
Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 1

3 Challenges in Multimedia Programming

3.1 Frameworks & Media Integration

3.2 Time Synchronization

3.3 Interactive and Event-Driven Programs

Literature:
P. Ackermann: Developing Object-Oriented Multimedia Software

based on the MET++ Application Framework, dpunkt 1996
http://java.sun.com/products/java-media/jmf/
H. M. Eidenberger, R. Divotkey: Medienverarbeitung in Java, dpunkt 2004

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 2

Frameworks

• Definition (Taligent): “A framework is a set of prefabricated software
building blocks that programmers can use, extend, or customize for
specific computing solutions.”

• Definition (nach Pomberger/Blaschek): “A framework (Rahmenwerk,
Anwendungsgerüst) is a collection of classes which provides an abstract
design for a family of problems”

• Goals:

– Reuse of code, architecture and design principles

– Reuse of schematic behaviour for a group of classec

– Homogeneity among different application systems for a problem family
(e.g. similar usability concept)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 3

Classification of Frameworks

• Architecture driven framework:

– Adaption by inheritance and method override

– Complex class hierarchies and patterns

– Adaption requires excellent programming skills and steep learning curve

– Examples: Java Media Framework (JMF), MET++

• Data driven framework:

– Adaption by object creation and setting of object properties

– Delegation mechanisms (chaining of objects, events as objects)

– Easier to learn but less flexible

– Example: Pygame

• Compromise: Two-Level architecture:

Data driven

Architecture driven

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 4

Class Library vs. Framework

Prefabricated parts

Class library Framework

"Don't call us,
we call you"

Adaptation by instantiation
mainly

Adaptation includes
specialization

Control flow not pre-defined Predefined control flow

Application specific parts

(“Hollywood Principle”)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 5

Base Part of Multimedia Framework: Stage

• Multimedia application as visual interface

– Integration into interface/window framework

– Root for time and space containment hierarchy

• Examples:

– Display in Pygame

– Layout in SMIL

– Canvas in OpenLaszlo

– Stage in JavaFX, Flash/AS

• Functions:

– Define size of display area

– Define general properties of display area (color space etc.)

– Set window caption

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 6

Media Input/Output

• Media data exist in external files

– Various file formats

– Sometimes rather complex (compressed file formats)

• Generic input/output

– Provides functions to read and write various file formats

– Provides homogeneous internal data type for image, sound etc.

– Supports media file lifecycle:

» Check for existence, buffering, accessing

• Streaming support

– Opening URL instead of local file

– Dynamic buffering and loading

• Extensibility

– Plugin architecture may enable easy extension with additional codecs

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 7

Classification of Media Sources

• Timing requirements:

– Real time vs. Non-real time

» Real time: Defined frequency for arrival of media data

• Buffering:

– Unbuffered vs. Buffered (buffer size)

– Buffering safeguards against jitter, but introduces delay

• Control flow:

– Push model: Source determines time of data transmission

– Pull model: Consumer determines time of data transmission

• Distribution:

– Source local or remote to consumer

– File vs. network stream

• Processing chain configuration:

– Source may be a transformer connected to another source

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 8

Media Packaging

Media Stream

Time

Track 1

Track 2

Track3

...

...

...

Buffer• Media source (file or stream)

– May define more than one data stream

– Possibly of different media types

• Example: QuickTime movie

– Video track

– Possibly separate sound tracks

– Text (caption) track

– Annotation track

Data
Source

Data
Sink

De-
Multiplexer

Multiplexer
or
Renderer

Processing chain model of JMF:

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 9

Example: State Model of JMF Player

• Unrealized:

– Start state

• Realizing:

– Media dependent parts of player are accessed

• Prefetching:

– Input stream is read to fill buffer

• Started:

– Processing is being executed

unrealized realizing realized

prefetching prefetched started

realize()
Realize

Complete Event prefetch()

Prefetch
Complete Event

start()

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 10

Example: Codec Plugin Architecture in JMF

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 11

3 Challenges in Multimedia Programming

3.1 Frameworks & Media Integration

3.2 Time Synchronization

3.3 Interactive and Event-Driven Programs

Literature:
P. Ackermann: Developing Object-Oriented Multimedia Software

based on the MET++ Application Framework, dpunkt 1996

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 12

Synchronization Levels

• Intramedia synchronization

– Low-level synchronization

– Ensures continuity of playback in a single media stream

– Should be dealt with in media-specific classes of the framework

• Intermedia synchronization

– Guarantees synchronization between different media streams

– All media streams are synchronized according to a global clock

– Is the key goal of the time synchronization mechanisms in the framework

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 13

Specification Paradigms for Timing

• Formal language

– Programming language:

» Control flow defines timing

» Expressiveness achieved through constructs for concurrency:
Threads, active or passive waiting (Example: Python/Pygame)

– Declarative specification language:

» E.g. temporal logic expression (“X is repeated until Y” etc.)

• Time functions (time line)

– Basic principle: Function from time value to parameter value

– Parallel tracks to express concurrency (Example: Flash)

• Event composition

– Implicit ordering given by event processing

– May include temporal relations for events
(like before, meets, overlaps, during, after, …)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 14

Time Containment Hierarchy

• Media presentations have an inherent hierarchy of sub-parts

– Far beyond simple parallel tracks!

• Time container concept:

– Part of the containment hierarchy enhanced with time layout specification

» E.g. parallel, sequential, individual (relative) event specifications

– Glue objects and strategies fill gaps in layout (e.g. logo, freeze, silence, …)

Example from MET++: music piece

intro theme solo

piano pianosax drums

Cm7 G7

C Eb G Bb

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 15

Variations of Time Functions

• Time function:

– Maps a time value onto a parameter determining the audio/visual
presentation (Concept from MET++)

– Various interpolation strategies are used to compute intermediate values

» May affect performance of individual media elements
(e.g. local time warping in MET++)

• Time line in JavaFX:

– General mechanism to compute parameter values

– Playable sub-presentation (time container)

• Time line in Flash:

– Using parallel tracks (from visual authoring metaphor)

– Time lines may be nested (objects having their own time line)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 16

Time Events

• Rule: Timing in general is relative to presentation time
(enables fast forward etc. by changing presentation speed)

• Absolute timing:

– Clock event: “Tick” after certain time interval

– Timer: Event fired after a certain time has elapsed

• Media-specific timing:

– E.g. “new frame” event for video/animation

• Sub-element relative timing:

– Start and end of presentation of a sub-element

– May include delay specification (“3 seconds after end of clip 2”)

– Cueing events (reaching a certain point in a time-dependent presentation)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 17

3 Challenges in Multimedia Programming

3.1 Frameworks & Media Integration

3.2 Time Synchronization

3.3 Interactive and Event-Driven Programs

Literature:
P. Ackermann: Developing Object-Oriented Multimedia Software

based on the MET++ Application Framework, dpunkt 1996

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 18

Event-Driven Programming

• There is no classical “main control flow”

• Main program structure:

– Set up configuration of objects

– Enter infinite loop:

» Ask for new event(s)

» Process event

while True:

for event in pygame.event.get():

 if event.type == QUIT:

 exit()

 if event.type == pygame.KEYDOWN:

 if event.key in [K_SPACE,K_RIGHT]:

 ...

 if event.key == K_LEFT:

 ...Pygame

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 19

Listener-Style Event-Driven Programming

while True:

for event in pygame.event.get():

 for listener in listeners[event.type]:

listener.processEvent(event)

• Core Idea:

– Event loop is part of the
framework (main control
flow)

– Application programs just
register listener objects

• Listener object:

– Variation of Observer
pattern

– Implements a defined
interface

– Registers with event
processing framework

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 20

(A)Synchronous Event Processing

• Synchronous event processing:

– Event processing is like a procedure call

– Control is given to listener when event arrives

– Control is given back to main event loop after event is processed

– Danger: Blocking main event loop

• Asynchronous event processing:

– Event processing is a concurrent/parallel thread

– Event processing thread is informed of relevant events

– Execution of main event loop is not blocked by event processing

– More flexible, safer, more difficult to program

