Shades of Music

Projektarbeit

Tim Langer LFE Medieninformatik 28.07.2008 Betreuer: Dominikus Baur Verantwortlicher Hochschullehrer: Prof. Dr. Andreas Butz

> Ludwig— LN Maximilians– Universität— München—

- \equiv Recommendation of relevant objects (based on their similarity to a user's choice [Query-by-Example])
- \equiv Measure musical similarity for song segments instead of whole songs to consider the inner diversity of a song
- \equiv Visualize the emerging links between songs

Von Last.fm empfohlene Musik

DANGERDOOM hnlich wie: Deltron 3030, Del tha Funkee..., Jaylib

Hieroalyphics Ähnlich wie: Deltron 3030, Del tha Funkee..., Souls of Mischiet

Handsome Boy Modeling School Ähnlich wie: Deltron 3030, Del tha Funkee.

Ähnlich wie: Deltron 3030, Del tha

Music recommendation by last.fm [1]

Ludwig LI Maximilians-Universität München

Overview

Related Work

- \equiv Similarity Measuring
- \equiv Segmentation
- Shades of Music
 - \equiv General Concept
 - \equiv Backend Calculations
 - **∃** Graphical User Interface
- \equiv Conclusion & Outline

Ludwig—— Maximilians– Universität— München——

Symbolic Similarity Measuring

 \equiv Use existent data such as

- \equiv Lyrics
- \equiv Scores
- \equiv Midis
- ∃ Rhythmic patterns
- ∃ Tags (e.g. ID3-Tags)
- Intuitive
- \equiv Easy to use and understand

German national anthem [2]

Acoustic Similarity Measuring

 \equiv Measure data derived from the audio file, such as

- ∃ Loudness
- ∃ Pitch
- ∃ Timbre
- ∃ Bar & Beat (~ Rhythm)
- \equiv Tempo
- \equiv Raw input \rightarrow no faults
- But: limited technique, no subjectivity

Subjective Similarity Measuring

- \equiv Likeness is subjective and music is emotional
- Music classification should include listener's subjectivity
- **≡** Collaborative Filtering

Ludwig— Maximilians– Universität— München—

Segmentation

- \equiv General idea: repetition
 - **∃** Self-Similarity
 - \equiv Verse & Chorus scheme

A: Midi representation

B: Texture representation

Day Tripper by Lennon/McCartney, performed by the Beatles

Self-Similarity [3]

Shades of Music

- \equiv Query-by-Example paradigm
 - \equiv Faithless God Is a DJ used for this presentation
- \equiv Recommend music
- \equiv Discover unknown links
- \equiv Web-based multi-user system
 - \equiv Subjective Similarity through Feedback process
 - \equiv Collaborative Filtering possible
 - \equiv User-Clustering possible (not used)

Shades of Music

\equiv Use Case

- \equiv Users upload their songs
- \equiv Analyze songs & calculate similarities (own collection only)
- $\equiv\,$ Listen to songs and find sections from other song similar to the one currently playing

Shades of Music - Backend

- \equiv Segmentation of a song into song sections
- \equiv Acoustic attributes
- \equiv Aggregate Segments (milliseconds) and their measured attributes with the sections (seconds)
- \equiv Similarity indicated by the absolute difference between

the attribute's values, of two sections, proportional to the

Sections of "Faithless – God is a DJ"

Ludwig Maximilians

Universität__ München

Shades of Music - Backend

\equiv Calculation example

Halbton	Wert Vektor 1	Wert Vektor 2	Wert Vektor 3	Wert Vektor 4	Wert Vektor 5	Durchschnitt	Halbton	Wert 1	Wert 2	abs. Differenz
0	0.368	0.442	0.584	0.394	0.306	0.419	0	0.419	0.681	0.262
1	0.971	0.78	0.73	0.496	0.643	0.724	1	0.724	0.754	0.03
2	0.13	0.228	0.144	0.148	0.327	0.195	2	0.195	0.615	0.420
3	0.22	0.181	0.152	0.147	0.466	0.238	3	0.238	0.39	0.152
4	0.165	0.237	0.141	0.16	0.512	0.243	4	0.243	0.442	0.199
5	0.614	0.505	0.448	0.754	0.684	0.601	5	0.601	0.499	0.102
6	0.212	0.274	0.256	0.238	0.354	0.267	6	0.267	0.385	0.118
7	0.103	0.257	0.125	0.212	0.388	0.217	7	0.217	0.365	0.148
8	0.152	0.204	0.397	0.694	1	0.489	8	0.489	0.453	0.036
9	0.15	0.249	0.227	0.428	0.407	0.292	9	0.292	0.426	0.134
10	1	1	1	1	0.72	0.944	10	0.944	0.308	0.636
11	0.237	0.228	0.174	0.247	0.213	0.22	11	0.22	0.422	0.202

Calculation of the average pitch chroma-vector for the last section of "Faithless – God is a DJ"

Absolute pitch difference between the last section from "God is a DJ" and a 80 second long section from "Thriller"

Shades of Music - Backend

- \equiv Feedback integration
 - \equiv Feedback overrides acoustic measurement
 - ≡ Stored value = (feedback scale value 1) * 0.25 → range from 0.0 to 1.0 just like the calculations
 - \equiv Use the accumulated average value from all known votes for an entry belonging to section A and section B
 - \equiv Vote on total \rightarrow adjust all other attributes
- \equiv User links via duplicated songs
 - \equiv Detection through Levenshtein distance
 - \equiv Use existing entry that is already linked to other users

Shades of Music - Interface

Ludwig Maximilians-

Universität____ München_____

Shades of Music - Interface

- \equiv Interaction possibilities
 - \equiv Play a song (of course!)
 - \equiv Select similarity attributes to display
 - \equiv Rate a recommendation (scale 1 to 5)
 - \equiv Play a recommended song

Detail view of the pitch-wise recommendations for Pitch

"Faithless – God is a DJ"


```
Voting option
```

Ludwig_____ Maximilians-Universität___ München____

Conclusion

Problems

- \equiv Scalability: (n*(n-1))/2 comparisons for each attribute
- \equiv Echonest segmentation unsatisfactory
- \equiv Acoustic measuring can only be a first step (feedback included but requires a lot of work to improve the system)
- \equiv Varying section length (e.g. compare a 2s section with a 20s section) leads to low meaningful results
- \equiv No local file upload
- \equiv No section labeling (e.g. Verse & Refrain) would be helpful

Possible Extensions & Outlook

Extensions

- \equiv Allow to create, delete and edit section borders
- \equiv Integrate user spanning song similarities (currently excluded)
- \equiv Alternative use cases
 - \equiv Compare a calculation-only system with a user-only system
 - Visualize larger collections with song-section links (no Query-By-Example)
 - Find music samples (similar to Whosampled.com) and/or split remixes or mixed songs (e.g. DJ Sets)

Quellen

- (1) www.last.fm
- (2) www.hkbu.edu.hk
- (3) J. Foote. Visualizing music using self-similarity. In *Proceedings of the seventh ACM international conference on Multimedia (Part 1)*, pages 77-80. ACM New York, NY, USA, 1999
- (4) J. Aucouturier and M. Sandler. Segmentation of musical segments using hidden Markov models. *Preprints-Audio Engineering Society*, 2001