
Overcoming Occlusion-Problems on Touch Screens

Julian Böhme

Abstract— In this paper I want to elaborate on common problems and disadvantages on touch-based interfaces like smartphones
and tablets. I will talk about occlusion-problems caused by the hand, arm, and the finger of the user and about touch imprecision
caused by finger occlusion. Further I will describe different methods that have been researched to handle occlusion caused by the
hand and arm of the user, as well as methods that deal with avoiding finger occlusion and the resulting touch imprecision.

Index Terms—occlusion-problem, mobile devices, touch-screen, occlusion-aware interfaces, touch imprecision, precise target acqui-
sition

1 INTRODUCTION

In recent years interaction with touch screens has for most people be-
come part of their everyday life. 378.000 iPhones are sold each day.
As a comparison: Each day 371.000 babies are born [3].
From the year 2012 to 2013 tablet sales increased by 54.1%, from
2013 to 2014 they increased by 29.1% [2]. The number of tablet users
is expected to surpass 1 billion in 2015, which are more than twice as
many users as in 2012 [2].
But as popular as touch screen devices might be, they bring some
disadvantages and problems, non-touch based devices don’t have
to deal with. When using touch screen, we are confronted with the
problem of occlusion of the screen by the user during user interface
interaction. As soon as the user wants to interact with the device, he
needs to position his hand or arm on or above the screen, occluding
some areas that might contain important information. For example:
The user wants to tweak a parameter using a slider, while observing
the parameter or the result on the screen. If the slider is not positioned
on the bottom of the screen, the user might occlude the area that
changes (the area he wants to watch) while using the slider (fig. 1).
This is known as the occlusion problem.

In this paper, I want to differentiate between two types of oc-
clusion: Hand- / Arm-Occlusion and Finger-Occlusion.
The former simply occludes an area on the screen, the latter does not
only occlude the area but also, caused by the occlusion, creates touch
imprecision: The user tries to hit a target and due to the occlusion,
it’s not only hard to hit the target, it can also be hard to even know
whether or not the target has been hit, because necessary feedback the
button would give, if pressed, might not be seen due to the occlusion.
So Finger-Occlusion creates more than just one problem: There is
the occlusion itself, and problems caused by the occlusion, which
are touch imprecision and possibly insufficient or no feedback at
all. Smartphones have a way of handling the feedback problem: For
example, if the user types a message the pressed buttons are shown
above the finger as feedback to the user that the button is pressed
and which one is pressed. Different techniques have been studied
and developed to resolve problems like occlusion and high-precision
touch input.

2 THE OCCLUSION-PROBLEM

To solve the occlusion-problem we try to design occlusion-aware
interfaces, which are defined by Vogel [4] as follows: “We define
occlusion-aware interfaces as interaction techniques which know what
area of the display is currently occluded, and use this knowledge to
counteract potential problems and/or utilize the hidden area.” [4] In

• Julian Böhme is studying Media Informatics at the University of Munich,
Germany, E-mail: j.boehme@campus.lmu.de

• This research paper was written for the Media Informatics Proseminar
2015.

Figure 1. Example of an occlusion-aware interface

a study Vogel et al. found the following problems to be caused by
occlusion [4]: Inefficient movements, missed status messages, missed
previews, and occlusion contortion.
Vogel et al. [4] developed a scalable geometric model to represent the
area occluded by hand and arm. The user can adjust the shape of the
model to match his hand and arm. Vogel et al. [4] identify changes
on the screen, to find out which information on the screen is to be
considered important, and which of the occluded information should
be displayed in a callout.

3 OCCLUSION ON MULTI-TOUCH TABLETOPS

In another paper, Vogel et al. examined the shape of hand and arm
occlusion on multi-touch tabletops. They created occlusion templates
for designers to use and to consider when designing interfaces to
avoid occlusion. They also wanted to show that it is possible to use
one model for a wide range of postures. The resulting model can be
used as a configurable real-time occlusion model for future work [6].
Vogel et al. conducted an experiment, in which participants were
to perform different multi-touch gestures, while their hands were
recorded by a head-mounted video camera. Then key frames were
extracted and occlusion shapes were isolated. The experiment
examined 3 main types of interaction movements: Tapping, dragging
and object transformation. The participants had 3 tasks to fulfill:

- Tap Task: Participant has to touch a circular target for 333ms
- Drag Task: Participant has to drag a circular target from the center
of the screen to one of 8 circular docking locations, using either 2 or
5 fingers.
- Transform Task: Participant rotates and scales a circular target. The
target has to be rotate in such a way that a pin aligns with a “key” and
the target has to be scaled until it fits into a specified circle.



Some of the main findings of this experiment, considering occlusion
shapes, were:
Tapping and dragging have similar shapes, but transformation shapes
are different. Different users might use different postures but posture
shapes within users are similar. No distinct differences between left-
and right-handed people, and dominant and non-dominant hands
could be found [6].
From the experiment design-time “occlusion-awareness” templates
for designers have been created. These templates can be used as
an overlay in the design process, to make better occlusion-related
layout decisions. Dark blue areas are areas that are occluded with a
high probability (>50%), light blue areas are possibly occluded areas
(>10%). The findings of the experiment and the occlusion templates
can be used in different ways: E.g. the 2 digit transform template
can be used to design a rotary dial (fig. 2(b)). The icons around the
dial can be arranged in such a way that only less important or less
frequently used icons are in the occluded area, and more important or
often used icons are displayed in the non-occluded area [6].

I think the occlusion problem of the rotary dial could also be avoided
by making the icons rotate, while the rotary dial itself is stationary.
The rotary dial could have a pin at 12 o’clock (or any other direction)
to show which icon is selected. For example, when moving the hand
clock-wise, the icons could move counter-clock-wise (and the other
way around for moving the hand counter-clock-wise). This way you
also don’t have to adjust the positioning of the icons dependent of the
handedness of the user. A disadvantage of this method would be that
you lose the ability to use visual memory. E.g. you can no longer
say: ”I know I want to use this feature and it’s at 9 o’clock”. You
could counter that, by adding the feature to tap in the middle of the
wheel to bring all the icons back to a default rotation, which could
also be defined by the user. This way you can still apply your learned
knowledge of where which icon/feature is.
The results of Vogel et al. [6] until now were occlusion shapes, that
can be helpful for design-time decisions, but it would be better to pre-
cisely know the occluded are at any given time. Therefore, the aim
was to create a configurable real time occlusion model for future work,
similar to the model for pen-based touch input in Vogel’s “Occlusion-
Aware Interfaces” [4]. Using a diffused illumination tabletop, which
captures an image of the hand on/near the surface, Vogel et al. captured
the actual hand shape. The arm of the user is not captured, because it
is too high. Therefore, a rectangle with a constant offset of 100mm
from the centroid has been added, representing the forearm. Vogel et
al. extended the previously mentioned model [4] by adding ellipses
representing the fingers [6]. The resulting model could be used in the
a similar way as the model Vogel et al. created for pen-based input
devices [4].

Figure 2. Example usage of Occlusion-Awareness templates

4 TOUCH IMPRECISION

Until now we looked at hand-/arm-occlusion. Now we want to have
a look at two solutions for touch imprecision and missed feedback
caused by finger occlusion.

The Offset-Cursor
One of the simpler solutions to deal with touch imprecision, is
the Offset-Cursor [5]. The Offset-Cursor addresses occlusion by
creating a crosshair moved by a certain offset from the actual touched
location. The user can then move the cursor onto the target and
commit his selection by just lifting his finger (take-off selection).
This solves the problems of occlusion, touch imprecision, and feed-
back. But Vogel et al. found significant problems with this method [5]:

Problem 1:
The cursor always appears! You can no longer directly aim for your
target. That means, if you wanted to hit a big target, which wouldn’t
cause any ambiguity, the Offset Cursor would still appear, and you had
to move it down to the actual target, your finger was resting on already
all the time. This makes easy selection tasks more complicated
and take longer. The only way to counteract this behavior, is to
compensate for the offset and to try to intentionally hit below the
actual target, in hopes that the cursor will directly hit the target above
your finger [5]. Vogel et al. [5] showed in an experimental evaluation
that the acquisition time using the Offset Cursor for targets, that are
large enough to be selected by bare finger, is 1.57 times slower with
the Offset-Cursor than without.

Problem 2:
The constant offset to the north makes certain screen areas unreach-
able, e.g. the bottom of the screen [5].

Problem 3:
“Third, on first use, users are unlikely to expect the offset, aim directly
for the actual target and miss.” [5]

To address these problems Shift was developed.

5 SHIFT

The first version of Shift moved the whole screen contents upwards.
Users found this to be too distracting, so Shift has been re-designed
to use a callout, placed above the finger, instead [5]. When the user
touches the screen, Shift copies the occluded area of the screen into a
callout, which is presented in a non-occluded area. The callout con-
tains a small crosshair, which the user can move by slightly moving
his finger. This way the user can precisely navigate the crosshair into
the target and also see the resulting feedback of the app. The selection
is committed by lifting the finger of the surface (fig. 3)) [5].
Of course it would be a nuisance, if the callout was activated on every
target, even if the target was big enough to hit it with no problems. So
the callout is only invoked, if the target is small enough and occluded
by the user. How soon a callout appears, depends on the size of the
target underneath the finger. If the smallest target under the finger is
larger than a certain occlusion threshold, then target acquisition is not
a problem for the user and the timeout, that defines when the callout
appears, can be set to a large value. If the smallest target under the
finger is smaller than the occlusion threshold, the timeout is shorter
and the callout appears faster to aid the user make his selection. [5]
If the selection is close to the left or right edges, the callout is placed
towards the middle of the screen. If the selection is close to the upper
edge, the callout is placed to the left, and if that is not possible, to the
right.
One thing Vogel et al. did not specify, was how to abort a selection
task. What if the callout appears, and I want to abort the selection?
One solution I can think of, would be to move the cursor either over
empty space in the callout, or if the callout is so crowded, that that’s
barely possible, the user could be allowed to navigate the crosshair be-
yond the borders, “outside” of the callout (in the “dead zone”) and lift
his finger. As soon as the cursor is beyond the borders, the edge of the
callout could be highlighted to indicate, that lifting the finger results
in aborting the selection task.
The cursor should not be allowed to travel too far into the dead zone,
because that could make it hard to bring it back. So the cursor should
be allowed to only travel some pixels into the dead zone, and if the user



keeps directing it into the same direction and the cursor is a certain
amount of pixels into the dead zone, the cursor stays there and doesn’t
move any further, despite the user still trying to direct it deeper into
the dead zone. This way the cursor can be brought back with minimal
movement and the user can quickly try all possibilities, if necessary.

Figure 3. Shift’s callout

6 CONCLUSION

I demonstrated various ways of occlusion, how they affect the user,
the perceived feedback, the interaction with the touch screen, and how
they can be dealt with. There are different ways of occlusion and dif-
ferent occlusion related problems, like touch-imprecision, and there
are different ways to overcome them. You can develop a system, that
checks for occluded information, and moves the information to a non-
occluded area, but you can or have to also already deal with occlusion
in the design process of apps. Because the best way to handle a prob-
lem, is to not let it occur at all. So the best way to handle occlusion, is
by building apps in a way, that avoids occlusion as often as possible.



REFERENCES

[1] eMarketer. 2 billion consumers worldwide to get
smart(phones) by 2016. www.emarketer.com/Article/
2-Billion-Consumers-Worldwide-Smartphones-by-2016/
1011694, 2015. [Online; accessed 22-June-2015].

[2] eMarketer. Tablet users to surpass 1 billion worldwide
in 2015. http://www.emarketer.com/Article/
Tablet-Users-Surpass-1-Billion-Worldwide-2015/
1011806, 2015. [Online; accessed 22-June-2015].

[3] M. Statistics. Mobile statistics. http://www.mobilestatistics.
com/, 2015.

[4] D. Vogel and R. Balakrishnan. Occlusion-aware interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’10, pages 263–272, New York, NY, USA, 2010. ACM.

[5] D. Vogel and P. Baudisch. Shift: A technique for operating pen-based in-
terfaces using touch. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’07, pages 657–666, New York, NY,
USA, 2007. ACM.

[6] D. Vogel and G. Casiez. Hand occlusion on a multi-touch tabletop. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’12, pages 2307–2316, New York, NY, USA, 2012. ACM.


