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Doğan URGUN b, Sencer Melih DENIZ b, Yuanting LIU c and Mariam HASSIB c

a fortiss GmbH, Research Institute of the Free State of Bavaria and LMU Munich
b The Scientific and Technological Research Council of Turkey (TÜBITAK) Informatics
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Abstract. AI is anticipated to improve human decision-making across various do-
mains, often in high-stakes, difficult tasks. However, human reliance on AI recom-
mendations is often inappropriate. A common approach to address this is to pro-
vide explanations about the AI output to decision makers, but results have been
mixed so far. It often remains unclear when people can rely appropriately on AI and
when explanations can help. In this work, we conducted a lab experiment (N = 34)
to investigate how the appropriateness of human reliance on (explainable) AI de-
pends on the mental workload induced by different decision difficulties. Instead of
self-assessments, we used EEG (Emotiv Epoc Flex head cap, 32 wet electrodes) to
more directly measure participants’ mental workload. We found that the difficulty
of a decision, indicated by the induced mental workload, strongly influences partic-
ipants’ ability to rely appropriately on AI, as assessed through relative self-reliance,
relative AI reliance, and decision accuracy with and without AI. While reliance was
appropriate for low mental workload decisions, participants were prone to overre-
liance in high mental workload decisions. Explanations had no significant effect in
either case. Our results imply that alternatives to the common “recommend-and-
explain” approach should be explored to assist human decision-making in challeng-
ing tasks.
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1. Introduction

AI is expected to enhance human decision-making in a wide variety of domains, in-
cluding high-stakes ones like law enforcement [1] or healthcare [2]. However, peo-
ple’s reliance on AI-generated decision recommendations is often inappropriate, with
multiple studies observing either underreliance (rejection of correct/beneficial recom-
mendations) [3,4,5] or overreliance (acceptance of incorrect/detrimental recommenda-
tions) [6,7,8]. Such inappropriate reliance prevents humans and AI from complementing

1Corresponding Author: Zelun Tony Zhang, zhang@fortiss.org.
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each other [9], and in the case of high-stakes decisions also raises ethical concerns. A
common approach is to try to enable appropriate reliance by explaining the AI recom-
mendations. The rationale is that by making transparent how the AI produced a recom-
mendation, people can better judge when the recommendation is reliable or not. How-
ever, results have been mixed so far. While a few studies do find more appropriate re-
liance with explanations [10,11], in the majority of studies, explanations were either inef-
fective [12,13,14] or even increased overreliance [9,15,16,17]. Often, it remains unclear
when people are able to rely appropriately on AI and when explanations can improve the
appropriateness of reliance. One possible factor could be the difficulty of a decision, as
overreliance and the ineffectiveness of explanations to mitigate it have been particularly
observed in tasks that are challenging for humans [12,13,16,17].

In this work, we aimed to investigate how the mental workload of solving a decision
task affects appropriate reliance and the effectiveness of explanations. Such an under-
standing would be of interest as it is often hoped that AI can improve human decision-
making in difficult decisions that induce more mental workload, such as interpreting
medical images [18,19,20]. The call for explainable AI is particularly prominent in such
critical applications, even though its effectiveness is unclear [21]. We contribute to the
discourse by posing the following research questions:

RQ1: How does the appropriateness of human reliance on AI depend on the mental
workload induced by the difficulty of a decision task?
RQ2: How does the effect of explanations on the appropriateness of reliance depend
on the mental workload induced by the difficulty of a decision task?

To answer our research questions, we conducted an experiment with the recognition
of noisy images of varying difficulty as test bed to assess the appropriateness of partic-
ipants’ AI reliance, both with and without explanations. As a methodological contribu-
tion, we used electroencephalography (EEG) to measure participants’ mental workload
while looking at the images as indicator for their subjectively experienced decision diffi-
culty, rather than asking for it after each decision. We found that for decisions with low
mental workload (indicating easier decisions), people relied appropriately on AI, leading
to complementary team performance (i.e., the performance of human and AI together
is better than that of either alone). For decisions with high mental workload (indicat-
ing more difficult decisions), overreliance was much more pronounced, and team per-
formance was not complementary. Explanations had no significant effect in our study,
neither for low nor for high mental workload. Our results highlight the challenges of
supporting human decision-making with AI in difficult, high-stakes decisions.

2. Related Work

2.1. Reliance on (Explainable) AI and Decision Difficulty

There are several studies related to how the difficulty of a decision influences people’s
reliance on AI. For instance, Lu and Yin [22] investigated how people derive heuristics
for how to rely on AI based on decisions where they are highly confident and how they
observe the AI to perform on those decision tasks. Papenmeier et al. [23] showed that
AI errors on difficult, more ambiguous decisions hurt people’s perception of the AI’s ac-
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curacy less than errors on easy decisions. Importantly to our study, Parkes [24] demon-
strated that it is subjectively perceived task difficulty, not objective task complexity, that
is positively related to reliance on decision aids. All these studies show that the difficulty
of a decision task plays an important role in how humans assess the reliability of AI and
in how they choose to rely on it. However, these studies do not directly assess the appro-
priateness of people’s reliance behavior, and how the effect of explanations on reliance
depends on difficulty.

We are aware of two closely related works that do address task difficulty in relation
to appropriate reliance and explanations. Wang and Yin [12] compared the effectiveness
of several explanation styles regarding appropriate reliance, among other desiderata, on
two different decision tasks, one where participants had more domain knowledge and
another where they had less. One can assume that the latter task was more challenging
for participants. Vasconcelos et al. [10] explicitly studied how explanations and task
difficulty interact to influence overreliance. Their study was based on a maze solving
task, and task difficulty was manipulated through the complexity of the mazes, such that
more difficult tasks required significantly more effort from participants.

In contrast to these two works, our goal was to vary the difficulty of decisions while
keeping the task domain and complexity constant. This is more in line with the notion
of difficulty studied by Lu and Yin [22] or Papenmeier et al. [23], where difficulty is not
caused by a lack of domain knowledge or the required effort, but rather by the presence of
more than a single plausible answer. We were more interested in this notion of difficulty
as it better reflects the difficulty of many real-world decisions such as medical diagnoses
or creditworthiness assessments. To clarify that we study difficulty due to the presence
of more than one plausible answer, we use the term decision difficulty throughout this
paper.

We further did not treat decision difficulty as an objective property of a decision
task, since the same decision might be challenging for one person, but not for another.
Instead, we chose to account for this subjectivity by using EEG to measure participants’
mental workload while making a decision, which we used as indicator for subjective
decision difficulty. To the best of our knowledge, this is the first work investigating how
the appropriateness of human reliance on AI and the effectiveness of explanations to
improve appropriate reliance is affected by subjective, decision difficulty-induced mental
workload. The use of physiological measures further sets our work apart from related
studies like the one by Lu and Yin [22], who asked participants to rate their confidence
after each decision. Compared to such a self-rating approach, our EEG-based method
has the advantage that it does not introduce a secondary task (rating the difficulty of a
decision), which may distract from the primary task (making the decision).

2.2. Mental Workload Measurement With EEG

Mental workload (MWL) signifies the level of engagement of a limited set of cognitive
resources during the ongoing processing of a primary task, influenced by various external
factors such as environmental conditions and situational variables, as well as by intrinsic
traits of the human operator. It involves the allocation of effort and attention to manage
the constant demands of the task [25]. In addition to self-reported measures and primary
task performance measures, physiological measures are often applied in assessing MWL.
Physiological measures assess MWL through the analysis of physiological responses of
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an operator while executing a primary task [26,27,28,29,30,31]. Among physiological
measures, EEG is widely utilized in assessing MWL due to its direct measurement of
signals from the brain, as opposed to the indirect measurement of other physiological
responses initiated by the brain [28,32,33].

Recent research has prioritized validating the utilization of physiological responses
to quantify individuals’ MWL [34,35]. Evidence indicates that neurophysiological mea-
surements, such as EEG signals, exhibit a direct correlation with the mental demand en-
countered during tasks [36]. The electrical activity within the prefrontal cortex, as mea-
sured by the theta frequency band, escalates in tandem with increasing cognitive de-
mands [37], while activity in the parietal midline alpha band decreases [34,38,39]. EEG
spectral components consistently display discernible variations in response to varying
cognitive task requirements [40,41,42], underscoring a correlation between EEG spectral
power and task intricacy.

Significant progress has been made in understanding MWL, with key contributions
from Sweller’s Cognitive Load Theory and subsequent developments by Paas, Renkl, and
Sweller [43,44]. Relevant to our methodology (Section 3), recent research has explored
how mental workload is affected by visual stimuli degradation [45,46] and how mental
workload can be measured from EEG signals during simulated tasks. A notable study by
Kartali et al. showed a strong correlation between EEG-derived mental workload metrics
and task complexity, providing valuable insights for real-time monitoring of cognitive
processing in complex tasks [47].

3. Method

Our aim was to investigate the effect of explanations and the mental workload induced
by varying decision difficulties on human reliance on AI. To this end, we conducted an
experiment in which participants had to solve a series of carefully selected decision tasks
with the help of AI predictions, both with and without explanations. We collected EEG
data along with participants’ decisions in conjunction with the AI predictions to derive
the mental workload induced by different decision difficulties and participants’ reliance
behavior. Figure 1 gives an overview of our study and how the rest of the paper maps
onto it.

AI model & 
explanations
(Section 3.1)

Purposefully 
selected task 

instances
(Section 3.2)

Experiment
(Section 3.3)

EEG data

Participants’ 
decisions & AI 
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With XAI w/o XAI

Mental workload 
induced by 

decision difficulty
(Sections 4.1/5.1)

Reliance on AI
(Section 4.2)

Effect of XAI 
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(Section 5.2)

Figure 1. Flow chart of the study and the respective sections of the paper.

In this section, we describe our methodology. We start by presenting the decision-
making task (Section 3.1) and our procedure for selecting the specific task instances for
the experiment (Section 3.2). We close the section by presenting the experimental design
and procedure (Section 3.3).
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3.1. Human-AI Decision-Making Task

To investigate our research questions, we chose an image recognition task where partic-
ipants had to decide with the help of AI predictions what kind of objects are shown in a
range of noisy images. We utilized the image dataset presented by Steyvers et al. [48] as
the basis for our image classification task. The dataset is composed of 1200 unique im-
ages over 16 categories (e.g., boat, dog, airplane, etc.) that are a subset of the ImageNet
Large Scale Visual Recognition (ILSRVR) dataset [49]. To create varying difficulties,
Steyvers et al. applied four different levels of phase noise to each image. In addition to
the ground truth labels, Steyvers et al. conducted an experiment to measure user accuracy
in classifying the images. They collected confidence levels (low, medium, high), task
accuracy, and task completion time, from 145 Amazon Mechanical Turk workers [48].
Comparable image classification accuracy was achieved by both humans and AI [48].
This image recognition task has been used in prior studies investigating human-AI de-
cision making [50,51]. We chose this task as it is a generic task that does not require
participant expertise in a certain domain, hence increasing the generalizability of our ex-
perimental results. The task was also suitable for our purpose, as visual stimuli affect
cognitive workload in a way that could be measured by EEG [45].

To generate AI predictions that would be later presented to participants in our ex-
periment, we used a DenseNet-161 model [52] which was pre-trained on ImageNet and
fine-tuned on our dataset for 100 epochs, following the approach by Hemmer et al. [50].
We used a training-validation-test split of 60%, 20%, and 20% respectively, and achieved
a test set accuracy of 0.913. The model was implemented using PyTorch 2.0.1 [53] and
trained on a virtual machine in the free version of Google Colab2 with 12 GB RAM and a
Tesla T4 GPU with 16 GB memory. For explanations, we displayed saliency areas in the
form of heatmaps superimposed on the images, which is one of the most common ways
to explain image classification models. We generated the heatmaps using the popular
GradCAM algorithm [54], implemented with the PyTorch GradCAM library [55].

3.2. Task Instances Selection

As our goal was to study how reliance on AI depends on the mental workload induced
by varying decision difficulties, we needed to ensure that the task instances presented
to our participants covered a wide range of decision difficulties. Hence we combined
different criteria available in Steyvers et al.’s dataset to assign difficulty levels to each
image. Based on these pre-assigned levels, we would choose a representative sample of
varying decision difficulties that would induce different mental workload. We used the
following features from Steyvers et al’s dataset [48]:

• Image phase noise level (80, 100, 110, 125)
• Crowd workers’ confidence (low, medium, high)
• Crowd workers’ decision time
• Crowd workers’ accuracy
• Crowd workers’ agreement, which we derived by applying Fleiss’ Kappa [56] to

crowd workers’ individual answers present in the dataset.

2https://colab.research.google.com/
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Figure 2. Example images from our dataset: The top row shows three images, without explanations, the bottom
row shows the images with the GradCAM explanations. All three images were classified correctly using our
model.

We then applied principal component analysis (PCA) to reduce the features to two di-
mensions and used k-means clustering to create three clusters: easy, medium, and hard.

For our final set of task instances, we then randomly selected 240 images, 80 images
for each of the three difficulties, where 64 were classified correctly by the AI model and
16 were classified incorrectly, such that participants experienced an accuracy of 80%.
For the purpose of our study, we reduced the number of class choices per image that
would be presented to participants to the top four choices predicted by the AI model. If
the top four choices did not contain the correct ground truth label, we replaced the fourth
choice with the correct label.

Figure 2 shows examples of correctly classified easy/medium/hard images and their
GradCAM explanations. We reiterate that these pre-assigned difficulties were only meant
to ensure that our experiment covered decisions of varying difficulties. How difficult a
decision is actually perceived by a participant is subjective to an extent and may deviate
from the pre-assigned difficulties. This is why we used EEG to measure mental work-
load as indicator for the subjectively experienced decision difficulty, as explained in the
following sections.

3.3. Experimental Design and Procedure

In this section we outline our experimental design and explain our procedure in detail.
We designed a within-subjects experiment with two decision-making conditions: with
explainable AI and without explainable AI, which we will refer to as XAI and NXAI for
the rest of this manuscript. The procedure was divided into two main sessions (XAI,
NXAI) which were counterbalanced to avoid sequence effects. Therefore, half of the
participants started with the XAI session, while the remaining half started with the NXAI
session. Within each session, three sets of 40 tasks were presented, one set for each
difficulty level. The order of the sets of tasks, the order of the images in each set, and the
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assignment of an image to the XAI or NXAI session were also counterbalanced. Figure 3
depicts the experimental design in detail.
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Figure 3. Schematic overview of the experimental design.

After arriving at our lab, participants were informed about the data acquisition pro-
cedure, gave written consent before the experiment and received monetary compensa-
tion for their participation. This study complied with the ethical standards outlined in
the Declaration of Helsinki and was approved by the Scientific Research and Publica-
tion Ethics Board for Science and Engineering of Karabük University (petition number:
346383). To collect EEG data, we used the Emotiv Epoc Flex EEG head cap3 with 32
wet active electrodes (Fp1, Fp2, F7, F8, F3, F4, Cz, Fz, FC1, C3, FC5, FT9, T7, CP5,
CP1, P3, P7, PO9, Pz, PO10, P8, P4, CP2, CP6, T8, FT10, FC6, C4, FC2, Oz, O1, O2)
positioned according to the 10–20 international system. Two additional electrodes were
used for reference in the ears and conductive gel was applied to enhance electrode-to-
scalp contact. The sensors are made from sintered silver/silverchloride to minimize the
electrode impedance and are fully compatible with gel electrolytes. During the study,
participants were seated in front of a monitor (HP E233, 1920×1080 resolution) at ap-
proximately 50 cm distance and instructed to focus on the center of the screen, as shown
in Figure 4. The first session started with an eyes-closed eyes-opened task, each for 60
seconds, typical for EEG studies, for collecting resting EEG data.

Figure 4. EEG data acquisition environment.

3Emotiv Epoc Flex: https://www.emotiv.com/flex-gel

https://www.emotiv.com/flex-gel
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The screen first showed a visual (fixation cross) and auditory (beep sound) cue for
0.3 seconds. After the fixation cross disappeared, a new task stimulus was introduced.
Participants had to first make an initial decision without AI recommendations. They were
presented with an image from our dataset and shown four choices as to what the image
depicted (Figure 5a). For the purpose of EEG data acquisition, participants had a fixed
time of six seconds to choose an answer. We tested this time interval in pilot tests and
found it to be sufficient to respond to the task. Following their initial response, partici-
pants answered a question about the confidence of their decision, with two levels of con-
fidence available for selection. The confidence level question is not part of the focus of
this paper and hence we do not report on its results later. Subsequently, the same image
was presented again, this time accompanied by the AI model’s classification for that im-
age, presented by highlighting the respective option and showing an “AI” icon next to
it. In the XAI condition, the AI recommendation was complemented by the GradCAM
explanation overlayed on top of the image (Figure 5c). In the NXAI condition, the AI
recommendation was shown with the original image again (Figure 5b).

(a) Initial decision without
AI.

(b) Final decision with AI in
the NXAI condition.

(c) Final decision with AI in
the XAI condition.

Figure 5. Screenshots of task interface used during the study. Participants chose an answer using the respective
arrow key on the keyboard. Choices were originally presented in participants’ native language and translated
for this figure.

4. Measures

In this section, we introduce our EEG analysis pipeline and mental workload measure-
ment approach (Section 4.1). We further explain the reliance metrics (Section 4.2) which
are later used to present our outcomes in the results section.

4.1. EEG Measures of Mental Workload

Figure 6 depicts the EEG analysis pipeline used for processing EEG data and measuring
mental workload. We first collected EEG data sampled at 128 Hz, as explained in Sec-
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Figure 6. EEG signal analysis steps.

tion 3.3. In the data cleaning and pre-processing phase, we removed participants with
more than ten incomplete responses. To extract the relevant frequency band information,
we band-pass filtered the EEG data from 0.1 Hz to 32 Hz. In this way, we also suppressed
line noise. To remove eye blink and facial movement artifacts, we applied common aver-
age referencing (CAR), a re-referencing process [57] that can increase the signal-to-noise
ratio [58]. In short, it is obtained for each channel by subtracting the average of all other
channels from the current one. Compared to other methods like independent component
analysis (ICA), which can be inconsistent in improving EEG data quality [59] and can
distort the EEG signal [60], CAR better preserves the precise channel-specific informa-
tion needed for our purpose [61,62,63,64]. Epochs were created from 0.3 seconds before
to 6 seconds after stimulus onset, encompassing the entire EEG response to the stimu-
lus, with each epoch aligned to the stimulus presentation. Finally, we performed baseline
correction for each epoch, from 200 ms before the stimulus to the onset of the stimulus,
to eliminate any DC offset.

In the feature extraction phase, we utilized the power of different EEG frequency
bands. When the complexity of tasks rises, there is an observable augmentation in the
frontal midline theta band (4–7 Hz) and a concomitant reduction in the parietal midline
alpha band (8–12 Hz) [34,38,39]. With respect to the related frontal and parietal areas,
we chose the Fz and Pz channels for the measurement. To obtain theta power of Fz and al-
pha power values of Pz for each 6-seconds EEG trial, which were to be used in the calcu-
lation of the MWL index, we decomposed the EEG trails into frequency components for
each epoch using the fast fourier transform (FFT). A power spectral density (PSD) was
obtained for each EEG trial using a box window of 3 seconds in length with a 2.9 sec-
onds overlap. Using this overlap interval, we obtained 58 windows for each EEG trial.
The relative band powers for the theta and alpha frequency bands for each window were
calculated using the individual alpha frequency (IAF) method [65]. The MWL index was
then computed by dividing the relative power of the alpha band in the Pz channel by the
relative power of the theta band in the Fz channel, as detailed in Equation 1, offering a
measure of cognitive effort and engagement during the task [47,66,67,68].

MWL =
θFz

αPz

(1)
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Based on the 58 MWL index values per EEG trial, we obtained a feature set for
each EEG trial. We calculated the root mean square (RMS) and Hjorth activity parame-
ter [69] of the 58 MWL index values and used those as features for the related EEG trial.
Hjorth parameters are statistical measures that enable the analysis of signals in the time
domain [70]. These parameters include activity, mobility, and complexity. We utilized
the activity parameter, as it indicates the signal power, defined as the variance of a time
function. It reflects changes in the power spectrum surface within the frequency domain.
To clarify, the activity parameter takes a large value if the signals contain many high-
frequency components, and a small value if they consist of few. The activity parameter
is calculated using Equation 2, where x(n) is the input signal and x is the average of the
signal.

Activity =
1
N

N−1

∑
n=0

[x(n)− x]2 = var(x) (2)

In the classification phase, we aimed to categorize the mental workload for all
epochs of each participant separately. Most current approaches for classifying tasks
based on EEG signals require extensive labeled training datasets. Yet, gathering and man-
ually labeling a vast array of EEG recordings from a large number of participants is im-
practical. To mitigate this issue, we employed unsupervised learning to classify cogni-
tive workload in the EEG recordings (see Section 5.1). This approach is informed by es-
tablished theories in cognitive load and decision-making [71,72,73,74,75,76,77,78,79],
and also addresses the potential for subjective bias in manual labeling, highlighting the
benefits of unsupervised learning in the context of EEG analysis [80,81].

4.2. AI Reliance Measures

We used the measurement concept proposed by Schemmer et al. [14] to assess the ap-
propriateness of reliance on AI. The measurement concept requires a setup where the
user first makes an initial decision without AI, and then receives the AI recommendation
before making the final decision. Based on users’ initial and final decisions as well as
the correctness of the AI recommendation, two dimensions are defined to assess the ap-
propriateness of users’ AI reliance: relative self-reliance (RSR) and relative AI reliance
(RAIR). The former measures the degree to which users either correctly rejected wrong
AI recommendations (high RSR) or overrelied (low RSR), while the latter measures the
degree to which they either adopted correct AI recommendations (high RAIR) or under-
relied (low RAIR).

Schemmer et al. considered binary decisions, so we adapted their measurement con-
cept according to Figure 7 to accommodate cases where human and AI chose different
answers, but both are wrong; or cases where the human revises their answer after see-
ing the AI recommendation, but both the intial and final answer are wrong. We further
adapted Schemmer et al.’s definitions of RSR and RAIR to accommodate our adaptations
as follows:
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Correct self-reliance (CSR)

Incorrect AI reliance (over-reliance)

Correct AI reliance (CAIR)

Incorrect self-reliance (under-reliance)

Incorrect AI reliance (over-reliance)
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Undefined because of (2)

Undefined because of (2)

Undefined because of (2)
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Figure 7. Possible combinations of human decisions and AI advice in our study. In line with the argumentation
of Schemmer et al. [14], we exclude cases where (1) the initial human decision is the same as the AI advice,
or (2) where the final human decisions is different from both the initial decision and the AI advice. We further
exclude cases where participants held on to their initial wrong decision after getting AI advice that was wrong,
but different from their initial decision (3). These cases are ill-defined under Schemmer et al.’s framework, as
participants incorrectly self-relied, but did not under-rely, since the AI was also wrong. The remaining cases
mostly correspond to the definitions in [14], with the exception of cases where participants adopted wrong AI
advice after both the initial human decision and the AI advice were wrong, but different. We count this as an
additional path for overreliance. Figure adapted from [14].

RSR =
∑

N
i=0 CSRi

∑
N
i=0 CSRi +∑

N
i=0 ORi

(3)

RAIR =
∑

N
i=0 CAIRi

∑
N
i=0 CAIRi +∑

N
i=0 URi

(4)

Schemmer et al. defined RSR with those cases in the denominator where the initial hu-
man decision was correct, but the AI recommendation was wrong. They correspondingly
defined RAIR with those cases in the denominator where the initial human decision was
wrong and the AI recommendation was correct. For the binary decision case, these are
equivalent to the denominators in Equations 3 and 4. For our case, the adaptation of the
denominator in Equation 3 factors in the additional path for overreliance in Figure 7. The
adaptation in Equation 4 has no consequences, but we made it to keep the definitions
consistent.
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5. Results

We recruited 45 healthy participants for the study. After removing data from participants
with more than ten incomplete responses, we retained the data from 34 participants (6
females, 28 males) with an average age of 25.9 (SD = 1.4) years; four participants were
left-handed.

5.1. Analysis of EEG Data and Mental Workload

With the method described in Section 4.1, we were able to assess participants’ mental
workload during both their initial decision without AI and the final decision with AI sup-
port. We argue that the former is a more faithful measure of the mental workload induced
by the task itself and therefore focus our analyses hereafter on the mental workload mea-
sures obtained during the initial decision phase.

In an initial analysis step, we calculated the MWL indices for each epoch as de-
scribed in Section 4.1 and averaged the MWL values across easy, medium, and hard im-
ages respectively for each participant. Figure 8 exemplarily shows the resulting data for
Participants 1 and 2, showing that easy and hard images induce MWL index values that
are clearly separable, while the MWL from medium images is much less distinguishable.

Figure 8. Mental workload index values for Participant 1 (left) and Participant 2 (right).

Following this initial observation, we applied binary, unsupervised classification to
the EEG data to distinguish between low and high mental workload. We explored a range
of common unsupervised classification algorithms, including k-means [71,72,76,78,79],
mean shift [74], Gaussian mixture [77], agglomerative [75], and spectral clustering [73],
to analyze how the data clustered according to MWL index values and the Hjorth activity
parameter for each epoch [69]. Figure 9 exemplarily shows the resulting clusters for
Participant 1, and Table 1 shows the share of images where the clustering into low/high
mental workload corresponds to the easy/hard pre-assigned difficulties from Section 3.2,
averaged over all participants. Note that images of medium pre-assigned difficulty were
not considered for Figure 9 and Table 1 due to their unclear mapping to the mental
workload clusters, but were included in the reliance analyses in Section 5.2. The high
correspondence between easy/hard pre-assigned decision difficulties and the EEG-based
low/high MWL clusters validates that our unsupervised classification approach is capable
of identifying differences in mental workload induced by varying decision difficulties.
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For the further analyses in Section 5.2, we chose the k-means clustering results due to
their high correspondence with the pre-assigned decision difficulties.

Figure 9. Clustering results of the different clustering algorithms for Participant 1.

Table 1. Correspondence between easy/difficult images and low/high mental workload, as classified by the
different clustering algorithms.

k-means
clustering

Mean shift
clustering

Gaussian mixture
clustering

Agglomerative
clustering

Spectral
clustering

0.79 0.75 0.78 0.78 0.72

While a high correspondence between MWL clusters and the pre-assigned decision
difficulties is encouraging, some amount of deviation is to be expected due the subjec-
tive nature of decision difficulty. One person might easily recognize what is shown in an
image, while a different person might be unable to classify that same image. Figure 10
shows some example images where mismatches between the pre-assigned decision diffi-
culty and the MWL classification were particularly frequent. This demonstrates the im-
portance of considering the subject-dependent mental workload instead of pre-assigned
decision difficulties in the subsequent analysis of participants’ reliance behavior.

5.2. Analysis of AI Reliance

5.2.1. Effects of Explanations and Mental Workload on Reliance

As proposed by Schemmer et al. [14], we analyzed the appropriateness of reliance in
terms of RSR and RAIR as two separate dimensions, as shown in Figure 11. We fitted
mixed-effects logistic regression models with random intercepts and slopes for individ-
ual participants (see Appendix A) to investigate the effects of mental workload and study
conditions on both metrics. For mental workload, we used the outcome from the unsu-
pervised clustering into high and low mental workload decisions as measured by EEG
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(a) Easy (boat). (b) Easy (bird).

(c) Hard (chair). (d) Hard (bottle).

Figure 10. Images with frequent mismatches between easy/hard pre-assigned decision difficulties, calculated
as described in Section 3.2, and low/high EEG-based mental workload classifications. Ground truth classes in
parentheses.

during participants’ initial decision, as laid out in Section 5.1. We performed likelihood
ratio tests on the regression models for statistical significance testing, and report odds
ratios (referred to as OR) as effect sizes as well as their confidence intervals (referred to
as CI).

Our results show that RSR is significantly lower for high mental workload deci-
sions (OR = 0.101, 95% CI [0.026, 0.210], χ2(1) = 33.167, p = 8.46 × 10−9) indi-
cating higher overreliance on AI. There was no statistically significant main effect of
the study condition (XAI, NXAI) (OR = 1.029, 95% CI [0.640, 1.739], χ2(1) = 0.013,
p = 0.910). Interaction effects were also not significant (OR = 0.491, 95% CI [0.162,
1.372], χ2(1) = 1.952, p = 0.162).

Considering RAIR, the results show no significant main effects for mental workload
(OR = 0.787, 95% CI [0.547, 1.103], χ2(1) = 1.494, p = 0.222) , or study condition (OR
= 1.029, 95% CI [0.640, 1.739], χ2(1) = 0.013, p = 0.910). Additionally, no interaction
effects were found (OR = 0.908, 95% CI [0.485, 1.688], χ2(1) = 0.086, p = 0.769).

5.2.2. Complementary Team Performance

We further analyzed the outcomes of the reliance behavior described above in terms of
decision accuracy. As shown in Figure 12, the AI accuracy was around 0.8 for both high
and low mental workload decisions. Human accuracy was slightly higher, but comparable
for low mental workload decisions. The final accuracy of humans supported by AI was
higher than both humans and AI on their own, meaning complementary performance
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Figure 11. Appropriatenes of reliance. Lower RSR means more overreliance, while lower RAIR means more
underreliance. Perfectly appropriate reliance would be in the upper right corner. Error bars denote 95% confi-
dence intervals.

was achieved. On high mental workload decisions, humans were much less accurate than
the AI, and complementary performance was not achieved, as human accuracy with AI
support was lower than the AI’s individual accuracy.

high MWL + XAI

high MWL + no XAI

low MWL + XAI

low MWL + no XAI

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

AI
human
team

Figure 12. Decision accuracy of humans and AI individually and together. Human accuracy is derived from
participants’ initial independent decisions, team performance from participants’ final decisions after seeing AI
recommendations. Error bars denote 95% confidence intervals.

We fitted mixed-effects logistic regression models with random intercepts (see Ap-
pendix A) to investigate the effect of explanations on participants’ AI-assisted accuracy,
but likelihood ratio tests revealed no significant effect, neither for high mental workload
decisions (OR = 1.143, 95% CI [0.965, 1.355], p = 0.122), nor for low mental workload
ones (OR = 0.945, 95% CI [0.719, 1.242], p = 0.689).
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6. Discussion

6.1. Appropriateness of Reliance Depends Strongly on Decision Difficulty

Our results suggest that human ability to rely appropriately on AI recommendations de-
pends strongly on the difficulty of the decision task. For less challenging decisions, AI
can provide a helpful second opinion that can complement human decision-making even
without explanations. For such low mental workload decisions, RSR was high and RAIR
comparatively low. This indicates that participants mostly remained with their initial de-
cision as they could easily form an opinion about the correct answer, but occasionally
noticed when it would be beneficial to switch to the AI recommendation.

For more challenging decisions, reliance was less appropriate, primarily driven by a
strong increase in overreliance compared to low mental workload decisions, as indicated
by the much lower RSR. Interestingly, the considerably higher overreliance was not ac-
companied by more correct AI reliance, meaning that participants did not adopt a “blind
trust” policy, as is sometimes discussed in previous work [6,9]. Apparently, when faced
with challenging decisions where people may have little clue about the correct answer,
participants were more willing to switch to the AI recommendation, but also much more
erratic in judging when to do so.

6.2. The Role of Explanations

While explanations had no significant effect in our experiment, the results still provide
some insights regarding explanations. Saliency-based explanations like in our study are
conceptually mostly unhelpful for detecting when the AI is wrong [82,83], as the saliency
area often makes sense even when the model is wrong. However, intuitively, one could
expect that the heatmaps would help users to recognize more instances when it is helpful
to switch to the AI (see Figure 13), i.e., increase RAIR. This did not turn out to be the
case, likely because such instances were too rare.

Still, these properties of saliency maps point to their potential to further improve the
complementarity between human and AI for low mental workload decisions, since the
deficit there was that participants often did not recognize when it was beneficial to adopt
the AI recommendation. Recognizing AI error was less important since overreliance was
already low. At the same time, the results show that saliency maps are conceptually not
suitable for high workload decisions, since overreliance, i.e., failure to recognize when
the AI was wrong, was the primary issue there, which is exactly where saliency-based
explanations do not help.

6.3. Implications for AI-Assisted Decision-Making

Our results imply that for less challenging decisions, simply showing AI-generated rec-
ommendations may be sufficient to achieve complementary team performance between
humans and AI. Explanations that effectively highlight when the AI is correct may help to
further improve complementarity. This conforms to the common notion to increase trust
in AI through explanations [84,85]. However, the aim in AI-assisted decision-making is
often to support decisions that are difficult for humans. For these challenging decisions,
our results imply that humans are significantly less able to rely appropriately on AI and
are more likely to be misled by AI when it is wrong. Our results further imply that it
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Figure 13. Examples where the heatmap explanation can be helpful in our task because it highlights the
decisive image region that is easily overlooked without highlighting. Left: aircraft. Right: cat.

is unlikely that currently predominant explanation approaches for visual tasks can solve
this issue, as they are conceptually unsuitable to help decision makers detect AI mis-
takes. Overall, this suggests a paradigm shift away from the common “recommend-and-
explain” approach may be necessary to effectively augment human decision-making in
difficult decision tasks.

We see two promising broad directions for such a paradigm shift. One direction
could be to reconsider the goal of explanations. Currently, most explanation approaches
are technical in nature and aim to explain how the AI produced its outputs. Rather than
enhancing people’s decision-making process, these explanations divert attention toward
trying to understand the AI model. Alternatively, explanations could provide information
that naturally fits into people’s decision-making process, which is the aim of human-
centered XAI [86]. For example, inspired by how clinicians validate their colleagues’
suggestions, Yang et al. [87] provided references to biomedical literature as explanations
for AI recommendations. Ehsan et al. [88] explored the inclusion of socio-organizational
context into AI explanations in a sales application. Such human-centered explanations
may be more helpful in challenging decisions as they provide information that is relevant
to the decision task itself. This may improve decision makers’ ability to form an opinion
of their own and to reconcile it with the AI’s recommendation. This is in contrast to
classical technical explanations, where in case decision makers have no clue about the
correct answer, they have nothing more to work with than the AI’s recommendation,
which easily results in overreliance, as in our experiment.

Another promising approach is to allocate roles to AI other than providing decision
recommendations, as recently proposed by some authors [89,90,91,92]. A good example
of this approach for a visual decision task was provided by Lindvall et al. [20] in the
context of cancer assessments. Their system helped pathologists to quickly identify and
navigate to image regions of interest that they can review, without explicitly suggesting
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whether the image contains cancer tissue or not. To an extent, such a design evades the
issue of appropriate reliance, as it does not make users wonder whether they should
rely on an AI recommendation or not. Instead, the system helps users to solve the task
themselves.

6.4. Limitations

We caution against overgeneralizing our results, as we only explored a single task with a
single explanation style and algorithm. A multitude of factors can have an influence on
human reliance on AI, which is a fundamental challenge to the generalizability of empir-
ical research in AI-assisted decision-making [93,94] that also applies to our work. Our
study demonstrates that decision difficulty can be an important factor in human reliance
behavior, but further studies are required to understand how our results apply to different
settings. Moreover, to be able to use the appropriateness of reliance measurement con-
cept by Schemmer et al. [14], we used a setup where participants made an initial decision
independently from the AI. This workflow is known to decrease overreliance, at the cost
of worse user experience [6,95]. On the other hand, overreliance in high mental work-
load decisions was high in our study despite this setup; the issue might be even more
pronounced in a setup where humans directly receive AI support, which is often the case
in real applications.

We used EEG to measure changes in mental workload in this study. While impor-
tant for assessing the subjectively experienced challenge of a decision, this also imposed
certain constraints on the decision task to avoid the introduction of artifacts into the EEG
signal. For instance, we had to impose a fixed time interval for each decision instance,
participants were required to move as little as possible, and we could not use text-based
tasks. Future work could explore the usage of other physiological signals like electrocar-
diography, respiration, electrodermal activity, or blood pressure to measure mental work-
load [96]. Moreover, the use of EEG contributed to a gender imbalance in our results, as
the application of conductive gel led to a limited number of female volunteers participat-
ing. Furthermore, EEG data has been obtained only once from each participant. While
this is common in EEG-based studies, the reliability of the mental workload measure was
only evaluated internally during the experimental period, not for other days or hours.

7. Conclusion

In our study, we monitored brain activity to understand how people’s reliance on AI de-
pends on how difficult a decision is for a person, as indicated by the mental workload in-
duced by the decision. EEG signals were crucial to capture decision difficulty as subjec-
tively experienced by participants, without resorting to potentially biased and distracting
self-assessments from participants. We observed that participants tended to experience
higher mental workload on task instances with higher pre-assigned difficulties, confirm-
ing that mental workload is a useful indicator of decision difficulty. We further found that
the appropriateness of human reliance on AI depends strongly on the mental workload
induced by the difficulty of a decision task, with people becoming much more overreliant
in high mental workload decisions. While explanations had no significant effect in our
study, the separate analysis of relative self- and AI reliance revealed the conceptual lim-
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itation of saliency-based explanations to improve the appropriateness of reliance in high
mental workload decisions. Our results imply that while the common “recommend-and-
explain” approach to AI-assisted decision-making can effectively support humans on less
challenging decision tasks, it may be less suitable for more ambitious applications like
the interpretation of medical images. Future work should consider decision difficulty as
an important factor in human reliance on AI and especially investigate how to effectively
support human decision-making in difficult decisions.
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[20] Lindvall M, Lundström C, Löwgren J. Rapid assisted visual search: supporting digital pathologists with
imperfect AI. In: Proceedings of the 26th International Conference on Intelligent User Interfaces. IUI
’21. College Station, TX, USA: ACM; 2021. p. 504-13. Available from: https://dl.acm.org/doi/
10.1145/3397481.3450681.

[21] Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial
intelligence in health care. The Lancet Digital Health. 2021 Nov;3(11):e745-50. Available from: https:
//doi.org/10.1016/S2589-7500(21)00208-9.

[22] Lu Z, Yin M. Human reliance on machine learning models when performance feedback is limited:
heuristics and risks. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. CHI ’21. Yokohama, Japan: ACM; 2021. p. 78:1-78:16. Available from: https://dl.acm.
org/doi/10.1145/3411764.3445562.

[23] Papenmeier A, Kern D, Hienert D, Kammerer Y, Seifert C. How accurate does it feel? – human per-
ception of different types of classification mistakes. In: Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems. CHI ’22. New Orleans, LA, USA: ACM; 2022. p. 180:1-180:13.
Available from: https://dl.acm.org/doi/10.1145/3491102.3501915.

[24] Parkes A. The effect of individual and task characteristics on decision aid reliance. Behaviour

https://dl.acm.org/doi/10.1145/3579605
https://dl.acm.org/doi/10.1145/3579605
https://dl.acm.org/doi/10.1145/3377325.3377480
https://dl.acm.org/doi/10.1145/3377325.3377480
https://mingyin.org/paper/IUI-21/iui21.pdf
https://mingyin.org/paper/IUI-21/iui21.pdf
http://www.nature.com/articles/s41398-021-01224-x
http://www.nature.com/articles/s41398-021-01224-x
https://dl.acm.org/doi/10.1145/3581641.3584066
http://ieeexplore.ieee.org/document/7349687/
http://ieeexplore.ieee.org/document/7349687/
https://doi.org/10.1145/3287560.3287590
https://doi.org/10.1145/3287560.3287590
https://dl.acm.org/doi/10.1145/3411764.3445315
https://dl.acm.org/doi/10.1145/3313831.3376718
https://dl.acm.org/doi/10.1145/3313831.3376718
https://dl.acm.org/doi/10.1145/3422156
https://dl.acm.org/doi/10.1145/3397481.3450681
https://dl.acm.org/doi/10.1145/3397481.3450681
https://doi.org/10.1016/S2589-7500(21)00208-9
https://doi.org/10.1016/S2589-7500(21)00208-9
https://dl.acm.org/doi/10.1145/3411764.3445562
https://dl.acm.org/doi/10.1145/3411764.3445562
https://dl.acm.org/doi/10.1145/3491102.3501915


February 2024

& Information Technology. 2017 Feb;36(2):165-77. Available from: https://doi.org/10.1080/
0144929X.2016.1209242.

[25] Longo L, Wickens CD, Hancock G, Hancock PA. Human mental workload: A survey and a novel
inclusive definition. Frontiers in psychology. 2022;13:883321.

[26] Hancock PA, Meshkati N, Robertson M. Physiological reflections of mental workload. Aviation, space,
and environmental medicine. 1985;56(11):1110-4.

[27] Backs RW. Going beyond heart rate: autonomic space and cardiovascular assessment of mental work-
load. The international journal of aviation psychology. 1995;5(1):25-48.

[28] Miller S. Workload measures. National Advanced Driving Simulator Iowa City, United States. 2001.
[29] Hirshfield LM, Chauncey K, Gulotta R, Girouard A, Solovey ET, Jacob RJ, et al. Combining electroen-

cephalograph and functional near infrared spectroscopy to explore users’ mental workload. In: Foun-
dations of Augmented Cognition. Neuroergonomics and Operational Neuroscience: 5th International
Conference, FAC 2009 Held as Part of HCI International 2009 San Diego, CA, USA, July 19-24, 2009
Proceedings 5. Springer; 2009. p. 239-47.

[30] Miller MW, Rietschel JC, McDonald CG, Hatfield BD. A novel approach to the physiological measure-
ment of mental workload. International Journal of Psychophysiology. 2011;80(1):75-8.

[31] Hogervorst MA, Brouwer AM, Van Erp JB. Combining and comparing EEG, peripheral physiology and
eye-related measures for the assessment of mental workload. Frontiers in neuroscience. 2014;8:322.

[32] Murata A. An attempt to evaluate mental workload using wavelet transform of EEG. Human Factors.
2005;47(3):498-508.

[33] So WK, Wong SW, Mak JN, Chan RH. An evaluation of mental workload with frontal EEG. PloS one.
2017;12(4):e0174949.

[34] Gevins A, Smith ME. Neurophysiological measures of cognitive workload during human-computer
interaction. Theoretical issues in ergonomics science. 2003;4(1-2):113-31.

[35] Kramer AF. Physiological metrics of mental workload: A review of recent progress. Multiple task
performance. 2020:279-328.

[36] Brookings JB, Wilson GF, Swain CR. Psychophysiological responses to changes in workload during
simulated air traffic control. Biological psychology. 1996;42(3):361-77.

[37] Borghini G, Astolfi L, Vecchiato G, Mattia D, Babiloni F. Measuring neurophysiological signals in air-
craft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience
& Biobehavioral Reviews. 2014;44:58-75.
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Table 2. Logistic regression models used in Section 5.2. Table produced with texreg [97].

RSR RAIR Acc
low MWL

Acc
high MWL

(Intercept) 2.19∗∗∗ 0.18 2.45∗∗∗ 0.89∗∗∗

(0.30) (0.17) (0.13) (0.08)
condition contrast 0.03 −0.01 −0.06 0.13

(0.25) (0.16) (0.14) (0.09)
MWL contrast −2.29∗∗∗ −0.24

(0.49) (0.18)
condition contrast:MWL contrast −0.71 −0.10

(0.51) (0.33)

AIC 571.07 1468.69 1481.20 3246.09
BIC 602.92 1503.78 1498.59 3263.80
Log Likelihood −278.54 −727.34 −737.60 −1620.04
Num. obs. 699 1111 2437 2706
Num. groups: Participant ID Numeric 33 33 33 33
Var: Participant ID Numeric (Intercept) 1.20 0.67 0.35 0.16
Var: Participant ID Numeric MWL contrast 1.04 0.05
Cov: Participant ID Numeric (Intercept) MWL contrast −0.93 −0.18
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05


