4. Audiotechnik und Tonbearbeitung

- 4.1 Grundlagen der Audiotechnik
- 4.2 Analoge Audiotechnik
- 4.3 Raumklang
- 4.4 Digitale Audiotechnik
- 4.5 Digitale Rundfunktechnik
- 4.6 CD und verwandte Speichertechnologien CD, DVD, BD

Literatur:

Henning Abschnitte 8.4 und 8.5

Johannes Webers: Handbuch der Film- und Videotechnik, 7. Auflage, Franzis-Verlag 2002, Teil F

Jim Taylor: DVD Demystified, 2nd ed., McGraw-Hill 2001

Optical Video Player from 1982

Philips VLP 700 LaserVision Player

Pictures: laserdiscarchive.co.uk

Geschichte der optischen Speicher (1)

- 1969: Klass Compaan (Philips) entwickelt die Grundidee optisch abgetasteter Scheiben
- 1972: Erste praktische Demonstration (Compaan, Kramer)
- 1978: Markteinführung des Philips Laser-Vision-Systems

Video-Langspielplatte, mit Laser abgetastet, Speicherung als Wertfolge

Transparente Kunststoffscheiben, 20 bzw. 30 cm Durchmesser

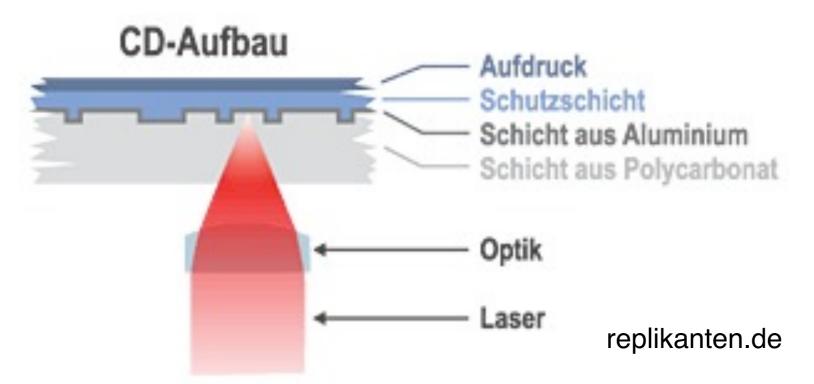
Spieldauer:

"Standard-Video-LP": CAV-Variante (konstante Winkelgeschwindigkeit, constant angular velocity): 36 Minuten je Plattenseite

"Langspiel-Video-LP": CLV-Variante (konstante Lineargeschwindigkeit, constant linear velocity): Spiralspur, 60 Minuten je Plattenseite

- 1978: "Digital Audio Disc Convention", Tokio (35 Hersteller)
- 1982: Einführung der Compact Disc Digital Audio durch Sony und Philips

Erste fünf Jahre: 30 Mio. Abspielgeräte und 450 Mio. Tonträger verkauft

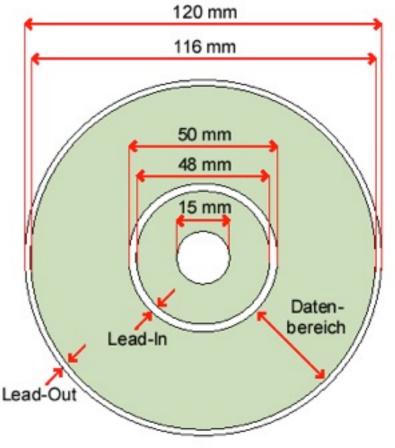

Prof. Butz: Medientechnik

- 1984: Einführung der Daten-Variante CD-ROM
- 1986: Pioneer führt LaserDisc (LD) ein (Weiterentwicklung von LaserVision)
- 1995: Einführung wiederbeschreibbarer CD-Varianten
- 1996: Einführung der DVD (DVD-Video)

Geschichte der optischen Speicher (2)

- 1997: Wiederbeschreibbare DVD (DVD-R, DVD-RAM)
- 1998: Tesafilm als optischer Speicher nutzbar
- 1999: Sony, Super-Audio CD (SACD), 2,8 MHz Abtastfrequenz
- 2000, Sony: Double Density CD (DDCD), 1,3 GB auf CD-Medium
- 2000: DVD-Audio, bis zu 192 kHz Abtastfrequenz, 24 Bit, bis zu 12 Std. (verlustfrei)
- 2002: DVD+RW Allianz führt Alternative für wiederbeschreibbare DVD ein
- 2003: Tesa scribos: Tesa Holospot System (Produktetiketten)
- 2006: Parallele Einführung der Nachfolgeformate HD-DVD und BD (Blu-ray)
- 2008: Systemstreit zugunsten BD entschieden

Physikalischer Aufbau der CD



Polycarbonat: 1,2 mm Aluminium: 50–70 nm

Lackschicht: 5 µm

Durchmesser 12 cm (für Beethovens Neunte?)
Höhe 1,2 mm
Spiralförmig von innen beschrieben
Konstante Lineargeschwindigkeit 1,4 m/s

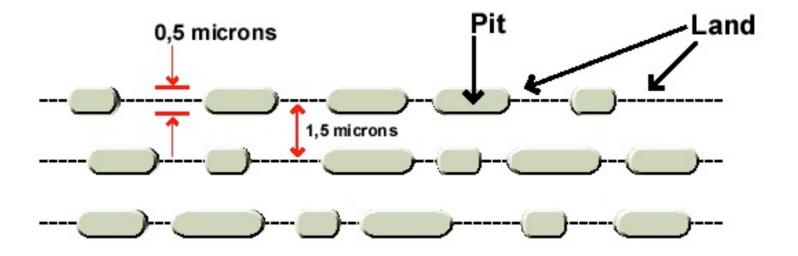
Pits und Lands

Spiralförmige Spur auf der Polycarbonat-Scheibe dient als Informationsträger

Auf dieser Spur sind sog. Pits eingeprägt

Die Bereiche zwischen den Pits nennt man Lands

Abmessungen der Pits:


Breite: $0.6 \mu m (1.000 \mu m = 1 mm)$

Länge: $1-3 \mu m$

Tiefe: $0,15 \mu m$

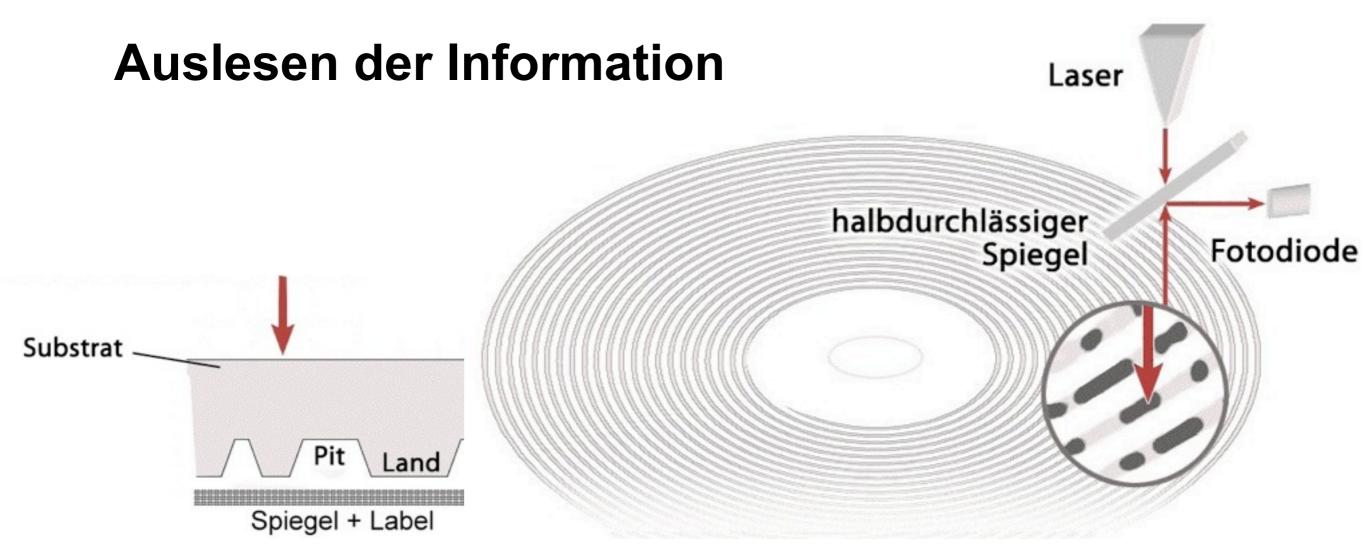
Wellenlänge grünen Lichts: ca. 0,5-0,6 µm

Produktion von CDs

Massenproduktion:

Photochemische Erstellung eines "Masters": Laserstrahl beschreibt lichtempfindliche Beschichtung

Elektrochemische Abformung in meist 3 Stufen mit Vervielfachung der Vorlage (jeweils 3-6 mal), ergibt Pressformen


Pressen der CDs aus Polycarbonat

Bedampfen mit Aluminium (auf der Pit-Seite)

Schutzschicht, Mittelloch, Label etc.

Einzelproduktion:

Direktes Beschreiben von geeigneten Rohlingen mit Laserlicht siehe CD-R, CD-RW

Laserstrahl nahe dem Infrarot-Bereich (AlGaAs), Wellenlänge 780 nm Ablesen "von unten": Land ist nun eine Vertiefung!

Durch Spezialprisma wird ein Fotorezeptor doppelt beleuchtet:

Original-Lasersignal + Reflektion aus der Disk

Tiefe der Pits = 1/4 Wellenlänge des Lasers (im Polycarbonat = 500 nm)

Auslöschung durch Interferenz im Land: Verzögerung (2 x 1/4 = 1/2 Wellenlänge)

Reflexion im Pit

Bilder: Wikipedia

Eight-to-Fourteen-Modulation (EFM)

Datenstrom erzeugt eine logische "1" beim Wechsel zwischen Land und Pit (channel bit, vs. implizite null bits)

Keine einfache Korrelation wie Land = 1, Pit = 0 oder umgekehrt!

Konsequenz für Codierung:

Zu kurze Pits/Lands vermeiden

Konvention: mindestens zwei "0" zwischen zwei aufeinanderfolgenden"1"

Keine zu langen Pits/Lands

wegen Synchronisation

Konvention: max. 11 mal "0" zwischen zwei aufeinanderfolgenden "1"

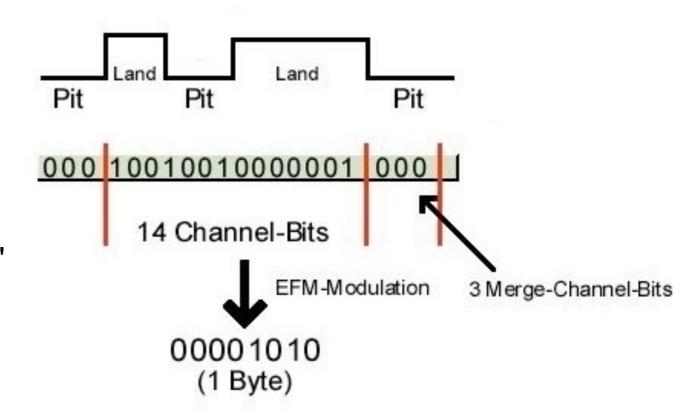
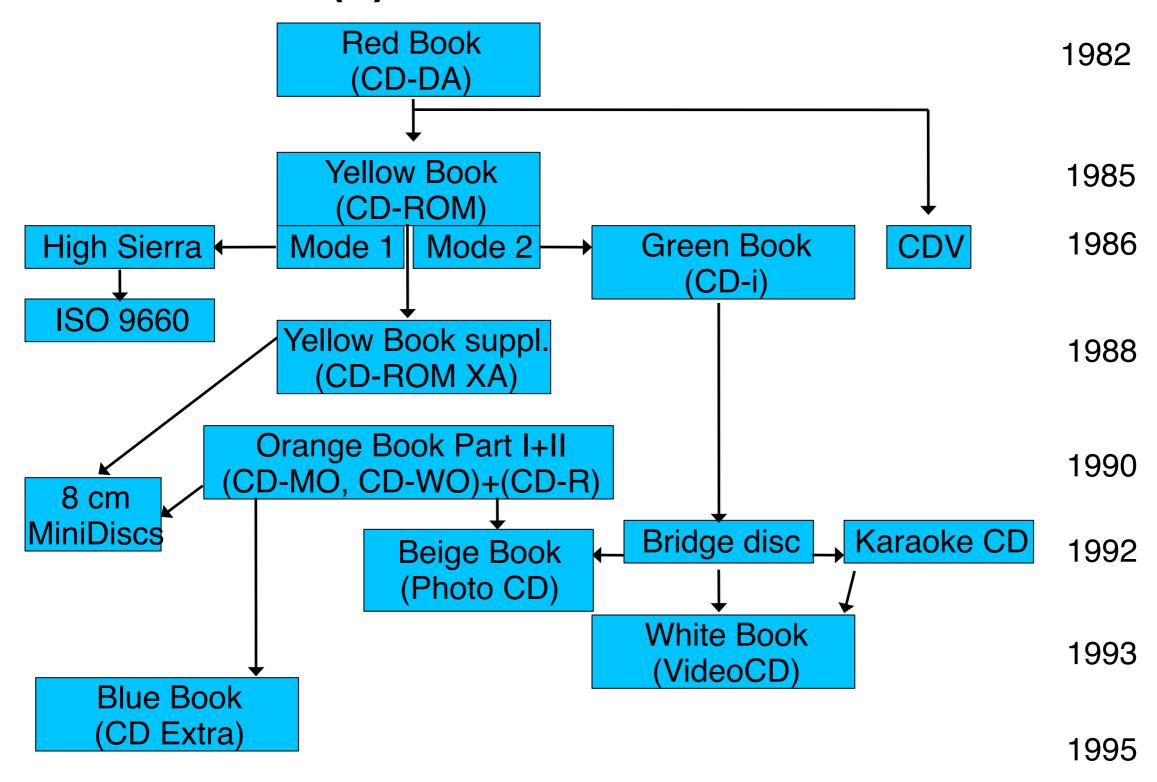



Bild: TecChannel.de (modifiziert)

- Eight-To-Fourteen-Modulation (EFM):
 - 8 Datenbits auf 14-Bit-Muster abgebildet, z.B.:
 Datenbyte "00000000" als "01001000100000"
 Datenbyte "00000001" als "1000010000000"
 - Nach jedem 14-Bit-Muster 3 Koppelbits (merge-channel bits, padding bits)
 Mindestens zwei 0, eines 0 oder 1 je nach verknüpften 14-Bit-Worten

CD-Formate (1)

Bunte Bücher

Traditionell werden die verschiedenen CD-Formatstandards nach der Farbe ihrer Einbände bezeichnet, z.B.:

Red Book: CD-DA (Digital Audio)

Yellow Book: CD-ROM

Green Book: CD-I

Wiedergabe von interaktiven CDs, einschliesslich einfachem Betriebssystem ("OS-9")

Basis für heute weit verbreitete interaktive DVDs (z.B. Szenenwahl)

White Book: Video CD

74 Minuten MPEG-1-komprimiertes Video

Blue Book: Enhanced Music CD (CD-Extra)

Beige Book: Photo CD

Scarlet Book: Super-Audio CD

LMU München – Sommer 2012 Prof. Butz: Medientechnik

CD-Formate (2)

Orange Book Part III
(CD-RW)

SuperVideo CD
(SVCD)

Purple Book
(Double-Density CD)

White Book 2.0
(VideoCD 2.0)

1995

SuperVideo CD
(SVCD)

2000

Audio-CD: Frames und Sektoren

Kleinste Informationseinheit: Frame

33 Bytes (in EFM, also je 14+3 Bits) + Synchronisation (sh. unten)

Auflösung für Audio-Samples: 16 Bit

6 Samples je Frame, pro Sample 4 Byte (2 Kanäle, 16 Bit)

Sektor: 98 Frames

Abgespielt werden 75 Sektoren/s

= 75*98 Frames/s = 7350 Frames/s

= 44.100 Samples/s = 44,1 kHz Sampling Rate

Verwendung	Channel-Bits
Synchronisation	24 + 3 = 27 Bits
Control-Byte für Sub-Channels	1 Byte (17 Bits)
Daten	24 Bytes = 6*4 Bytes
	(408 Bits)
Fehlerkorrektur	8 Bytes (136 Bits)
Σ	588 Bits

LMU München – Sommer 2012 Prof. Butz: Medientechnik

Datenraten und Kapazität bei CD

Rohdatenrate (Channel-Bits)

7350 Frames/s = 588 * 7350 Bits/s = 4.321.800 Bits/s

Sektorenbezogene Rate:

75 Sektoren/s

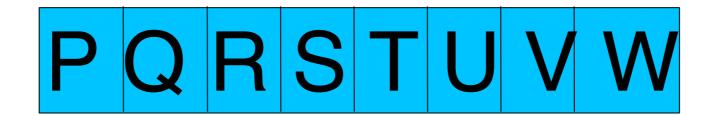
Tatsächliche Nutzdatenrate abhängig von Sektorennutzung

Audio-CD (Red Book):

Nutzdaten je Sektor: 24 Bytes * 98 = 2352 Bytes = 18.816 Bit

CD-ROM (Yellow Book) [siehe später]:

Nutzdaten je Sektor im sog. Mode 1: 2048 Bytes = 16.384 Bit


Tatsächliche Kapazität abhängig von Anzahl der Sektoren:

Audio-CD: 333.000 Sektoren (74*60*75) entsprechen 74 Minuten Spieldauer

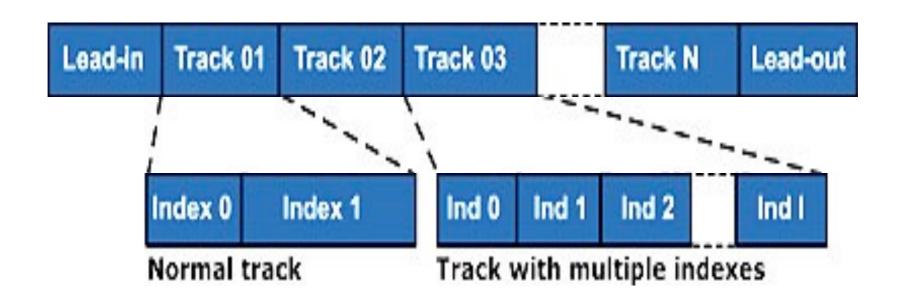
CD-ROM: 333.000 Sektoren entsprechen ca. 650 MByte Speicherplatz

Es gibt CDs mit höheren Sektorenanzahlen!

Sub-Channels

1 Byte je Frame, Zusatzinformation

Bitweise Bezeichnung: P – W


Fest belegte Sub-Channels:

P: Anfang und Ende eines Titels (track)

Q: Zeit-Information, Katalog-Nummer etc.

R – W: Für Grafik und Text (z.B. Karaoke, CD-TEXT) zusammen 5.5 kByte/s

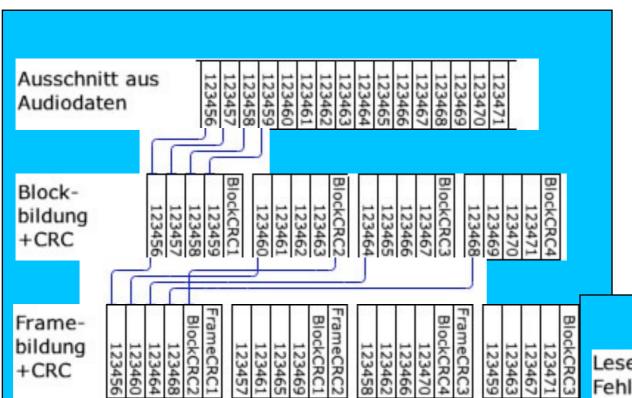
Audio-CD: Tracks und Indizes

- Audio-CD: Max. 99 Titel (Tracks)
 - Jeder Track muss mind. 4 Sekunden lang sein und eine Pause von normalerweise 2 Sek. kann zwischen ihnen bestehen
- Jeder Track enthält mindestens 2 Indizes:
 - Index 0: Markiert die Pause und den Anfang jedes Tracks
 - Index 1: Stellt den Hauptteil des Tracks dar
- Es können zusätzliche Indizes benutzt werden, falls das 99-Tracks-Limit nicht ausreicht

LMU München – Sommer 2012

ISRC

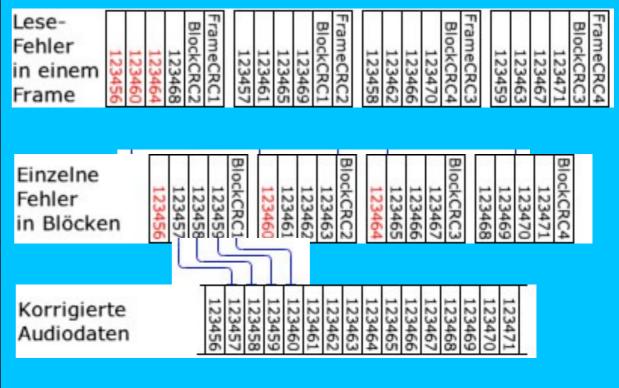
ISRC = International Standard Recording Code (ISO 3901)


Ermöglicht die Identifikation von Audio- und Videoaufnahmen

Die Information befindet sich im Q-Channel der Control-Bytes und enthält 12 Zeichen:

Länge	Beschreibung
2	Land (DE, UK,)
3	Produktionsfirma
2	Aufnahmejahr
5	Kennzeichnungscode

http://www.ifpi.org/isrc


Fehlerkorrektur bei Audio CD

- Redundante Bytes hinzufügt
 - Einheit *Block*
- Frames gebildet durch interleaving von Blöcken
 - Kompensation lokaler Leseprobleme (z.B. Schmutz)

Weitere Möglichkeiten der Fehlerkorrektur bei Audio-CDs:

Interpolation: Fehlende Daten werden aus bekannten als Durchschnittswert errechnet

CIRC: Cross-Interleaved Reed-Salomon Coding

Kopierschutz bei Audio-CDs

Red-Book-Spezifikation:

Serial Copy Management System (SCMS): Bit im Subcode gibt an, ob keine, eine oder beliebige Anzahl Kopien erlaubt

Weitergehende Kopierschutzmaßnahmen (müssen auf der CD-Hülle deutlich angegeben sein!)

Grundprinzip: Ausnutzung der Unterschiede zwischen einem Computer-CD-Laufwerk und einem Audio-CD-Laufwerk

Audio: Kontinuierliches Streaming, großer Aufwand für Fehlerkorrektur (incl. Interpolation)

Computer: Blockweises Auslesen, keine Interpolation

Effekte z.B.:

Computer-Laufwerk kann auf CD nicht navigieren (falsche Verzeichnisse)

Computer-Laufwerk vermisst Lead-Out (der vom Audio-Laufwerk nicht unbedingt benötigt wird)

Extremfall:

Verfälschung (absichtliche Fehler) im Audio-Signal, die durch Interpolation in Audio-Laufwerken verdeckt werden

Effektive Herabsetzung der gelieferten Produktqualität

Photo CD, Picture CD

Von Kodak definierte und unterstützte Spezialformate zur Speicherung von Fotos

Photo CD

Speicherung von Bildern in einer Vielzahl von Auflösungen und Präsentationsmodi (mehrere Versionen je Bild: ImagePac)

Picture CD

Stark vereinfachte "Consumer"-Version

Basiert auf JPEG

Für Filmentwicklungslabors und private Kunden

Inzwischen kaum mehr genutzt

Video CD

Video CD nach White Book:

MPEG-1 Video/Audio-Strom

Bildauflösung 352x240 (NTSC), 352x288 (PAL)

Seitenverhältnis 4:3

Audio-Layer II

Qualität vergleichbar mit VHS Video (also eher schlecht)

Super Video CD

MPEG-2 Video/Audio-Strom

Bildauflösung 480x480 (NTSC), 480x576 (PAL)

Seitenverhältnis 4:3 und 16:9

Audio-Layer II, Mehrkanalton (5.1) prinzipiell möglich

Erfolgreich nur in Ländern *ohne* vorherige VHS-Verbreitung Hauptmarkt: VR China

CD-ROM

CD-ROM = CD-Read Only Memory

Standardisiert im Yellow Book

Zweck: Datenablage

(z.B. Archive, Software, aber auch Computerspiele)

Erlaubt höhere Geschwindigkeiten (derzeit bis zu 52x Audio-CD)

Schneller wahlfreier Zugriff

Verwendung eines Dateisystems

Modi:

Mode 1: Im wesentlichen identisch zu Audio-CD, ca. 650 MB pro CD

2048 Byte je Sektor

Mode 2: Verzichtet (teilweise) auf Fehlerkorrektur

z.B. bei Videodaten angemessen

2336 Byte je Sektor

Höhere Kapazität als bei Mode 1 (bis zu 742 MB)

Dateisysteme für CD-ROM (1)

ISO 9660:

"High-Sierra" Group-Vorschlag: Kompatibel zu MS-DOS 8 Zeichen + 3 Zeichen Extension für Dateinamen ("Level 1")

"Joliet" Extension to ISO 9660:

Nutzt "Secondary Volume Descriptor" in ISO 9660

Erlaubt Dateinamen und Baumtiefen wie in damals aktuellen MS Windows-Versionen (95/98/2000/XP)

HFS:

Speziell für Apple Macintosh

31 Zeichen für Dateinamen, 27 für Ordner

"Resource Fork" enthält Informationen zu Erzeuger/Typ einer Datei

Hybrides Dateisystem:

Kombination von ISO 9660 und HFS

Hinweis: Moderne Apple-Systeme bearbeiten problemlos ISO 9660- und Joliet-Volumes

Dateisysteme für CD-ROM (2)

UDF (Universal Disk Format):

Von der Optical Storage Technology Association (OSTA) entwickelt, ISO-Standard 13346

Nachfolger und Verallgemeinerung von ISO 9660 mit Multisession-Fähigkeiten

Weit verbreitet für DVD, aber prinzipiell für alle optischen Datenträger möglich

Dateinamen bis 255 Zeichen aus 64000 möglichen Zeichen, Groß- und Kleinschreibung unterstützt

Keine Beschränkung der Verzeichnistiefe

Größenbeschränkungen von ISO 9660 aufgehoben

UDF/ISO-Bridge-Disc:

Kann sowohl als UDF- als auch als ISO-Medium identifiziert werden

CD-R und CD-RW

Grundprinzip CD-R (CD-Writeable):

CD-Rohling enthält

zusätzliche Farbstoffschicht

Eingeprägte Leerspur (pre-groove) für die Spurführung

Schreiben ("Brennen") erfolgt mit Laser

Farbe wird erhitzt

Erhitzte Stellen verändern Reflexionseigenschaften

Entstehende Blasen entsprechen Pits

Grundprinzip CD-RW (CD-ReWriteable):

Phase Change Eraseable Disc

Reversible Umwandlung des Materials zwischen kristallin-geordnet und amorph

Nur begrenzt viele Wiederbeschreibungsvorgänge (ca.1000)

Mit älteren Audio-CD-Spielern inkompatibel

Schreibmodi, Multi-Session CDs

Schreibmodi:

 Track at once (TAO): CD wird Track für Track gebrannt, Laser dazwischen ausgeschaltet

Program Memory Area (PMA) für Zwischenspeicherung des Inhaltsverzeichnisses

 Disc at once (DAO): Ganze CD wird in einem kaum unterbrechbaren Vorgang gebrannt

z.B. für Audio-CDs und Master-Produktion

Eine Session wird definiert durch Lead-in- und Lead-out-Bereiche

Bei CD-DA: eine Session pro CD (single session)

Bei CD-ROM:

prinzipiell mehrere Sessions möglich

d.h. nach Lead-out startet neues Lead-in

Praktische Anwendung:

Ergänzung bereits geschriebener CDs (auch CD-R, nicht nur CD-RW)

Ältere Lesegeräte und alle Audio-Player geben nur die erste Session wieder

4. Audiotechnik und Tonbearbeitung

- 4.1 Grundlagen der Audiotechnik
- 4.2 Analoge Audiotechnik
- 4.3 Raumklang
- 4.4 Digitale Audiotechnik
- 4.5 Digitale Rundfunktechnik
- 4.6 CD und verwandte Speichertechnologien CD, DVD, BD

Literatur:

Henning Abschnitte 8.4 und 8.5

Johannes Webers: Handbuch der Film- und Videotechnik, 7. Auflage, Franzis-Verlag 2002, Teil F

Jim Taylor: DVD Demystified, 2nd ed., McGraw-Hill 2001

Wann wurden diese Video-Discs prodiziert?

bowlingtrophy.wordpress.com

Geschichte der Bildplatten

1927: Erste experimentelle Bildplatten (Baird)

1970: TED-Bildplatte von AEG/Telefunken

Weiterentwicklung der mechanischen Schallplatte, "Tiefenschrift"

<u>www.cedmagic.com</u> capacitance electronic disk

Ab 1965: Entwicklung eines Bildplattensystems bei RCA

RCA "SelectaVision Video Disc" wurde 1981-1985 erfolgreich vermarktet (Millionenabsatz von Titeln)

Schallplattenprinzip, Abtastung von Tiefenschrift kapazitiv

1972: Philips' Demonstration eines Laser-Disc-Prototypes

1978: Philips Laser-Vision Bildplatten

1987: Video-CD

ursprünglich nur wenige Minuten Video

dank MPEG-Kompression bis zu 75 Minuten

Super-Video-CD arbeitet mit MPEG-2 (bessere Auflösung, Mehrkanal)

Prof. Butz: Medientechnik

1997: DVD (Digital Video Disc, Digital Versatile Disc)

Video-Discs und Videobänder

Videobänder haben die frühe Verbreitung von Video-Discs behindert

1975: Sony Betamax-System

1976: JVC VHS-System

1970-1978: Entstehung von Video-Disc-Systemen

Ab ca. 1977 massive Verbreitung von VHS, Videoverleih

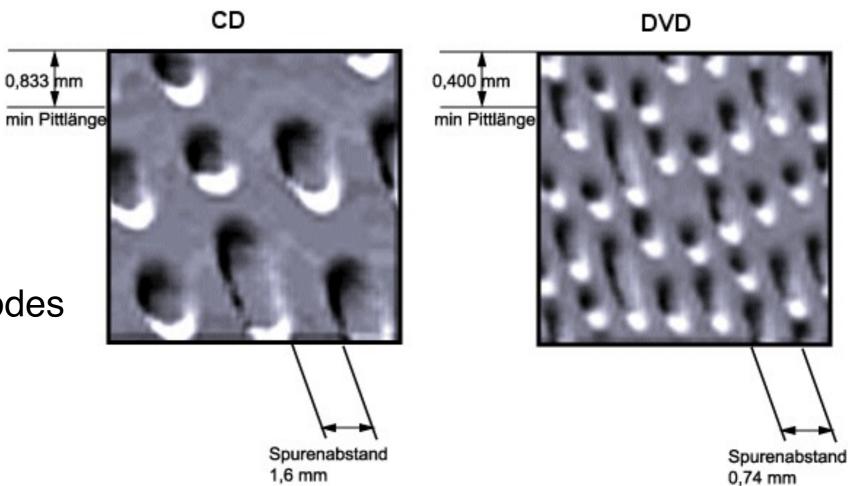
1976: Rechtsstreit zwischen MCA/Universal und Sony über privates Video-Kopieren, von Sony gewonnen

Geschichte der DVD

- 1994: Hollywood-Filmfirmen und Matsushita & Sony schlagen vor, einen neuen weltweiten Standard für digitales Video auf optischen Medien zu schaffen
- 1994-1995: Komplexer Systemstreit zwischen "Multimedia CD MMCD" (Sony/Philips) und "Super Disc SD" (Hitachi, Matsushita, JVC, Pioneer u.a.)
- 1995: Kompromiss unter Druck der Computerindustrie
 - 4,7 GB statt möglicher 5 GB (SD Spezifikation)
 - Henk Both, Philips: "Certainly I don't think that these players will replace the videocassette recorder."

Prof. Butz: Medientechnik

- 1996: Filmindustrie erzwingt den Einbau von Kopierschutztechnologie (CSS) in den DVD-Standard
- 1997: DVD-R, DVD-RAM
- 1999: DVD-Audio, DVD-RW
- 2002: DVD+R


DVD

Digital Versatile Disc

Dateiformat UDF

Spezifikation im August 1997 veröffentlicht Hardware-kompatibel mit den gängigsten CD-Formaten wesentlich höhere Kapazität

- kleinere Pits
- kleinerer Spurabstand
- Bessere Platzausnutzung
- weniger Parity-Bits
- Weglassen der Subcodes
- Kopierschutz

Content Scrambling System CSS

Verhindert Abspielen auf nicht lizensierten Geräten (nicht das Kopieren)

Einzelne Sektoren des audiovisuellen Signals werden so verschlüsselt, dass title key und disc key benötigt werden

- Sector/Title key wird im Sektoren-Header gespeichert, der von DVD-ROM Laufwerken nicht gelesen wird
- Disc key wird in der control area der Disk verschlüsselt gespeichert

409 player keys:

Jeder CSS-Lizenznehmer erhält einen *player key* (im Abspielgerät gespeichert) Disk key liegt auf jeder DVD in 409 Varianten (mit player keys verschlüsselt)

CSS-Algorithmus

verschlüsselt title key auf Basis des disk key

Player key nötig, um disk key zu erhalten

1999, MoRE und Jon Johansen (Norwegen): DeCSS

Nutzte Schwäche des Xing Players aus

– player keys mittlerweise bekannt und ermittelbar

Varianten der DVD-ROM

DVD-5:

einseitig, eine Schicht

4,7 GB

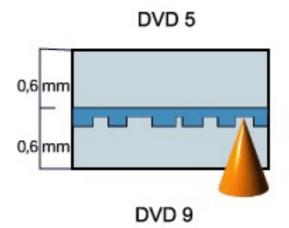
DVD-10:

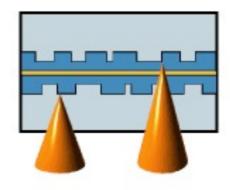
zweiseitig, muss man wenden

9,4 GB

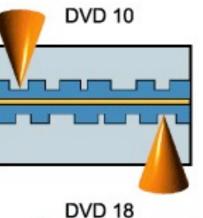
DVD-9

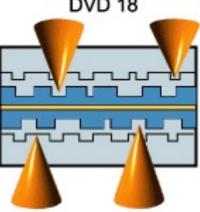
zwei Schichten


8,5 GB


DVD-18

zwei Schichten


zweiseitig, muss man wenden


17 GB

Inhaltsbezogen:

- Video-DVD
- Audio-DVD
- Daten-DVD

DVD-RAM, DVD-R, DVD-RW, DVD+R, DVD+RW, DL

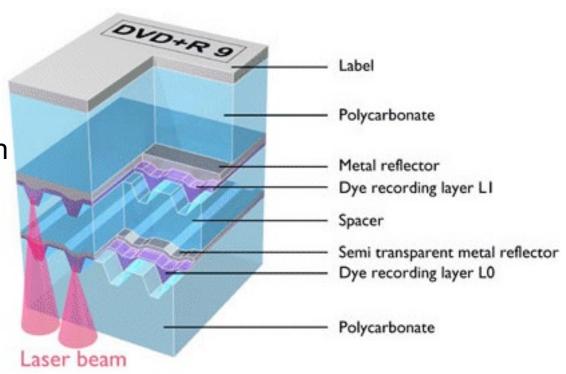
Für wiederbeschreibbare DVDs viele konkurrierende Standards:

DVD-RAM:

- auf Datenanwendungen ausgelegt, auch doppelseitig, 4,7 oder 9,4 GByte
- sehr oft (100.000 mal) wiederbeschreibbar
- verschiedene Varianten, teilweise nicht kompatibel mit Video-DVD-Spielern

DVD-R, DVD-RW:

 4,7 GByte, ähnlich zu CD-R und CD-RW, Wiedergabe von DVD-RW auf Video-DVD-Spielern oft problematisch


Prof. Butz: Medientechnik

DVD+R, DVD+RW:

- Inkompatibles Alternativformat zu DVD-RW
- Gehörte lange nicht zur DVD-Familie!
- Bessere Kompatibilität zu Video-DVD-Spielern
- Zielmarkt: DVD-basierte Videorecorder
- Siehe www.dvdrw.com

Dual-Layer (DL):

Seit 2003:
 Zweischicht-Technologie (8,5 GB)
 auch für Brenner

4. Audiotechnik und Tonbearbeitung

- 4.1 Grundlagen der Audiotechnik
- 4.2 Analoge Audiotechnik
- 4.3 Raumklang
- 4.4 Digitale Audiotechnik
- 4.5 Digitale Rundfunktechnik
- 4.6 CD und verwandte Speichertechnologien CD, DVD, BD

Literatur:

Henning Abschnitte 8.4 und 8.5

Johannes Webers: Handbuch der Film- und Videotechnik, 7. Auflage, Franzis-Verlag 2002, Teil F

Jim Taylor: DVD Demystified, 2nd ed., McGraw-Hill 2001

Nachfolgesysteme für DVD – HD-DVD vs. BD

2002: Gründung Blu-ray Disc Foundation (später Association)

Hitachi, LG, Panasonic, Pioneer, Philips, Samsung, Sharp, Sony, Thomson und andere

2004: Gründung HD-DVD Promotion Group (aus DVD Forum)

Toshiba, NEC, Sanyo, Memory-Tech Corporation, Microsoft, RCA, Intel, Venturer Electronics und andere

Technisch inkompatible Systeme

Anfang 2005: Gespräche zwischen beiden Seiten

Keine Einigung bzgl. Plattform für interaktive Inhalte

Blu-ray: BD-J, Java (Sun)

HD DVD: HDi (aka iHD), ECMAscript, XML (Microsoft)

18. April 2006: Einführung HD-DVD, 20. Juni 2006: Einführung BD (USA)

Prof. Butz: Medientechnik

2006/2007: Sony Playstation 3 mit Blu-ray-Laufwerk

4. Januar 2008: Warner Bros. entscheidet sich für Blu-ray Disc

15. Februar 2008: Wal-Mart listet HD-DVDs aus

19. Februar 2008: Toshiba stellt HD-DVD ein

BluRay-Disc (BD)

Blaue Laser mit 405 nm Wellenlänge Blu-Ray Disc (BD)

12 Firmen: Matsushita, Sony, Philips, Apple, LG, Samsung, Hitachi, Sharp, Thomson, Pioneer, Dell, HP

Einfache Kapazität ca. 25 GB (Dual Layer 50 GB)

Experimentelle Versionen (8 Schichten) bis 200 GB

Aktuell: BD-XL mit 100 GB marktreif

Schutzschicht über der Datenschicht nur 0.1 mm dick anfangs Schutzhülle ("Cartridge") benötigt "Protective Coating" gegen Kratzer

Von Anfang an beschreibbare Version mit vorgesehen

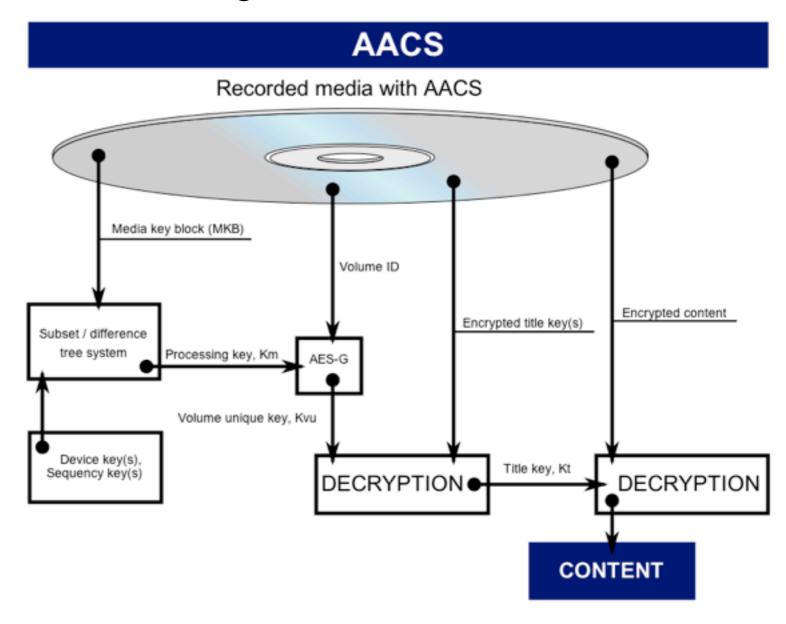
Markteinführung 2006:

Sony PlayStation 3 (Herbst 2006)

Blu-Ray Player ab Weihnachten 2006

BD-Kopierschutz

AACS (Advanced Access Content System)


Mehrfach verschlüsselte Schlüssel (AES)

Kompromittierte Schlüssel können zurückgerufen werden

Volume-ID ist nötig zum entschlüsseln, kann mit Consumer-Hardware nicht kopiert werden inzwischen geknackt

BD+

Virtuelle Maschine auf BD
Programm in VM
untersucht System auf
Kompromittierung
inzwischen geknackt

BD-J

Java ME (CDC Basis-Profil)

Grundelement: Xlets - Java Applets die pausiert werden können

Verwendet existierende APIs (Java TV, AWT, GEM / MHP,...)

Features:

Synchronisation mit Video

Reaktion auf Events (z.B. Fernbedienung)

Netzwerk-Support

Java Security Model

GUI-Bibliothek (Havi)

Dokumentation verteilt, kaum Tools

Zentrales Portal: HD Cookbook (hdcookbook.dev.java.net)

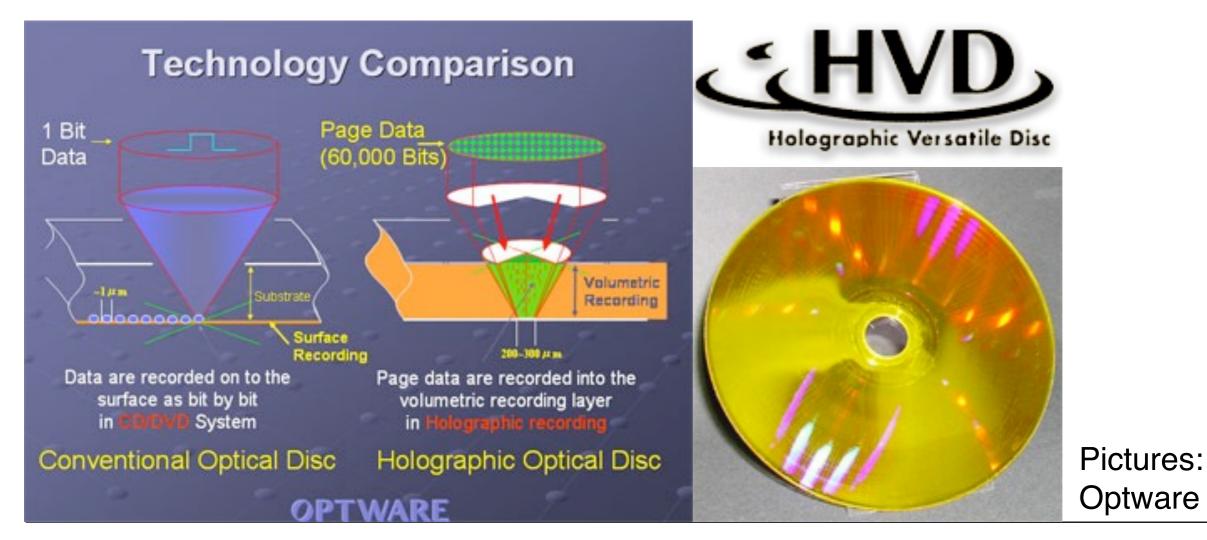
GRIN: Szenengraph für BD-J

Beispiel BD-J

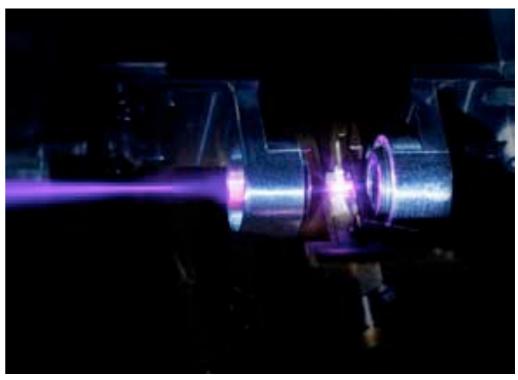
```
import javax.tv.xlet.Xlet;
import javax.tv.xlet.XletContext;
import java.awt.*;
                                                       public void destroyXlet(boolean unconditional)
import org.havi.ui.HScene;
                                                           scene.remove(qui);
import org.havi.ui.HSceneFactory;
                                                           scene = null;
                                                       }
public class FirstBDJApp implements Xlet {
                                                       public void initXlet(XletContext context) {
    private static Font font;
                                                           font = new Font(null, Font.PLAIN, 48);
    private HScene scene;
                                                           scene = HSceneFactory.getInstance()
    private Container gui;
                                                                                 .getDefaultHScene();
    private String text = "My first BD-J app!";
                                                           gui = new Container() {
                                                               public void paint(Graphics g) {
    public FirstBDJApp() {}
                                                                   g.setFont(font);
                                                                   g.setColor(new Color(45, 45, 45));
    public void startXlet() {
                                                                   g.drawString(text, 500, 500);
        gui.setVisible(true);
                                                               }
        scene.setVisible(true);
                                                           };
    }
                                                           gui.setSize(1920, 1080);
                                                           scene.add(gui, BorderLayout.CENTER);
    public void pauseXlet() {
                                                           scene.validate();
        qui.setVisible(false);
    }
```

Möglicher Blu-Ray Nachfolger Option 1: Holographic Disc Systems

Grundidee: Speicherung in 3-dimensionaler Repräsentation


Holographie-Prinzip: Interferenzen Bildstrahl/Referenzstrahl

Zwei Laser (rot und grün) für Positionierung und Daten


Kapazität ca. 500 GB bis 3,9 TB

Pionier-Firmen *Optware* und *InPhase* erfolglos (ca. 1999-2010)

Juli 2011: Schnelles Schreiben von Holo-Discs (GE Research)

Möglicher Blu-Ray Nachfolger Option 2: Blau-violette Puls-Laser

Sony & Tohoku University, 2010: Picture: Sony

Blau-violetter Puls-Laser mit 100 W Leistung

Wellenlänge 405 nm, Pulsdauer 3 ps, optischer Halbleiter-Verstärker

Sehr kleine optische Speicher-Strukturen erzeugbar

300 nm Durchmesser, 3 µm Abstand

Potential: Optische wiederbeschreibbare Disk mit 1 TB Kapazität

Die Zukunft ist offen...

Physikalische Datenträger für Medienvertrieb?

vs. Download, Streaming, Cloud Storage

Benötigte Datenraten?

bei HD und Nachfolgeformaten (z.B. 4K), 3D Video

Datensicherheit, Kopierschutz

DRM, Backup-Lösungen, Cloud, Zukunftssicherheit

Es ändert sich laufend sehr viel, also "am Ball bleiben"!

LMU München – Sommer 2012 Prof. Butz: Medientechnik

Projektkompetenz Multimedia: Angebote!

Im 6. Semester Bachelor offiziell vorgeschrieben: "Projektompetenz Multimedia, 3 ECTS"

Für Interessierte, die Spaß am Fotografieren und an der Filmproduktion haben, gibt es Möglichkeiten, dieses Praktikum schon jetzt zu machen und einzubringen!

Option 1: Fotoprojekt S-Bahn München
Kooperation mit DB/S-Bahn München und Agentur Serviceplan

Option 2: Produktion von Filmmaterial in Gebärdensprache Kooperation mit Lehrstuhl für Gehörlosenpädagogik, LMU

40 Bilder für die S Bahn München B

Ein Blockseminar des Lehrstuhls für Medieninformatik

Wir suchen mit Euch 40 Bilder rund um die S-Bahn München, die alle Facetten der Münchner Heimatlinie widerspiegeln – keine Vorgaben, keine Regeln.

Eure Fotos versteigern wir gemeinsam und medienwirksam für einen guten Zweck.

Wann? 08. Oktober – 12. Oktober 2012

Wo? Amalienstraße 17

Wer? Prof. Dr. Heinrich Hußmann, Henri Palleis, Emanuel von Zezschwitz

Anmeldung? In Kürze über UniWorX

Videomaterial zur Studiengangsvorstellung

Ziel:

Studiengang Gehörlosenpädagogik im Web so präsentieren, dass

- audiovisuelle Präsentation genutzt
- für Gehörlose zugänglich

Aufgabe:

Videoclips zum Studiengang produzieren, bei denen die Tonspur durch Gebärdensprache ersetzt wird

Partner:

Mitarbeiter aus der Gehörlosenpädagogik Gehörlosen-Dolmetscherin

Zeitraum:

Wintersemester 2012/13 oder Frühjahr 2013

Kontakt:

Sarah Tausch, Lehrstuhl Medieninformatik