutions and problems. Different published papers
have identified and mapped many problems onto the defined require-
ments. In this paper I would like to talk about the following problems
and present published solutions trying to solve them.

• Ownership hierarchy: When people work together in a shared
live environment to achieve progress every user has to know and
understand what space belongs to him, what possibilities he has
and how he can interact with the existing elements presented to
him. [1] [7].

• User input management: The complexity of managing constant
inputs from different users in a shared live environment with get-
ting the right actions done, updating all the users of the general
progress and getting specific types of interactions and feedback
back to the right user. [2] [7].

• Version control: In case the collaborators are not working simul-
taneously on a live canvas they need to be able to synchronize
their personal achieved progress and merge this progress together
to create a working, data conflict free version. [1] [2].

2 OWNERSHIP HIERARCHY

Existing ideas reach from users exclusively owning parts of the overall
screen space to create and present single ideas [1] or all users working
together on one big surface to create and finish a collaborated con-
cept. [7] Both concepts have their unique problems. When giving out
equal spaces to all users, very active collaborators can run into physical
boundaries when they used all their existing space while unused space
is being blocked by inactive users. When the space is granted dynami-
cally pressure can build on collaborators who want to take their time or
aren’t that active because their available space decreases. [1] If people
don’t know or understand the interaction with the features they could
potentially not only miss out on creating new ideas but also critically
damage existing progress by deleting other user’s content or shared
content on a general canvas. User interface elements in an mmm setup

• Martin Kraft is studying Media Informatics at the University of Munich,
Germany, E-mail: kraftm@cip.ifi.lmu.de

• This research paper was written for the Media Informatics Proseminar on
"The software architecture and user interface design can become complex
in multi-user. multi-device, and multi-application setups", 2015.

must be easy to understand and simple to use. They need to help pre-
venting possible catastrophic errors by starting easy and only handing
out complex functions in more difficult layers to professional users
who really need those settings. [2]

The Google document collaboration (see Figure 1) shows an easy
way to display live collaboration by offering limited functionality for
a multi-user text editing software.

Figure 1. Users working together on a shared text document via the
Internet [3] with the active highlighting of a user action on the screen

Users are able to work on a shared text canvas. The functionality is
limited and focused on a very specific task so it is easy to use. The vi-
sual feedback for user interactions with the canvas is clear and visible
so it is able to prevent errors and support the work flow. However it
lacks a more profound skillset and if a larger amount of users tries to
manipulate the document at the same time the overview and simplicity
turns into a more chaotic state.

So the solution provided by Google is to reduce complexity and
present focused functionality for easy handling. Different users can
access the live canvas from everywhere using their own hardware (eg.
notebooks, tablets, smartphones) and software solutions (eg. operating
systems, browsers). The reduced complexity is also shown in the lack
of any form of differential user permissions. All users are given equal
rights so everybody can correct anything from anybody and everbody
can use the whole existing canvas. Like mentioned above this benefits
the idea of rapid content creation for a simple functionality. How-
ever the live online mode requires a permanent Internet connection
and the rising potential of chaos when working with more and more
users doesn’t show as a fixed user limit from the start but more of an
uprising limit in productivity.

3 USER INPUT MANAGEMENT

What kind of feedback will be triggered when a user interferes with the
interaction of another user? What will happen when two users try to do
the same action at once? These are only 2 of the questions which come
to mind immediately when thinking about multi-user input. Multiple



users, espacially in a live enviroment, produce a huge amount of data
which needs to be handled correctly. The user interface elements need
to support the user to understand what’s going on, which changes are
being made where by whom and how he can support this development.
[1] A well-engineered program should present itself to active users in
a more supportive role to help them finish their ideas but should also
be able to protect less well trained users by offering cognitive feed-
back and very clear instructions for basic functions. [2] People need
to understand the boundaries of the user’s given permission. Am I able
to manipulate other user’s content? Am I able to use this feature for
that purpose? Can I achieve what I wanted to create without changing
elements by mistake? [7] The user interface must be presented gen-
erously and understandable. If a user interaction is triggering a series
of unwanted events attached to the desired action the false input rate
will become a constant danger. Especially in todays mobile Internet
environment almost every user is able to be connected and informed
in real time to react instantaneously via mobile devices. [7]

In the case of the live collaboration wireframing tool Lucidchart
(see Figure 2) the complexity of user inputs is increased and it repre-
sents a more complex environment compared to the Google collabora-
tion tool. Every user has the identical set of tools in his private instance
(see Figure 3) and works on a canvas which is shared between all col-
laborators. Every user is able to manipulate any items on the canvas
and add or delete any items he or she wishes to manipulate.

Figure 2. Adding new objects to the canvas [5] yet to be seen by an-
other user who could potentially do something completly different in the
meantime

Figure 3. Complex and too similar looking functions can frustrate begin-
ners but give expert users more defined tools at their hands. [4]

The benefit of the complete freedom ensures a quick and unprob-
lematic collaboration experience and quick progress in the develop-
ment process. The disadvantage of such uncontrolled collaboration
is the lacking presence of supervision so the quality assurance is not
given. Good ideas could be deleted accidently or changed without
general notice and would be lost. The program offers a vast majority
of complex functions and possibilities which can be too complex for
beginners and the cognitive feedback lacks in visual clearness. The
live collaboration helps to prevent different project states because only
one up-to-date project state exists on the live canvas.

So the solution provided by Lucidchart also uses a live canvas to
handle user input but offers more usable canvas space to diverse the
input and offers rich functionality to give users with different skill lev-
els diverse difficult options to create content. While the frustration

potential of users is low due to the lack of permission restrictions the
fact that everybody can change anything becomes a real danger for the
complex content structures and the minimal optical feedback of other
users input on the screen is provoking accidental misclicks and false
input.

4 VERSION CONTROL

The modern development process is almost never a straight line but
consists of diverse and expanding developing technics (wireframing,
scrum, local hill problem etc.). Smaller project sub-teams could de-
tach and focus on a specific part of the development and need to re-
synchronize later in the project. The ability to create project branches
and merge different project states together into a functioning complete
module is a vital part in preventing errors [1], documenting progress
and bringing personal progress together [2].

Figure 4. By showing clear visual feedback through highlighted changes
the user is supported in his decision and the possibility of accidental
errors is reduced. [6]

In the case of Github (see Figure 4), a software collaboration pro-
gram with a version control system, users are able to create copies
of existing intermediate results to work on and are then able to merge
improvements into the existing files without losing any progress which
was achieved in the meantime. The benefits compared to simple file
synchronizing services are immense. The disadvantage is a more com-
plex system of functions and tasks which need to be handled correctly
to be used.

Github (or version control in general) moves the users away from
a live canvas to a more independent and private workspace but still
offers the benefit of working on one big set of (synchronized) data.
The potential of accidental errors or false inputs is solved by the abil-
ity to reverse earlier project stages and benefits less versatile users and
larger teams of users to achieve progress without more chaotic states.
Using the service is not binded to any combination of applications and
devices and can be accessed with any of these eg. via an installed desk-
top program or Internet browser. However version control is no basic
prerequisite and demands a used external service or internal build.

5 CONCLUSION

After looking at a few problems of multi-user, multi-device and multi-
application setups and the user interface designs of the presented pro-
grams the conclusion can be called: mmm programs are very versatile
and can have very different purposes besides this focused area of ap-
plication. Important things to consider when designing a user interface
for the discussed setup are the visualization and management of user
input on a live surface, the important need to clarify functionality and
purpose of tools to the user to prevent misusage and possible damage
to the general progress and to help avoid frustration by guiding the
user under the influence of possible user permission modes and differ-
ent user skill levels.



REFERENCES

[1] E. A. Bier and S. Freeman. Mmm: a user interface architecture for shared
editors on a single screen. UIST ’91 Proceedings of the 4th annual ACM
symposium on User interface software and technology, pages 79–86, 1991.

[2] C. Forlines, A. Esenther, C. Shen, and D. Wigdor. Multi-user, multi-
display interaction with a single-user, single-display geospatial applica-
tion. UIST ’06 Proceedings of the 19th annual ACM symposium on User
interface software and technology, pages 273–276, 2006.

[3] G. Inc. Docs demo. http://www.google.
de/imgres?imgurl=https%3A%2F%2Fwww.
thinkwithgoogle.com%2Fthink%2Fimages%
2Fgoogle-apps-docs-demo-masters-edition_
campaigns_02.jpg&imgrefurl=https%3A%2F%
2Fwww.thinkwithgoogle.com%2Fcampaigns%
2Fgoogle-apps-docs-demo-masters-edition.html&
h=333&w=711&tbnid=rWjv2KQ8aUWOyM%3A&zoom=1&docid=
GMtWil76pQC0uM&ei=82eEVfPlLYLoywOdmaGYAQ&tbm=
isch&iact=rc&uact=3&dur=252&page=2&start=38&ndsp=
44&ved=0CJQCEK0DMFA, 2015. visited 24.06.2015.

[4] Lucidchart.com. Lucidchart shapes. https://www.lucidchart.
com/documents/, 2015. visited 24.06.2015.

[5] Lucidchart.com. Real-time collaboration - lucidchart tutorial. https:
//www.youtube.com/watch?v=OINRyw7azJs, 2015. visited
24.06.2015.

[6] C. Mode. Using a cool merge tool with svn or
git. http://www.google.de/imgres?imgurl=
http%3A%2F%2Fpontusm.files.wordpress.com%
2F2010%2F01%2Fp4merge2.png&imgrefurl=http%
3A%2F%2Fpontusmunck.com%2F2010%2F01%2F30%
2Fusing-a-cool-merge-tool-with-svn-or-git%2F&
h=343&w=640&tbnid=_4tMDH9KqQVkyM%3A&zoom=1&docid=
C5BzLk_P04fl9M&ei=-ueKVezxE6L8ygPc9oxg&tbm=isch&
iact=rc&uact=3&dur=476&page=5&start=158&ndsp=36&
ved=0CNQBEK0DMEU4ZA, 2010. visited 24.06.2015.

[7] A. Wiethoff, T. Bauer, and S. Gehring. Investigating multi-user interac-
tions on interactive media façades. MAB ’14 Proceedings of the 2nd Media
Architecture Biennale Conference: World Cities, pages 92–100, 2014.


