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Abstract
The rise of smart rings enables for ubiquitous control of
computers that are wearable or mobile. We developed a
ring interface using a 9 DOF IMU for detecting microges-
tures that can be executed while performing another task
that involve hands, e.g. riding a bicycle. For the gesture
classification we implemented 4 classifiers that run on the
Android operating system without the need of clutch events.
In a user study, we compared the success of 4 classifiers
in a cycling scenario. We found that Random Forest (RF )
works better for microgesture detection on Android than Dy-
namic Time Warping (DTW ), K-Nearest-Neighbor (KNN),
and than a Threshold (TH)-based approach as it has the
best detection rate while it runs in real-time on Android.
This work shell encourages other researchers to develop
further mobile applications for using remote microgesture
control in encumbered contexts.
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Background
According to Weiser’s vision [15], computers are becoming
more and more ubiquitous and users will have the desire to
always and everywhere interact with them. Moreover, they
will become "invisible" through being embedded into our ev-
eryday environment and objects. Today, smartphones are
not always immediately accessible, e.g. when the users’
hands are busy or if the mobile device is in their pocket.
For not requiring to interrupt manual tasks when using our
phone, we favor remote microgestures [16] as input tech-
nique. They, for example, can be detected with smart rings,
even when the hands are busy, e.g. when driving the car or
when riding the bicycle, see Figure 1.

Smart rings are a promising form factor for ubiquitous de-
vices as finger rings are already worn in everyday life as
jewelry and thus, they are socially accepted [14]. However,
available smart rings are often limited to only being an out-
put device, e.g. for showing notification messages. Smart
rings that are an input device are still rare [2, 7, 8, 12].

In this work, we are addressing one major challenge in mi-
crogesture interaction, which is clutch event free gesture
execution, as we aim for fluid and seamless interaction:
Clutch events serve to differ between a motion that is in-
tended to be a gesture to control a computer and a natural
movement. Avoiding clutch events is important as natural
movements that are wrongly interpreted as gesture com-
mand cause user frustration and are not acceptable [5, 6].

A common solution to avoid a mismatch between natural
movements and gestures are clutch events, a set of in- and
output actions, e.g. a button press and release, that labels
the gesture so that the computer only analyzes the motions
that definitely are meant to be an input command. In real
life, as Weiser said, we expect to seamlessly and fluidly
interact with ubiquitous computers, which rather leads to

avoiding clutch events and to face the challenge of recog-
nizing microgestures out of a continuous data flow [15].

Various technologies that could be embedded into a ring
exist and would allow for detecting hand and finger ges-
tures. Optical systems have been used for gesture detec-
tion [1, 4, 9, 13], but the handlebars in our cycling scenario
would occlude the fingers while they execute the gestures.
Capacitive sensors, microphones, and electrodes allow for
sensing finger motions under any light conditions and don’t
suffer from occlusion. They do also not require free hands.
For instance, finger gestures have been detected through
measuring capacity on a wristband [10], through acoustic
signals generated by tapping on the forearm or by forming a
fist [3] or through using electromyograms (EMGs) attached
at the forearm for hand and finger movement detection [11].
While tapping on the forearm requires both hands, a ca-
pacitive wristband and EMG only allow for distinguishing
rather rough gestures, but can barely distinguish fine-motor
microgestures.

Similar to our approach, the following projects used mo-
tion detecting sensors, such as accelerometers and gyro-
scopes, to recognize microgestures executed with fingers.
An accelerometer attached to the fingers enabled for type-
writing recognition through tap detection with the Body Cou-
pled FingeRing [2]. Scroll gestures have been recognized
in Ubi-Finger using bend sensors and accelerometers for
measuring finger movements [12]. In Tickle, a ring inter-
face with an embedded Inertial Measurement Units (IMU)
was proposed for detecting tap, release, swipe, and pinch
gestures [17]. Jing et al. build a finger ring, which is able
to detect one-stroke gestures of the index finger using an
accelerometer and detecting the movement speed and
direction [7]. Pingu a ring interface to control smart envi-
ronments, was created by Ketabdar et al. to detect mid-air



gestures and taps [8]. To segment the data stream the user
touches the proximity sensor of Pingu to generate a clutch
event, which our work aims to avoid for better usability.

Although microgestures are promising for remote mobile
interaction, previous work on microgesture detection mainly
suffers in realistic applicability as it either does not work
with current mobile devices or the gesture classification re-
quires clutch events. Thus, previous work does not meet
the requirements of natural fluid interaction with ubiquitous
mobile devices. In this paper, we present a microgesture
ring that enables seamless mobile app control while cycling
without interrupting to grasp the handlebars of the bicy-
cle. We implemented and compared 4 microgesture classi-
fiers against each other that run in real time on Android in a
pseudo-realistic mobile scenario.

The contribution of this paper is twofold. (1) We present a
smart ring device with an embedded IMU to remotely in-
teract with a mobile phone through microgestures. (2) We
compare 4 common gesture detection approaches that can
run on Android for clutch-free gesture detection, and we
show that Random Forest is a candidate for detecting mi-
crogestures allowing for fluid remote smartphone control.

Figure 2: Ring interface connected
with a mobile phone.

Ring interface for microgesture interaction
In this section, we explain the ring interface as well as the
implementation of the microgesture classification.

The hardware setup consists of two IMUs, containing an
MPU-6050 accelerometer and gyroscope each. The IMUs
were worn as rings at the index finger and at the thumb.
The sensor data was captured with an Arduino pro mini 328
with 8 MHz. We used 8 MHz to keep the amount of data
manageable for classifying the data in real time. The data
was transferred via Bluetooth to a Samsung S III mini that
runs Android. The sensors connected with the Arduino and

the Bluetooth modem were communicating using the I2C
protocol. The gyroscope data was used to detect swipe
gestures through interpreting the angular velocity around
the axis. The swipe directions (left, right, up, and down) cor-
respond with different rotation directions around the sensor
axis. Tap gestures are performed with the index finger or
thumb. The microgestures were recognized by applying
peak detection on the accelerometer data. The schematic
setup of our microgesture ring is shown in Figure 2.

For the remote map control, we chose gestures that are
commonly used in phone control. Swipe controlled the map
panning, while tapping on the front of the handlebar zooms
in the map and tapping on the back of the bar zooms out.
The gesture recognition is done in three steps: (1) sensor
noise handling (2) clutch-free gesture segmentation (3)
microgesture classification.

(1) Sensor noise handling: The input data stream contains
additional sensor noise from finger, hand, and arm motions
that are not meant to be a gesture. The noisy data chal-
lenges the gesture classification, and we found no com-
mon filter that fits our needs to reduce the noise in the input
data as digital filters can only reduce noise with defined fre-
quencies. The noise that is emitted from cycling on uneven
roads, for example, has no specific frequency. Alternative
filter approaches, like Stationary Subspace Analysis (SSA),
are computationally too expensive to run on a smartphone.
Therefore, we did not reduce the noise in the data, but con-
sidered noise as an additional gesture for the gesture clas-
sification.

(2) Clutch-free gesture segmentation: The unknown start
and end points of a gesture in the data stream have to be
identified without the help of clutch events. In order to seg-
ment the gestures without knowing their start or end time,
we estimated start and end by distinguishing between the



hand’s motions and its resting positions through filtering the
gyroscope signals. We assume that each gesture starts
in a resting position, followed by a finger motion, and then
ends again in a resting position. If such pattern appears
in the input data, the corresponding data will be cropped
and classified. Due to intensive pre-tests, we assumed the
gestures to be executed within 0.5 s and the highest pace
of each gesture to be in the middle of the gesture. Since a
new time point is transmitted after t = 0.33 s, each gesture
consists of D = 0.5

0.033 = 15.15 time vectors. However,
since everybody performs the same microgesture a little
differently each time, the point of the highest pace will not
always be exactly in the middle of the gesture. Therefore,
we expanded the data vectors to D = 20 data vectors, and
thus, each feature vector consists of 10 time points before
and after the point of the highest pace. An advantage of
this procedure is that it creates feature vectors of the same
length. Thus, the classification algorithm does not have to
deal with different sized feature vectors.

(3) Microgesture classification: After cropping the sensor
data stream, we classified the gestures using 4 common
and well established algorithms: Dynamic Time Warping
(DTW ), K-Nearest-Neighbor (KNN), Random Forest (RF ),
and Threshold (TH). The main reason for the algorithms
choice was that they smoothly and in real time run on An-
droid devices considering the limited computation power of
sate-of-the-art mobile devices. If a gesture is interrupted
because the user may be not fully concentrated or was in-
teracting with the environment, the gesture might not be
recognized depending on gesture execution completeness.
Therefore, we implemented a post-classification filter, which
smooths the classification results. We count a gesture to
be classified if the classifier returns the same classification
result in a row for a fixed period. All 4 implemented algo-
rithms run on Android, but they perform differently regarding

attributes, which commonly serve to rate the quality of a
gesture recognition approach: the P-, R-, and F-score. The
P-, R-, and F-scores are values between 0 and 1, whereby
a greater value indicates a better recognition result. The P-
scores measures the ratio between correctly classified ges-
tures and false positives. False positives are gestures that
were recognized even though no gesture was executed.
The R-scores measures the ratio between correctly classi-
fied gestures and gestures that were not recognized (false
negatives). The F-scores is a by a scaling factor α weighted
combination of P- and R-scores. α is a value between 0
and 1 chosen according to whether the P- or R-scores is
more important to the examined scenario.

Without a systematic evaluation of P-, R-, and F-scores,
we are not able to propose a classifier that fits well with the
requirements for clutch-free microgesture interaction with
mobile devices.

Method
For evaluating the classifiers, we compared their perfor-
mance in a user study regarding their (P-, R-, and F-score)
as well as their classification time. We conducted an user
study where participants performed microgestures (tap and
swipe: left, right, up, and down) in a pseudo-realistic mobile
scenario by having their hands on rotatable bicycle handle-
bars, pretending to steer and also to naturally move their
hands (reported as no_gesture) from time to time, e.g., for
changing a gear or winking a friend. These microgestures
where used in our user study because they represent easy
and quick to perform gestures, thus these gestures are suit-
able fore microgestures interaction.

Design
We invited 16 right-handed participants, 6 female and 10
male, aged between 20 and 30 years (M = 24.6, SD =



3.0), to our study that had a within subject design with the
independent variables gesture (no_gesture; swipe: left,
right, up, and down; tap: front and back). The dependent
variables were the three classification rate parameters P-,
R-, and F-score as well as classification time.

Apparatus
Our apparatus consisted out of two smart rings and a smart-
phone, similar to the setup in Figure 1 arranged in a bicycle
simulation setup. For the bicycle setup we used a wooden
plate to carry the smart phone and the handlebars that
were freely movable in the horizontal dimension. An An-
droid app displayed instructions for the gesture training as
well as for the gesture execution during the study. The app
recorded and classified the data as described in the previ-
ous section.

Task
All gestures (swipe: left, right, up, and down; tap at the front
and back of the handlebar) as well as no_gesture was per-
formed by all participant with their right/dominant hand
while grasping the handlebar through swiping across or
through tapping at it.

Procedure
After welcoming participants we asked them to sit down on
a chair in front of the bicycle-like setup. Then, we equipped
their index finger and thumb with the ring interface. After-
wards, we showed the gestures to the participants and
mentioned that they will be asked during the experiment
to perform no_gesture through releasing the hand from the
handlebar and moving it freely around, e.g. for rearranging
the hand on the handlebars, steering or waving. The ex-
periment was split into two phases, the training phase and
the classification phase. The training phase started with
pressing a start button on the app. Then icons of the ges-
tures that the participants shall execute (five times in a row)

appeared on the screen in random order. Before each ges-
ture, 5 s of preparation time, which was displayed as count-
down, was given. Through that procedure we roughly pre-
defined the start point for each motion segment that later
served for the gesture classification. Each gesture record-
ing lasted 8 s. Then the start button was shown again. That
procedure was iteratively repeated until the training sets
for each gesture was performed five times. Afterwards
no_gesture was continuously recorded over 65 s while the
participants rearranged their hand, waved, and rotated the
handlebars. During the classification phase the participants
were asked to execute the gestures in a randomized or-
der. The completely filtered and classified data stream con-
tained the gesture labels for each data point.

Results
During the gestures and no_gesture execution, we recorded
gyroscope and accelerometer data. Each participant pro-
vided 15 data samples for each gesture, 5 training ges-
tures and 10 test gestures, which are 60 gesture samples
per participant and 960 samples in total. In our analyses,
we evaluated the 4 classifiers, DTW , KNN, RF , and TH,
through comparing classification rates and times per ges-
ture. DTW uses one template for each gesture to compare
the incoming data with. The classification of a sample to a
gesture was done with a threshold for the computed dis-
tance between sample and template. This threshold was
optimized with gradient descent for each participant indi-
vidually regarding the F-score using all recorded trainings
samples of that participant. For KNN, the Euclidean dis-
tance metric between the samples was used. The optimiza-
tion for the number of neighbors (k = 2) was done the
same way as DTW. During the optimization of KNN, it was
observed that in all cases the amount of neighbors used for
voting was one or two, while the data sets with one neigh-
bor dominated. RF consists of many decision trees. Each



P R F time (ms)

x̄TH m = .372 m = .148 m = .224 0.02
SDTH σ = .042 σ = .008 σ = .016
x̄RF m = .936 m = .871 m = .907 .98
SDRF σ = .003 σ = .009 σ = .003
x̄KNN m = .986 m = .775 m = .870 14.16
SDKNN σ = .001 σ = .020 σ = .008
x̄DTW m = .389 m = .297 m = .348 186.02
SDDTW σ = .149 σ = .036 σ = .101

Table 1: Classifier comparison by mean (x̄) and the SD of the P-,
R-, and F-score as well as the classification time in milliseconds.

decision tree votes for one of the trained classes the ges-
ture will be classified to. The class with the majority of votes
is picked as the result class. Furthermore, feature selection
was used to determine, which feature of each data point
shall be used by a decision tree during the classification.
The threshold of the TH algorithm was determined during
the training phase. During each gesture, the highest veloc-
ity and direction of the gesture was determined for all five
training samples. The mean of these velocities was used
as the threshold for each gesture during the classification
phase.

To test if our implemented algorithms fulfill the requirements
of classifying microgestures in mobile scenarios, we com-
pared their classification rate (P-, R-, and F-score) and the
classification time as shown in Table 1.

The gesture classification times differed a lot between the
algorithms, and TH was with 0.02 s the fastest. RF was
49 times slower than TH, KNN was 708 times slower, and
DTW 9301 times slower than TH. A one-way ANOVA in-
dicated that the choice of the classification algorithms sig-
nificantly influenced the classification rates (P-, R-, and F-

Results TH-RF TH-KNN TH-DTW

H0(P ) < 0.001* < 0.001* 0.871
H0(R) < 0.001* < 0.001* 0.009
H0(F ) < 0.001* < 0.001* 0.160

Results RF -KNN RF -DTW KNN-DTW

H0(P ) 0.004* < 0.001* < 0.001*
H0(R) 0.037* < 0.001* < 0.001*
H0(F ) 0.231 < 0.001* < 0.001*

Table 2: Bonferroni-corrected p-values for pairwise comparisons
of the classification algorithms.

score). The classification algorithm effected the P-score
(F3,60 = 37.85, p < 0.001), the R-score (F3,60 = 62.39,
p < 0.001), and the F-score (F3,60 = 39.64, p < 0.001).
Bonferroni-corrected post-hoc comparisons yielded signif-
icant differences between all scores of TH vs. RF (p <
0.001), TH vs. KNN (p < 0.001), and KNN vs. DTW
(p < 0.001). Comparing RF vs. KNN indicated significant
differences for the P-score (p = 0.004) and the R-score
(p = 0.037), but not for the F-score (p = 0.231). We did
not find any significant differences between TH vs. DTW
(p > 0.05), as shown in Table 2 as well as in Figure 3.

In summary, Random Forest resulted in the highest F-score
and therefore, it led to the best recognition rate with a com-
paratively small amount of false positive gestures due to
the choice of α = 0.7, and a relatively small variance. K-
Nearest-Neighbor has the second highest F-score, followed
by Dynamic Time Warping, while Threshold has the low-
est score. Moreover, the precision P (that was raised by
the smoothing step at the end of the classification) is in all
cases higher than the Recall R. Finally, DTW has a smaller
precision value P than we would have expected due to its
commonly established usage.



Figure 3: Recognition means including standard error
represented by the error bars, significant differences are marked
with a *.

Discussion & Conclusion
In this paper, we introduced a ring interface that detects
microgestures as input for smartphones. We showed that
under the limitations of smart phones, Random Forest
works best for microgesture classification compared with K-
Nearest-Neighbor , Dynamic Time Warping, and a Thresh-
old approach.

In our classifier implementation, we addressed the following
challenges of using microgestures for remotely controlling
mobile devices: The classifiers run on an Android phone.
No gesture labeling or so called clutch events are used for
gesture segmentation. The gesture data stream contains
also natural movements to challenge the clutch-free gesture
classification. Under the 4 tested classification approaches,
Random Forest shows a high classification rate (FRF =
0.907), and it classifies a gesture in 0.98ms only.

Through demonstrating that clutch-free microgesture recog-
nition is possible on Android devices and even if the signals
contain natural movements, we show that ring interfaces
not only can be used as micro-displays like their currently
are, they also could be utilized to be a ubiquitous remote
controller for all kinds of devices, such as mobile phones.
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