
Everything is a Window: Utilizing the Window Manager for
Multi-Touch Interaction

Raphael Wimmer
University of Munich

Amalienstr. 17, 80333 Munich, Germany
raphael.wimmer@ifi.lmu.de

Fabian Hennecke
University of Munich

Amalienstr. 17, 80333 Munich, Germany
fabian.hennecke@ifi.lmu.de

ABSTRACT
Interactive surfaces are becoming more and more common
in research and everyday use. Recent research has focused
on hardware technologies and basic interaction techniques.
While the WIMP paradigm is the prevalent standard for desk-
top computers, there is no consensus yet on similar paradigms
for interactive surfaces. In order to explore novel interaction
paradigms for interactive surfaces, researchers commonly
use specialized frameworks like the Microsoft Surface SDK
or write their own middleware, forfeiting many advantages
of existing operating systems and closing out legacy applica-
tions. This paper proposes an approach for building multitouch-
enabled desktop environments based on common UNIX paradigms
and components. By extending the system’s window man-
ager researchers can transparently control user input and graph-
ical output on interactive surfaces, simultaneously support-
ing both multitouch-capable and legacy applications.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation:
User Interfaces

General Terms
Human Factors

Author Keywords
window manager, unix, compiz, x11, multi-touch, curve

INTRODUCTION
In the context of our research project Curve we are exploring
the use of interactive surfaces in office environments. We
believe that this is an area where interactive surfaces can
provide significant benefits, once ubiquitous large interac-
tive surfaces become economically feasible. The Curve desk
employs a large interactive surface that consists of a vertical
and an horizontal segment connected by a curved segment
(Figure 1). This allows for seamless touch interaction across
the whole surface while retaining the respective advantages
of a physical desktop and a computer screen [6]. A major

Submitted to workshop ”Engineering Patterns for Multi-Touch Interfaces”
in conjunction with EICS 2010.

goal of this project is to explore how different input modal-
ities like mouse, direct touch, or pen input are used in real
work scenarios, and how the different segments of our inter-
active surface affect the interaction.

Figure 1. Curve is a desktop environment that combines a horizontal
and a vertical surface. This gives the user the opportunity to choose the
surface that is best suited for a particular task.

The experience we collected so far in this project leads us
to the following assumptions about real-world scenarios for
interactive surfaces:

• Office workplaces are important use cases for interactive
surfaces. Many people sit in front of their office PC for
several hours a day. Enhancing their productivity will
have significant and quantifiable impact. Long-term stud-
ies are needed for investigating productivity gains.

• Single full-screen applications are not well suited for han-
dling office tasks. Like with current WIMP interfaces,
users will need to view multiple applications at the same
time and exchange data between them.

• Legacy, single-pointer applications are here to stay for a
while. While it is technically possible to augment them
with rudimentary multi-touch support [3], the effort needed
is significant. Therefore, users will need to run multi-
touch applications and legacy applications simultaneously,
side-by-side.

Current multi-touch frameworks offer a multi-touch-capable
canvas which is embedded into a window that is managed
by the operating system. Usually, multi-touch applications
are run in a full-screen mode. As widgets for multi-touch
UIs are usually larger than WIMP UI widgets, running sev-

http://www.medien.ifi.lmu.de/team/raphael.wimmer/
http://www.medien.ifi.lmu.de//
http://www.openstreetmap.org/?lat=48.14677&lon=11.57614&zoom=18
mailto:raphael.wimmer@ifi.lmu.de?subject=Your%20window-manager%20paper
http://www.medien.ifi.lmu.de/team/fabian.hennecke/
http://www.medien.ifi.lmu.de//
http://www.openstreetmap.org/?lat=48.14677&lon=11.57614&zoom=18
mailto:fabian.hennecke@ifi.lmu.de?subject=Your%20window-manager%20paper


eral multi-touch applications side-by-side is In the follow-
ing, we argue that multi-touch systems should support mul-
tiple simultaneously running applications, including appli-
cations written using different toolkits and legacy applica-
tions. As window managers already implement many fea-
tures needed for multi-touch systems, we suggest, using a
window manager for offering basic multi-touch interactions
while supporting legacy applications.

SUPPORTING LEGACY APPLICATIONS
In the following we use the term legacy application for soft-
ware that recognizes only single pointer events, compared
to novel applications which recognize and use richer input
like multiple touch points or contact area. A typical novel
application is the prevalent ”photo sorting” demo offered by
many multi-touch SDKs. Legacy applications include e.g.
word processors, web browsers, or file managers.

Benko et al. [2] conducted a survey of researchers, develop-
ers, and users working with multi-touch systems. For long-
term individual use, support for legacy applications was con-
sidered very important. Such legacy applications are preva-
lent on existing computers and have evolved over several
years of maintenance. They applications provide powerful
and essential features for many users. Banning them from
interactive surfaces will inevitably lessen the productivity of
such a system’s users. However, it is unfeasible to port all
those applications to a new input model. Additionally, it is
not clear, how multi-touch interaction for such applications
might look like. On the other hand, confining novel applica-
tions to single windows similar to legacy applications, would
certainly reduce their expressiveness. It might also hinder
adoption of novel applications, as multi-touch input would
need to happen in certain confined screen areas - which are
not always at ergonomic positions.

These problems can be addressed by giving each type of ap-
plication its preferred space: Novel applications should use
the whole screen space while legacy applications are pre-
sented as windows within the same screen space (Figure 2).

Figure 2. Novel multi-touch applications and legacy applications
should share the same screen space. Legacy applications are rendered
within a window - the way they were designed. Novel applications may
place their UI widgets across the whole screen.

Implementing such a system using current multi-touch toolk-
its poses some challenges:

• Embedding: Graphical output of legacy applications has
to be redirected into an image that is displayed within
the toolkit drawing area. Toolkit touch events have to be
translated into the operating system’s pointer events be-
fore sending them to the legacy application.

• Cross-Application Interaction: How can drag and drop of
an object from a legacy to a novel application and vice
versa be implemented?

• Flexibility: While legacy applications can be written in
any programming language, novel applications have to
use the SDK’s API.

We propose a flexible solution for these combined systems:
Instead of re-implementing an operating system within the
multi-touch toolkit, we use the operating system’s window
manager as a middleware that combines legacy and novel
applications. In the following we explain this concept and
discuss its benefits and drawbacks. While the following de-
scription uses UNIX concepts and software, the general idea
holds true for other operating systems.

UTILIZING THE WINDOW MANAGER
One of the fundamental principles of UNIX systems is Ev-
erything is a File - be it system settings, external devices,
pipes, or internal components of a computer. While this con-
cept has some exceptions it allows for transparent reading
and manipulation of a multitude of digital objects. Demon-
strating the power of this concept, Ballesteros et al. [1] have
implemented a distributed pervasive computing framework
on top of file system operations.

X11, the default graphical I/O subsystem for UNIX has a
similar concept: Everything is a Window, be it the desktop,
application windows, menus, or other widgets. While appli-
cations can manage their canvas on their own, toolkits like
QT or GTK use embedded X11 windows for representing
certain UI widgets. They therefore expose these widgets to
the windowing system. Hutterer et al. [5] have implemented
native multi-pointer support for X11.

In order to display (and interact with) legacy applications
alongside novel multi-touch UIs, the graphical output of both
must be combined. Additionally, multi-touch input events
have to be translated int mouse events for legacy applica-
tions. A window manager is actually doing exactly these
things - it can modify input events before they reach the ap-
plication, and modify graphics output before it is handed to
the graphics card. The window manager captures all events
that are sent to the root window by the X server. It subse-
quently propagates events to the appropriate windows. The
window manager can therefore filter and manipulate input
events, and generate new events. For example, the window
manager can filter multi-touch events, so that legacy applica-
tions receive only single-pointer events. Compositing win-
dow managers ,like Compiz1, redirect all window contents
1http://www.compiz.org

http://www.compiz.org


to an off-screen buffer before combining them and transfer-
ring them to the GPU. Therefore the window manager is also
able to filter and manipulate windows, and augment them
with additional graphics like window decorations. Current
compositing window managers use OpenGL acceleration for
mosts tasks. For example, the window manager can pre-
warp the screen content, so it appears undistorted when pro-
jected onto non-planar surfaces.

Compiz is an open-source compositing window manager for
X11. Like the window managers in Windows 7 and Mac OS
X, Compiz offers multiple virtual desktops, smooth window
scaling, 2D and 3D effects, and many other features. Compiz
consists of a rendering core and a sophisticated plugin sys-
tem. Almost all components (virtual desktops, application
switcher, wallpaper, etc.) are realized as plugins that can be
configured, enabled and disabled at runtime. Such plugins
also offer multi-pointer input and freely rotatable windows.
For our Curve system we have implemented a plugin that
uses a distortion map to pre-warp the output of two projec-
tors. The plugin can be configured and enabled/disabled at
runtime. However, the window manager does not only act as
a gatekeeper for user input and graphical output. It also runs
alongside applications. In the following section we describe
how the window manager can therefore be used as a flexible
middleware for multitouch interaction.

EVERYTHING IS A WINDOW
In many cases, interactive surfaces are used to create, move,
and/or manipulate virtual objects on the screen. A window
manager can handle such interactions with minor modifica-
tions. In the following, we describe an exemplary configura-
tion of such a system. Legacy applications are handled just
the same way as before: The window manager receives in-
put events and either manipulates the window accordingly or
propagates the event to the application. This concept of the
window manager handling multi-touch input has also been
described by Cheng et al. [4]. In order to give the window
manager control over a novel application, all multi-touch UI
widgets are implemented as X11 windows. For example,
when media files shall be displayed, a launcher application
starts a simple viewer application for every file. This appli-
cation creates an undecorated window (without title bar, bor-
ders) into which a preview of the file is rendered. The win-
dow also gets assigned custom properties (X11 atoms) that
contain the corresponding file name and process id. Thus,
the window manager and X11 applications like xprop can ac-
cess this information. The viewer application is responsible
for generating a scaled preview when its window is resized.
Using an own process for every media file, generates a mem-
ory overhead. However, a single malformed media file may
only crash its own viewer application, not the whole system.
Additionally, this approach automatically makes use of mul-
tiple CPU cores. Buttons, sliders, and similar widgets can
be implemented as a window, too. A generic launcher could
generate UIs based on stored definitions. Additionally, stan-
dalone applications can be written, that do not depend on a
media file. Using common touch gestures the user can move
all widgets around the screen and interact with them.

APPLICATIONS
Interaction concepts can be implemented either as a plugin
to the window manager or as a standalone application that
polls window positions and acts upon changes. Usually, the
plugin approach is both faster and more flexible. Simple sys-
tems can be even prototyped with shell scripts. For example,
one might want to implement a photo viewing and sorting
application. This application should display a set of images
on the desktop that can be moved, scaled, and rotated with
multitouch gestures. When dragging such an image onto the
window of an image editor this image should be opened in
the editor. As described above, a simple launcher application
would generate a window for every image file. Users can
drag them around the screen, arrange them in piles, make
them transparent, or manipulate them any way the window
manager allows for. A shell script continuously scans the
window tree for the editor window and the image windows.
Once the distance bewtween an image window and the ed-
itor window gets smaller than a certain threshold, the shell
script retrieves the file name from the image window and
passes it to the editor application. This approach requires no
knowledge of window manager internals.

Further applications of this concept include:

• custom window decorations, that arrange tool or action
buttons around an object.

• automated arrangement of objects, e.g. spreading all ob-
jects across the screen.

• drawing onto the desktop can be rendered into a transpar-
ent window on top.

CONCLUSION
In this paper we propose using the system’s window man-
ager for managing directly manipulable widgets as well as
legacy applications. Using windows as widget containers
eases the development of such widgets, as any programming
language can be used. New interaction and visualization
concepts can be implemented as a window manager plugin.
Many ideas can also be implemented by manipulating win-
dow properties from within a shell or python script. A legacy
application may not even be aware of multi-touch events,
receiving only single-pointer events. Nevertheless, the ap-
plication’s window can be manipulated by multi-touch ges-
tures. Thus, the gap between novel and legacy application
gets smaller. While our approach will surely not fit all needs
it seems very flexible, robust, and easy to learn. It should be
noted that only some of the ideas presented here have been
implemented yet.

ABOUT THE AUTHORS
Raphael Wimmer is a PhD student in the Media Informat-
ics Group at the University of Munich, Germany. His re-
search focuses on technologies for touch-sensitive surfaces.
Fabian Hennecke is a PhD student in the Media Informatics
Group at the University of Munich, Germany. His research
focuses on non-planar interactive surfaces.



REFERENCES
1. F. Ballesteros, E. Soriano, G. Guardiola, and K. Leal.

Plan B: Using Files instead of Middleware. IEEE
Pervasive Computing, pages 58–65, 2007.

2. H. Benko, M. R. Morris, A. J. B. Brush, and A. D.
Wilson. Insights on interactive tabletops: A survey of
researchers and developers, 2009.

3. G. Besacier and F. Vernier. Toward user interface
virtualization: legacy applications and innovative
interaction systems. In Proceedings of the 1st ACM
SIGCHI symposium on Engineering interactive
computing systems, pages 157–166. ACM, 2009.

4. K. Cheng, B. Itzstein, P. Sztajer, and M. Rittenbruch. A
unified multi-touch and multi-pointer software
architecture for supporting collocated work on the
desktop. Technical Report ATP-2247, NICTA, Sydney,
Australia, September 2009.

5. P. Hutterer and B. Thomas. Groupware support in the
windowing system. In Proceedings of the eight
Australasian conference on User interface-Volume 64,
page 46. Australian Computer Society, Inc., 2007.

6. F. H. S. B. H. H. Raphael Wimmer, Florian Schulz.
Curve: Blending Horizontal and Vertical Interactive
Surfaces. In Adjunct Proceedings of the 4th IEEE
Workshop on Tabletops and Interactive Surfaces (IEEE
Tabletop 2009), Nov. 2009.


	Introduction
	Supporting Legacy Applications
	Utilizing the Window Manager
	Everything is a Window
	Applications
	Conclusion
	About the Authors
	REFERENCES 

