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Figure 1: The graphical programming interface we created for this study to represent rich interaction with direct manipulation.
It consists of a primary canvas (1) on which blocks can be placed. These blocks are dragged from the block library (2) and can
have additional properties which can be edited (3). Any output is displayed in a dedicated area at the bottom of the screen (4).

ABSTRACT

Software development of modern, data-driven applications still
relies on tools that use interaction paradigms that have remained
mostly unchanged for decades. While rich forms of interactions
exist as an alternative to textual command input, they find lit-
tle adoption in professional software creation. In this work, we
compare graphical programming using direct manipulation to the
traditional, textual way of creating data-driven applications to de-
termine the benefits and drawbacks of each. In a between-subjects
user study (N=18), we compared developing a machine learning
architecture with a graphical editor to traditional code-based devel-
opment. While qualitative and quantitative measures show general
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benefits of graphical direct manipulation, the user’s subjective per-
ception does not always match this. Participants were aware of the
possible benefits of such tools but were still biased in their percep-
tion. Our findings highlight that alternative software creation tools
cannot just rely on good usability but must emphasize the demands
of their specific target group, e.g., user control and flexibility, if
they want long-term benefits and adoption.
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1 INTRODUCTION

Machine Learning, particularly using Neural Networks, has en-
abled many improvements in fields that are critical to everyday
life in our society, like healthcare [13], communication [57], and
security [6, 45]. Therefore, neural networks are an essential tool
for software developers going forward. Yet, while these systems
become increasingly complex and hard to understand, an issue
exacerbated by their opacity [21, 24], how developers create them
is not much different from how other traditional software has been
created for decades: the probably most popular tool, Jupyter note-
books!, and many more, are fundamentally still textual command
input. Meanwhile, there are many alternative forms of interaction
for programming, which could be applied here. Graphical program-
ming, in particular, is an interesting candidate, given the nature
of Machine Learning systems where data visualization often plays
a large role, but many other systems also rely on some form of
visual presentation for different goals like interpretability [55] and
explainability [3, 41], optimization [11, 36], debugging [1, 4] and
many more. Graphical Programming systems like RapidMiner [32],
KNIME [8], or Orange [15] fully embrace this and omit textual
programming for the most part. And yet, most developers still fall
back to their text editors or Jupyter notebooks, which raises the
question of whether these alternative systems are inferior or, more
importantly, what they are missing.

In this paper, we investigated the behavior of programmers in
these contexts to determine how and which aspects of graphical
programming are beneficial and when developers prefer textual
programming. To this end, we performed a between-groups user
study (N=18), where participants had to create a Machine Learning
system for image classification either traditionally with code or
using a simple graphical programming tool, which we designed and
developed specifically for this investigation. This tool allows for the
graphical composition via direct manipulation of a data pipeline
from its individual steps and of Neural Networks from their layers.
We set this tool in contrast to the Jupyter Notebooks, an increas-
ingly popular and close to de facto standard tool for data-driven
development [37, 51], in which participants also implemented the
same application. This allowed us to understand the differences
from a qualitative and quantitative perspective, thus addressing the
question of what alternative systems are missing today and how
we can improve them.

Our results show that graphical programming — for our task
— is, in fact, already faster and produces less workload. While it
is, therefore, viewed positively, participants still expect that they
work better with the traditional, text-based editor. This feedback
provides insights into the potential benefits of graphical program-
ming for data-driven development but also highlights a disparity
in users’ subjective perceptions. Giving developers a high degree
of control and flexibility over their tools appears to be necessary to
ensure the success of graphical development tools. Based on our
results, we argue that a hybrid between text editors and graphical
programming may be a way to consolidate the different benefits
and expectations in the future.

Thttps://jupyter.org
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2 RELATED WORK

Richer interactions than text input are not new for software de-
velopment in general or data-driven development in particular.
Direct manipulation as one of such rich interactions was, in fact,
originally proposed by Shneiderman [49] as an alternative to pro-
gramming languages and command-based control of computers.
Since then, research and industry have developed many different
forms of interaction. Yet, many of the ideas specific to professional
software engineering and, more recently, data-driven development
have only found limited adoption in practice. Anecdotal evidence
suggests that particularly more radical changes that fundamentally
change how developers interact with the software they create, fare
poorly. A drastically different interaction paradigm is graphical
programming, which replaces text-based commands with visual
representations.

While not embraced by the broad majority, graphical program-
ming still succeeded in some niche application domains for pro-
fessional software engineering. Often, these are areas where the
software is and needs to fulfill very strict requirements in timing,
safety, etc. [5, 20, 42, 46]. Thus, the benefits of graphical program-
ming, particularly for complex systems, are apparent. However,
given the adoption rate, from the inside perspective, the point of
view of developers, these benefits seemingly are not yet convincing.

Petre [38] investigated this disparity and compared the bene-
fit of graphical programming for novices and experts, where she
describes some of the benefits of that arise from the rich interac-
tion like accessibility, memorability, etc. However, the article also
emphasizes the challenges that arise from the different needs of
novices and experts. While graphical programming is often advo-
cated for beginners, Petre [38] instead describes how they would
rather benefit from more constrained interactions. The ability to
grasp and utilize graphical representation is something that also
requires some expertise, and poorly designed visualizations can
easily be confusing or overwhelming. Erwig and Meyer [18] also
provide an early discussion of the benefits of visual languages and
their integration with the more common textual counterpart in
heterogeneous visual languages for general programming activities.
Mohagheghi and Dehlen [33] later reviewed the state in the early
2000s in the context of Model-driven development tools and prac-
tices, which are often graphical in nature. At that point, they found
adoption to be limited and only at a small scale, and evaluations
were lacking. Since then, many projects in which new graphical
programming tools have been created now also conduct user stud-
ies to evaluate them, especially the application for children and in
education [26, 44, 50, 54] and end-user programming [2, 7] but also
beyond. After all these years, graphical programming remains an
active research interest, as seen in the literature review by Smith
et al. [47] and recent examples like the work of Homer [25], who
investigates the use of graphical programming for data-flow pro-
gramming.

2.1 Graphical Programming for Data-Driven
Applications

Data-driven applications have a high degree of inherent complexity.
Graphical programming could be a viable route to mitigate this. Con-
sequently, academia and industry have developed some systems that
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try to leverage this interaction to simplify development. Tools like
RapidMiner have existed for two decades now [43] and have been
applied in several domains and case studies (e.g., [22, 29, 31, 34]).
RapidMiner and other tools (e.g., Orange [15] or KNIME [8]) typ-
ically visualize the data flow in data-driven applications as a se-
quence of blocks, which represent different steps in the processing.
With this representation, they can make a relatively abstract pro-
cess easier to grasp, while hiding unnecessary details. Of course,
many of these details are necessary for experienced users, so there
are different interaction patterns for accessing them, from popups
to the common “bento box” [14] layout to hierarchical structures.
They also often provide additional visualizations as support, e.g.,
for data exploration or to display output metrics. While not specifi-
cally targeted at novices or experts, they are still often considered
more suitable for novices [9] or non-programmers [48]. Weber et
al. [53] provide a further overview of tools for data-driven software
development from the last decade. Based on their literature review,
they also draw the conclusion that graphical programming is one
area that could improve data-driven development, but has not yet
managed to gain enough traction and practical use. Instead, for
developers, Jupyter Notebooks so far seem the tool of choice [39].
From an interaction design point of view, these notebooks are still
different from the setup common in traditional software develop-
ment with either a text editor and tools for compilation and exe-
cution, or the Integrated Development Environment (IDE), which
combines them. Jupyter notebooks rather focus on small code frag-
ments and short execution and feedback cycles, very similar to a
REPL (Read-Evaluate-Print-Loop) or interactive shell environment.
In this sense, Jupyter notebooks can be seen as a regression towards
the interaction one would have with a terminal with superior back-
tracing and presentation. Still, it is the development tool of choice,
particularly in the domain of data-driven applications, so any novel
and improved tools will have to measure up to it.

Furthermore, the Jupyter environment provides infrastructure
for extending it, which not only contributed to its success across
many programming languages, but has also enabled researchers
to extend the fairly conservative forms of interaction. Kery et al.
[28] and Zhao et al. [56] both attempted to enhance the Jupyter
programming environment with visualizations that add a more
graphical representation to the traditional, code-based one. The
user studies found that professional users enjoy the flexibility of
switching between different representations, but they also received
critical feedback indicating that experts struggle with some inter-
actions. In the ODEN tool by Zhao et al. [56], the participants were
sometimes confused by the mapping between graphical and tex-
tual representation, prompting them to implement a “calm mode”
Designing tools suitable for developers of data-driven applications
is not a trivial task. To ensure that they can provide the benefit
they promise, we must first better understand what interactions
are suitable and what users prefer in a given context.
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3 A GRAPHICAL PROGRAMMING EDITOR
FOR NEURAL NETWORKS

Most existing graphical programming tools suffer from a common,
well-known issue in that they have gathered many features. Com-
paring an extension of an existing tool against “plain” Jupyter note-
books would likely heavily bias the results and not give us adequate
insights into the underlying interaction paradigms and how they
affect developers. Thus, we considered it more adequate to build
a reduced version of a graphical programming tool that offers a
feature set similar to an unmodified Jupyter environment but with
a different presentation. Therefore, we limit the volume of features
and interactions to a minimal, comparable subset and completely
control what kind of interactions were possible during our study.
A custom implementation also allowed us to instrument the tool,
giving us much more detailed information about the interactions.
Nonetheless, the design of our tool is heavily inspired by and based
on the established visual language of tools like RapidMiner [32] or
KNIME (8] and their block-based interaction: instead of instruction
as lines of code, the functions for processing the data are displayed
as blocks. Blocks can be arranged in space via drag and drop. Blocks
can then be combined into a sequence of operations. This is done
via direct manipulation by dragging a connection from one block
to another. Combining blocks like this lends itself to the domain
of data-driven applications, since a mostly sequential pipeline is a
typical structure. By basing our design on these established tools
and a common style of presentation, the findings of our evaluation
will be more applicable to a broader set of existing tools.

Figure 1 presenters the main interface. In addition, similar to
how Jupyter Notebooks display their output below each cell, the
UI had a panel for displaying any program output in a consistent
location. The output was kept unchanged from what would also be
displayed on a terminal, in an IDE console or in a Jupyter notebook.
Besides this, the tool offers a library of blocks, which we grouped
into categories like Datasets, and Models. Furthermore, each block
can have parameters, just like a function call has parameters. These
are displayed in a third panel as input fields depending on the
parameter’s type, e.g., checkboxes for boolean parameters.

Since we base the task on a tutorial that uses the Keras layers API,
we implemented a subset of its functionality as blocks in our ap-
plication. This was convenient as the TensorFlow]S library, which
we used internally for the Ul uses mostly the same API, which
allowed us to use the same instructions and functions in both ex-
perimental conditions. The blocks we implemented included all the
necessary models, layers, and data processing steps for the tutorial
and a few additional distractors. Each of these blocks used the same
parameters as listed in the Keras/TensorFlow]S documentation. Fur-
thermore, we added the MNIST dataset as a block, similar to how it
is available in the tensorflow_datasets Python package used in our
conventional tutorial, and two blocks to enable interactive predic-
tion of new inputs. In the Keras API, a typical model is composed of
multiple layers, i.e., a function composed of sub-functions. For this
reason, our tool offers the possibility of composite blocks, i.e., blocks
that consist of a sequence of subordinate blocks. Double-clicking
such a composite block opens up a new editor view for arranging its
components. Breadcrumb navigation at the top of the main canvas
allows for navigation along this hierarchy. In our scenario, we used
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this type of block to create a sequential model from different types
of layers, like dense or flatten layers. The same mechanisms can
also be used to address a common issue of graphical programming
tools, namely that of scaling up to larger projects. Grouping blocks
hierarchically can reduce visual clutter while keeping information
accessible on demand [14].

We implemented the tool as an extension for Microsoft’s Visual
Studio Code editor in TypeScript. The source code for the extensions
is part of the supplementary material and is ready to be part of a
public code repository.

4 USER STUDY

We conducted a between-subject study to understand how differ-
ent types of tools and interaction paradigms affect programmers.
Participants had to create a simple machine learning system using
a neural network for classifying the MNIST handwritten digits [30]
based on a set of instructions and provide feedback on their ex-
perience and preferences using a questionnaire. Additionally, we
conducted semi-structured interviews with the participants to get
additional in-depth feedback. In the study, one group of participants
created their neural network using the established interaction of
textual command input, using Jupyter notebooks, the de-facto stan-
dard tool for data science programming. The second group created
the same system using an equivalent set of instructions but with
the graphical programming tool described above. As a first step,
our study focuses on general impressions, developer experience
and task execution. However, the setup can be used in future work,
for example for investigating how visual presentation helps with
understanding complex, large-scale ML pipelines.

4.1 Task

The instructions were designed to follow the general outline of
a typical machine-learning tutorial. For this reason, we took an
existing example from the TensorFlow documentation? and adapted
it, where necessary, for our study. The most notable change is that
we split the training and validation, which in the original are a single
function call, into two separate steps. The tutorial version for the
graphical programming group received some additional changes:
we replaced all code examples with screenshots of our tool in the
respective state, and we had to rephrase some sentences such that
they reflect the difference in interaction, which, for example, meant
replacing occurrences of to type or to write with more suitable verbs.
We opted to keep the visual presentation of the tutorial as close to
the original as possible, but removed any clutter and unnecessary
links from the site to ensure that participants were focused on the
core instructions. Any external links were also removed to keep
participants on the tutorial page.

4.2 Procedure

We gave them a small introduction and asked for their consent to
record the data. Next, we introduce the tool. For Jupyter Notebooks,
this includes information on how to write and execute code and
how to extend the notebook with new cells. For Graphical Pro-
gramming, we introduce the panels described above and the direct
manipulation via drag and drop. After this, participants received

Zhttps://www.tensorflow.org/datasets/keras_example
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access to the instructions, and we asked them to work through these
at their own pace. The whole task was scheduled to take about 15
minutes and participants were made aware of this estimate. How-
ever, they were instructed to work through the task at the pace
they personally deemed necessary for successfully completing it.
Thus, we did not rush them to finish the programming task or cut
them off after the allocated time. At the end of the programming
task, we asked them to complete a survey about the task and tool.
Next, we showed the participants a screen recording of their task
being performed in the alternative condition. Having watched this,
we asked participants to compare what they had seen to what they
had used, using the same survey as before. Five participants also
participated in a semi-structured interview after they entered the
collected additional qualitative feedback.

4.3 Survey and Interview Guidelines

First, we asked participants about their demographics, and prior
knowledge. We used Edison and Geissler’s scale [17] to record their
attitude towards technology. Then, we queried participants about
their experience with the technologies specific to our study and
different topics about machine learning. The survey after complet-
ing the task and after seeing the video, we used 100-point slider
ranging from strongly disagree to strongly agree. [12] for a series
of general statements about the task and the tool. We decided to
use visual analog scales (VAS), as they have been shown to lead to
more precise responses and higher data quality [19]. Finally, as VAS
collects continuous data, they allow for more statistical tests [40].
In line with recommendations for scale development, we phrased
the statements strongly as mildly phrased statements have shown
to result in too much agreement [16].

Second, we asked participants to rate the tool based on several
categories based on Nielsen’s usability heuristics [35] where ap-
plicable and some additional categories (see Figure 3). Finally, we
used the Systems Usability Scale (SUS) [10] and the raw NASA
Task Load Index [23]. Participants could also provide additional
qualitative feedback using free text fields. We discussed partici-
pants’ experiences in a semi-structured interview. The interview
questions first focused on the general experience during the study
and what aspects of the task were particularly challenging. We then
asked about the tool, its benefits and drawbacks, and under what
circumstance or for which target group it might be most suitable.
Finally, we asked for feedback on how to make the machine learn-
ing programming easier to use in the everyday work context of the
participants.

4.4 Apparatus

Participants completed both the survey and the programming task
on a computer provided by us using a mouse and keyboard. This
way, we ensured that the training phase of the machine learning
system was using the same hardware, making it more consistent.
The page with the instructions was displayed on a second screen to
minimize the need for switching windows. Aside from the survey,
additional information like the timing of interactions and the task
result was automatically recorded in the background.
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4.5 Participants

We recruited participants with prior experience with programming,
particularly in data-driven applications. Knowledge of specific Ma-
chine Learning libraries or methods was not a prerequisite. We
recruited them via a combination of personal and professional con-
tacts and multiple mailing lists over the course of four weeks. We
verified that all participants were from fields where data-driven pro-
gramming is relevant. In total, 20 participants completed our study
(4 female, 16 male). With a mean age of 29 (SD = 5.2) and six years
of programming on average (SD = 3.8). Half of the participants had
a background in computer science, while the other half came from
STEM areas where data processing and machine learning methods
are common. The participants were employed full-time, typically
with a completed Master’s degree (14), or were currently still pur-
suing a degree in these domains but worked part-time on projects
involving data-driven applications (6). Based on their feedback, the
participants generally had a positive attitude towards technology
(average score: 76 of 100, SD = 11). They were at least somewhat
familiar with all the specific technologies used in our study, like
machine learning or Jupyter notebooks. While they knew of the
MNIST data set, none reported completing the specific tutorial upon
which our task was based. Four participants answered that they
use graphical programming tools in their work, although not for
creating data-driven applications. We scheduled for a session of
45 minutes per participant. We compensated participants with an
equivalent of 10 US$.

5 RESULTS

Of the 20 people who participated in our study, we excluded two
from the data set, one from each group, after the first data screening,
as their responses strongly suggested that they misunderstood the
instructions. The remaining data yielded the following insights.
As Figure 2 shows, the task was perceived as easy to complete in
both conditions. Given the overall very similar feedback about the
task, we conclude that the task design was suitable, as it was not
notably easier or better supported by any of the two tools. The
scales asking about the tools show some differences: while the
graphical programming tool received slightly better feedback on
enjoyment, how it supports understanding, and its overall design,
these differences are not significant.

5.1 Quantitative Results

In terms of usability, both tools scored high on the SUS [10], 81 of
100 (SD = 11.7) for the graphical tool and 74 (SD = 10.4) for Jupyter
Notebooks, see Figure 4. This difference is not significant. The work-
load as measured by the raw NASA TLX [23], meanwhile, is signif-
icantly lower for the graphical tool (Shapiro-Wilk-test: W = 0.934,
p = 0.287, t-test: £(17) = —4.027, p < 0.001). Moreover, each of the
six subscales of the NASA TLX is lower for the graphical tool indi-
vidually, highlighting the reduction in workload even further (see
Figure 4). Furthermore, the graphical tool was also rated slightly
superior in appearance, ease of understanding, and learning in the
questions (see Figure 3). The participants also rated the graphi-
cal programming UI to be significantly superior in terms of error
prevention (p = 0.023) and how easy to learn they considered it
(p = 0.025, see Table 1 for a complete list and test details).
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While these responses showed only moderate differences, we
observed a stronger change when participants were asked to com-
pare the interface that they used to the one they saw in the screen
recording. After seeing the alternative tool, participants rated the
graphical tool significantly more favorable concerning appearance,
how it offered assistance, and how easy it might be to learn. The
Jupyter notebooks, on the other hand, were rated positively for their
perceived increased flexibility compared to the graphical tool. See
Figure 4 and Table 1 for additional details. Figure 4 also shows the
difference in opinions for participants for these categories, which
further highlights how the comparison skews the participants’ per-
ceptions.

We then compared the recorded task completion time for all par-
ticipants. As Figure 4 shows, completing the task using textual input
on average takes longer by a significant amount (Mann-Whitney-
U test, p = 0.040). While this is in part due to two outliers, the
questionnaire responses from these two do not suggest that they
considered the task more challenging or struggled more than the
other participants.

5.2 Qualitative Results

After an initial screening of the responses to the survey and the
interviews, we performed open coding of the free-text answers.
Those were then further clustered through three iterations, first
into positive or negative comments, then into thematically similar
groups and finally into four higher-level categories: responses spe-
cific to the task, the tool’s appearance, understanding of the system,
and feedback on the interaction paradigms.

5.2.1 Task. All nine participants who commented on the task de-
scribed it as “simple and easy (as it was) split into meaningful parts”
(P3). This is the case for both groups.

5.2.2  Appearance. The feedback on the appearance of the graphi-
cal tool was positive, with multiple participants enjoying the visual
presentation of the data flow via connections. The focus on the
blocks led one participant to note that the output can be “easy to
overlook” (P15), though. The presentation of output close to the
code as done in Jupyter, on the other hand, was considered to be
convenient but constituted the only comment on the appearance
of Jupyter notebooks.

5.2.3 Understanding of the System. Issues with understanding what
was going on were related to general machine learning concepts.
One participant expressed the opinion that “(Jupyter) notebooks re-
quire prior knowledge” (P6), whereas the graphical UI was described
as especially suitable for beginners. To enable growth and learning,
one participant suggested that “a person learning could switch be-
tween” (P6) graphical and text-based UI to use the presentation that
suits them best and at any point in time. This flexibility was also
a point of multiple participants asking for more information to be
displayed on demand in the graphical Ul particularly for the param-
eters, as it was not always clear “what parameters (...) were doing”
(P9). In addition to documentation, participants also favored more
continuous feedback. Similar to how in Jupyter notebooks, each cell
has its output adjacent, our participants wanted to see information
about the success and output of blocks close to them in the graphi-
cal UL In the Jupyter notebooks, the only indicator for a complete
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Figure 2: While there are no significant differences between the responses to various statements about the task and the tools,

they show that the task was perceived very similarly.

computation without output is a change in cell numbering - an
indicator that, according to participants, is easily overlooked. Still,
one participant praised the blocks, into which code is split in note-
books, as they help to structure longer code. This can lead to other
issues, though, as “boxes can be compiled in any order, meaning that
code can crash if compiled in the wrong order,” so there was a wish
for information about data flow and notifications about changes
with dependencies. If something does not work, Jupyter shows the
corresponding error messages. Four participants criticized these
messages to be “cryptic” (P1) and not helpful. However, this is not
per se an issue of Jupyter, but of the Python programming language.
The error messages of the graphical Ul which use natural language,
was praised by one participant to be good for “understanding the
way things worked” (P15).

5.2.4 Feedback on the Interaction Paradigms. The key difference be-
tween the two systems lies in the form of interaction, though. Thus,
participants provided a number of comments on the interaction
after both using the system and seeing the alternative system. The
interaction with drag and drop and direct manipulation to create

the connections and the blocks were commented upon positively
by seven participants. Grabbing the blocks from a library of prede-
fined blocks was also mentioned as a desirable feature, as it reduces
the need to recall API functionality from memory. While this does
apply to the properties of selected blocks, two participants voiced
confusion, as they were overwhelmed by the number of available
parameters, even though they only needed to change one or two
for the task. Four participants mentioned the issue of typing errors,
which can be hard to notice and typically lead to immediate errors
in the code. Writing code, however, forces it to adhere to a strict
sequence of instructions, which matches how it is executed. On
the other hand, the graphical presentation is not constrained like
that, so more emphasis is put on the connections to indicate the ex-
ecution sequence. However, two participants highlighted liking the
presentation with lines as connections. This also enables the tool
to display data flow across steps that are not directly adjacent. An
example of this in our task is the validation data set. It is used fairly
late in the process, which in code means that there are multiple
code cells between its declaration and usage, whereas the blocks
have a direct connection.
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Table 1: Results of the statistical analysis of how participants judged the systems concerning usability heuristics (Single
Judgment) and comparing the system they used to the alternative as seen in a screen recording (Comparative Judgment).
Shapiro-Wilk test was used for normality and t-test for the subsequent analysis of normally distributed data and Mann-
Whitney-U test for not-normally distributed data.

Rating after usage Comparative Rating

Normality test MWU/t-test Normality test t-test
w p W/t df P W P t df P
Visibility of System Status 0.973 0.852 0.8 15.991 0.435 0.945 0.442 —-1.903 9.724  0.087
Familiarity 0.857 0.011  45.5 0.691 0.956 0.627 0.157 12.763 0.878
Exploration 0.910 0.085 1.283 13.907 0.221 0.943 0.428 —0.858 11.273 0.409
Consistency 0.952 0.460 —0.018 12.85 0.986 0.950 0.634 0.157 9.644 0.879
Error Prevention 0.953 0.480 2.480 15.638 0.025 0.915 0.141 -1.636 12.345 0.127
Easy to Understand 0.907 0.077 1.331 14.827 0.203 0.955 0.536 —2.089 14.414 0.019
Flexibility 0.973 0.848 —0.474 13.387 0.643 0.920 0.168 3.212 13915 0.006
Efficiency of Use 0.900 0.050 1.133 15.852 0.274 0.964 0.740 —0.556 10.509 0.590
Aesthetic Design 0.823 0.003 57.5 0.145 0.935 0.287 —3.305 11.829 0.006
Assistance 0.946 0.369 1.034 15.984 0.317 0.946 0.462 —3.318 11.604 0.006
Easy to Learn 0.951 0.439 2.517 15.279 0.023 0.927 0.191 -2.384 14.7 0.031
Useful 0.948 0.397 0.564 13.443 0.582 0.956 0.557 —0.665 12.401 0.518

0%

Visibility of * *k hdad *%* *
system Familiarity Exploration Consistency Error Easy to Flexibility ~ Efficiency  Aesthetic Level of Easy to Useful
status prevention understand of use design assistance learn
B Graphical programming B Textual programming o Graphical programming o Textual programming after
after usage after usage after comparison comparison

Figure 3: Each participant rated the tool they used and the alternative tool in comparison using the same properties and
heuristics about usability (Statistical comparison with Mann-Whitney-U/t-test - *: p < 0.05, **: p < 0.01)

5.2.5 Additional Feedback. Concerning the code execution, the
feedback was that successful computations need not necessarily
be displayed spatially close to the source code, like the Jupyter
cells below, but a single output terminal was adequate. However,
for errors, participants highlighted how a clear visual indicator at
the erroneous location is desirable to quickly identify the source
of the error, while the output from the error message may not be
immediately helpful.

Regarding the adoption of graphical tools, the consensus was that
they were willing to try such a tool but did not expect it to replace
their familiar work environment. They named this because they
expected no dramatic productivity benefit. If participants already

used graphical tools, they typically did so for external motivations,
e.g., because regulations or a legacy project required it required
their use. They were reluctant to use graphical programming tools
for their everyday work, both for creating and using data-driven
systems and in other scenarios. They justified this with the fact that
they had a set of tools with which they were familiar, and adopting
a new tool can be a time investment with uncertain revenue. The
participants suggested two scenarios, though, where a graphical
programming environment may be adopted: first for education or
novices, as is a common idea described above. Second, they saw
the high-level presentation as beneficial for setting up a data pro-
cessing pipeline. In their expectation, they would, however, switch
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Figure 4: Task completion time and NASA TLX results show significant differences, while the SUS shows positive results for
both Uls. (Statistical comparison with Mann-Whitney-U/t-test - *: p < 0.05, **: p < 0.01)

back to textual code for fine-tuning. Thus, they suggested some
form of on-demand translation or switching between the different
presentations to use different paradigms in different development
project phases.

6 DISCUSSION

Overall, the feedback from participants is mixed. Jupyter notebooks
and our prototype of a graphical programming tool appear to be
adequate for the given task. The significant differences in task
completion time suggest that direct manipulation is superior to
creating data-driven applications. However, the additional feedback
is not as clear.

6.1 Bias Toward State-of-the-Art

When judging the tools in isolation, the category in which we ob-
served a significant difference was the category of error prevention.
While fewer questions corroborate this, it is an almost necessary
consequence of the design: text input has high flexibility, while the
graphical UI constrains the options. It is much easier to type an
incorrect command accidentally. Likewise, when developers have
to remember all commands, they are more prone to make mistakes
or not remembering the correct parameters, values, etc. However,
the perception differed more strongly when we showed the alterna-
tive tool to the participants. While in the graphical tool was rated
superior in appearance and how easy it is to learn, the text-based
coding was rated to offer better flexibility. Even in other categories,
like consistency or how it supports exploration, the participants’
opinions shifted considerably, suggesting a strong anchoring bias,
i.e., the perception of a tool is skewed by what the participants
compare it to. This could mean that any new tool will have a harder
time measuring up to what developers already use and with which
they are very familiar. Therefore, it is unsurprising that adopting
alternative tools like graphical programming tools in software de-
velopment and data-driven development is sluggish and happens
only in small incremental changes.

6.2 Novice vs. Expert

The opinions voiced by our participants further emphasize this.
Still, also that graphical programming should rather be targeted
at novices or for learning. At the same time, the traditional text
editor is the tool of choice for experts even though some litera-
ture disagrees with this assertion [38]. Even if participants could
identify the potential benefits of different forms of interaction and
presentation, multiple suggested that any such benefit would not
apply to them. In fact, they, for example, expect to be faster with
written code, which the data in our study does not support. This
perception may hold true for the pure input method, but this fails to
consider contextual factors such as potentially difficult debugging,
documentation, etc.

6.3 Additional Support Mechanisms

Participants’ feedback naturally focused on the study tools, which
were limited in features. Additional support mechanisms like good
auto-completion can make textual input faster, but the same poten-
tial for improvement also applies to other interaction paradigms
beyond typing code. While the support mechanisms for text are
naturally more apparent, some of them may be adapted to other
forms like graphical programming, or they could enable completely
new support mechanisms. In fact, many of the available graphi-
cal programming tools have an abundance of features. While this
may help in some situations, this volume of features can also be
overwhelming to users and clutter the interface. At the same time,
additional visual features, like color, shape, etc., can be a way to
make graphical programming viable for larger projects where many
components need to be visually organized in additional to the group-
ing we already implemented. Since the results our study supports
indicate that a simple graphical interface provides benefits, future
work may investigate how this translates to these mature tools
with greater visual complexity and whether the additional features
are in fact beneficial or detrimental. Either way, striking a balance
between offering enough support and preventing the UI from be-
coming cluttered is an important aspect in the interface design of
these development tools.
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6.4 Adoption

The feedback demonstrates that the lack of adoption is not a conse-
quence of inherently inferior usability. The recorded metrics, in fact,
show that a graphical programming environment with an equiv-
alent level of features can be viewed on par and even superior in
some aspects. Yet, even though our participants saw the potential
benefits for productivity and effectiveness, they remained reluctant
to use different types of tools, partially biased by their prior experi-
ence and habituation. If we hope to make the benefits of alternative
forms of interaction more accessible, maintaining an adequate level
of usability appears to be only a prerequisite. Since software devel-
opers seem to value some aspects of their user experience more,
particularly flexibility and being in control of their software, this
may be an aspect that needs to be addressed specifically.

A potentially simple way to facilitate this is to give developers
more choice: if a tool supports different forms of interaction to
create a data-driven application, e.g., via graphical and text-based
view, developers can select the most suitable in a given situation and
switch between them. While the simple availability may convince
some, it is still very possible that developers simply decide to fall
back on what they know and do not utilize their options. The
increased functionality adds complexity, so, as previously described
by Petre [38], some expertise will be necessary to leverage this
effectively.

6.5 Hybrid Interfaces

It remains unclear how such hybrid systems best consolidate the
options to prevent this. More interactions and functionality easily
run the risk of adding complexity and confusion. There are many
alternatives for combining these forms of interaction, be it side-
by-side, as a mutually exclusive selection, or any form in between.
Which of these or whether any of these have desirable effects should
be explored in the future. Jupyter Notebooks could be a viable
platform for this. While the core notebooks currently offer only
hybrid output, extensions with more interactive widgets already
exist (e.g., Kery et al. [27]), and adding to this to allow for fully
hybrid interaction certainly seems viable.

6.6 Future Adoption

Given how developers are used to their text editors or IDEs, con-
fining them might be hard. Thus, combining advertising of other
forms of interaction with the opinion that graphical programming
may be suitable for education, early Computer Science education
may be a point where such a change in perception can be fostered.
Suppose a new generation of developers is introduced to not just the
traditional text editor or IDEs, but also consistently uses other tools
in productive use. In that case, they may become normalized and
be just one tool in a developer’s toolbox. Usage for real-world tasks
with long-term observations could then yield insights into how a
wider tool choice affects work practices over time and how this can
affect tool design. While this is possible in the few domains that al-
ready use graphical tools, observing this in professional, large-scale,
data-driven development is, unfortunately, not yet possible due to
lack of adoption. This area, though, could provide some interesting
insights, particularly where deep neural networks are used. They
are an especially interesting case for other forms of programming
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and presentation, since in them, a lot of information and effort is
highly condensed in an often opaque fashion, making them hard to
grasp. Since people thus already often communicate about them
with visualizations, a graphical presentation could make them more
transparent and explicit.

6.7 Limitations

Due to the nature of the controlled user study, the complexity and
scope of the problem were fairly limited. The MNIST data set is
a common introductory example and thus presents an “optimal”
workflow that lacks situations where the data is inadequate, the
model architecture is subject to trial and error, parameter choices
lead to unexpectedly poor performance, and many more issues that
may arise during “real-world” development. The plug-and-play na-
ture of graphical components may help when debugging requires
trying different configurations. Additionally, the enforced sequenc-
ing of the components can also prevent issues due to incorrect
execution orders. However, how much of an impact this has in real,
large-scale data projects must be subject to future evaluations in
the field.

Additionally, our participants had a strong desire for flexibility
and control, and a prototypical implementation may be able to
offer this or at least give the perception that it does not. Thus, an
evaluation of extended usage may eliminate novelty bias and yield
more nuanced insights, for example, whether there is a general
lack of flexibility or whether there are specific scenarios where
graphical programming excels, e.g., setting up an overall structure,
avoiding boilerplate. In contrast, textual programming is superior
in other areas, e.g., fine-tuning.

The prototypical nature of our development tool also offers an
additional limitation. Mature development environments offer a
myriad of features, often added by user demand. Thus, these fea-
tures could further add to user satisfaction. We deliberately limited
our tool in scope to have the same level of features as a plain
Jupyter notebook to achieve a fair comparison. However, Jupyter
notebooks can also be extended with additional features. While it
may be easy to assume that the positive feedback from our partici-
pants would only be enhanced by more and personalized features,
integrating features is not without challenges. Thus it remains to
be seen whether our findings on the benefits of graphical program-
ming can be a maintained in a more feature-rich environment. Our
ongoing work on modifying our interface as a drop-in replacement
into existing development tool infrastructure with interoperability
with, e.g., Jupyter kernels is one step towards testing this [52].

Additionally, while block-based programming is one of the most
popular variants of graphical programming, they are not the only
way to present software visually. Other implementations of visual
programming might lead to different conclusions and effects.

Finally, the participant group in our study had a very specific
background and level of expertise. As it has been postulated that
graphical programming in general may be beneficial, e.g., for novices,
it will be interesting to see whether this is actually the case. Given
that Machine Learning is becoming a tool for more than just profes-
sional developers, e.g., for artists, the area of data-driven software
may give graphical programming for novices renewed relevance.
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CONCLUSION

This paper contributes insights into the design of software develop-
ment tools for data-driven development. Our experiments compare
textual code-based programming to graphical programming as an
alternative rich form of interaction. They show the latter’s benefits,
for example, faster task completion and better error prevention. In
addition, the participants in our study can identify further benefits,
especially related to learning and the ability to grasp the general
structure of a complex data-driven application quickly.
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