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Figure 1: Our gaze-based adaptive IDE extension changes the layout of the IDE depending on the developers’ intent. For example,
when the prediction models determine an increased relevance for the terminal output in the IDE (1), the code editor (2) and
other UI elements (3) shrink while the output panel (1) grows in size. This can highlight or reveal otherwise missed information.

ABSTRACT
Highly complex systems, such as software development tools, con-
stantly gain features and, consequently, complexity and, thus, risk
overwhelming or distracting the user. We argue that automation
and adaptation could help users to focus on their work. However,
the challenge is to correctly and promptly determine when to adapt
what, as often the users’ intent is unclear. To assist software develop-
ers, we build a gaze-adaptive integrated development environment
using the developers’ gaze as the source for learning appropriate
adaptation. Beyond our experience of using gaze for an adaptive
user interface, we also report first feedback from developers regard-
ing the desirability of such a user interface, which indicated that
adaptations for development tools need to strike a careful balance
between automation and user control. Nonetheless, the developers
see the value in a gaze-based adaptive user interface and how it
could improve software development tools going forward.

CCS CONCEPTS
• Software and its engineering→ Development frameworks
and environments; •Human-centered computing→ Empirical
studies in HCI ; Interaction design process and methods.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MuC ’23, September 03–06, 2023, Rapperswil, Switzerland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0771-1/23/09. . . $15.00
https://doi.org/10.1145/3603555.3603571

KEYWORDS
human-computer interaction, adaptive UI, integrated development
environment, software engineering, tools, eye tracking, gaze, au-
tomation

ACM Reference Format:
Thomas Weber, Rafael Vinicius Mourão Thiel, and Sven Mayer. 2023. Sup-
porting Software Developers Through a Gaze-Based Adaptive IDE. In Men-
sch und Computer 2023 (MuC ’23), September 03–06, 2023, Rapperswil, Switzer-
land. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3603555.
3603571

1 INTRODUCTION
Developing software systems is a complex task. Developers not
only have to maintain an overview of the large code base but also
consider dependencies, documentation, errors during compilation-
and run-time, and much more. Thankfully, tools to support develop-
ers with these tasks have come a long way, and modern Integrated
Development Environments (IDEs) provide mechanisms to help
with just about any aspect of the development process in a single
application [49]. Compared to the alternative, which would be small
dedicated tools for each step, this integration helps to eliminate
human and technical errors when transitioning from one task to
the next. However, the high degree of integration has led to IDEs
becoming increasingly complex to being bloated with functional-
ity [26]. Rarely anyone requires all the features, particularly for
novices, as the sheer volume of panels, buttons, and parameters
can be overwhelming [41].

When a user interface (UI) becomes highly complex, selecting the
correct sub-system and working context for a task adds extra steps
and mental load [26]. Here, adaptive UIs can support the user by
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shifting some workload and responsibility to the system; therefore,
the system must determine the user’s intent in a given context
[29]. Various cues allow allow this adaptation; researchers have
already used some to create adaptive IDEs for software developers,
e.g., typical workflows [43]. Based on this, they predict what a
developer might want to do next and then support this step by
easing access to it or highlighting necessary information. How
developers want to approach their next challenge depends on their
individual work practices and the specific task at hand. However,
mental processes, users’ intent, and areas of interest are typically
inaccessible information to the system. Based on initial results by
Zhang et al. [54], we argue that eye-tracking data can support
adaptive UIs in determining the developers’ intent.

In this work, we present a gaze-based adaptive IDE which sup-
ports developers using Visual Studio by adapting the layout of the
IDE. Furthermore, we contribute a first assessment of the feasibility
and perception by developers of such a system. In a data collection
study (N=6), we first retrieve 180 minutes of interaction data (e.g.,
gaze data, IDE events) to understand non-adaptive code develop-
ment with Visual Studio. Using our new data set, we train a neural
network that predicts the most important layout window given the
latest user interactions. With that, we developed a Visual Studio
extension allowing real-time IDE layout adaptation. To assess the
potential benefits of our Visual Studio extension, we conducted a
first evaluation study (N=6) with software developers, which high-
lights that meaningful adaptations can be achieved even from a
small data base. Moreover, we gain insights into the perceived bene-
fits and drawbacks of layout adaptation and explore the desirability
of adaptive UIs for software development.

Our results show that a human-in-the-loop gaze-based adapta-
tion can support developers during coding. The key here is that
the layout adaptation are not distracting for the developer, which
can be achieved by infrequent and less abrupt adaptations. Our
system, for example, adapted the IDE up to 2.3 times per minute,
but developers reported that they perceived these changes only
minimally. Additionally, developers are generally open to layout
adaptations supporting them. These are promising first results as
our gaze-based adaptation could support them while it did not dis-
tract them from their primary task. On the other hand, we also
found that developers are skeptical when the adaptation would
restrict functionality in a future version of this system. In summary,
developers favor automatic adaptation as long as they have the
opportunity to override it if needed; thus, they never restrict them
in their development.

2 RELATEDWORK
While adaptive UIs are an idea that has been around for a while,
both, the application for software development tools and the use of
gaze as an information source, has been explored only to a limited
degree. The following section will outline some general background
information and highlight some of the existing literature on adap-
tive UIs in this specific context.

2.1 Adaptive UI
The UI layer is a crucial component in software applications. Ul-
timately, it connects users to a software’s functionality. So even

a well-made software application might come short due to a sub-
optimal UI layer. Whereas some older user interface development
techniques, such as universal design [30], inclusive design [25], and
design for all [46], advocate a one design fits all approach, a user
interface is dependent on its context of use, which can be “decom-
posed into three facets: the user, the computing platform [...] and
the complete environment” [8]. Hence, it is hardly possible for one
user interface to accommodate all the use cases in a given context
of use, leading to a potentially diminished user experience [1] and
less effective operation of the software application.

Building only a single, fixed UI forces the designer to predict
all possible variants of usage – a task hardly possible. To mitigate
this, one can instead design the UI to be adaptive. Such user in-
terfaces with adaptive properties are occasionally referred to as
multi-context or multi-target UIs [9], but this work will use the
term adaptive UI for its endeavor to incorporate gaze data as a
potential source of rationale into an adaptive user interface.

An adaptive user interface extends a regular user interface by
adding adaptive elements and layouts [5], thus tailoring the presen-
tation of functionality to a user’s task at hand, personal preferences,
or different contexts of use. This can potentially “reduce visual
search time, cognitive load, and motor movement” [16]. In essence,
an adaptive user interface attempts to predict what a user might
want to know or do and assist them with it, so they have to spend
less time and effort. This prediction can be defined by users in the
form of rule-based systems [20, 27], fully automated using, e.g.,
Machine Learning [15, 28] or a hybrid human-in-the-loop system
where user feedback steers the automated prediction [32, 43]. All
these variants roughly follow the blueprint for a “dynamic [and]
seamlessly personalized” [29] adaptive user interface as outlined
by Liu et al. [29] where an adaptive UI executes the following func-
tions: 1) Observe the interaction between the user and software
application, 2) Identify distinguishable episodes, 3) Recognize user
behavior patterns, 4) Help users according to recognized user plans,
and 5) Build user profiles to enable personalized interactions.

To perform these tasks, an adaptive UI should “extract as much
useful information [...] as possible” [29] and categorize that data
into “episodes”. Data to make this categorization can come from
various sources, e.g., internal metrics from the software, user inter-
action with mouse and keyboard, or, as we further explore, physical
properties of the user, like gaze. A sufficiently large and varied
database allows the system to find “hidden patterns in the streams
of events”, which inform the adaptive functionality.

Whenever the system recognizes a pattern, thus being able to
predict what the user is going execute, it can “offer assistance”
adaptively. Lastly, the system can create user profiles to store rele-
vant user-defined preferences and user-specific patterns to provide
adaptions and personalization.

To further describe adaptive systems, Salehie et al. [42] presented
a hierarchy of adaptability in general software systems. This hierar-
chy also applies to adaptive UIs (cf. Akiki et al. [1]). The hierarchy
is as follows:

Context-awareness “indicates that a system is aware of its
context, which is its operating environment” [42] Only if
the UI is aware of its context, it is able to trigger adequate
adaptations [1].
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Self-configuring “is the capability of re-configuring automat-
ically and dynamically in response to changes” [42] The
context of use is not static; it is constantly evolving (for
example, a user’s computer skills improve). Therefore, the
adaptation rules have to be kept up to date. This can be done
with a mechanism that monitors changes in context; another
alternative is the incorporation of user feedback.

Self-optimizing “is the capability of managing performance
and resource allocation in order to satisfy the requirements of
different users” [42] In the context of adaptive user interfaces,
this can mean that a system can “self optimize by adapting
some of its properties” [1].

Where an adaptive UI can be positioned within this hierarchy
depends on several factors, e.g., the volume and variety of data.
The more data a system has available, particularly real-time data,
the more it can typically infer about the context and user and thus
offer more complex adaptations. To this end, we explore gaze as an
additional data source.

Eye tracking as a data source for adaptive UIs has been the topic
of some research projects, e.g., [38] who utilized gaze data for an
adaptive UI in an augmented reality (AR) setting to show or hide
virtual information depending on whether the user looks at the real-
world environment or the AR elements. Göbel et al. [21] also uses
eye tracking to adapt a UI for displaying maps to hide irrelevant
information and highlight relevant UI elements. An alternative to
this is to rearrange UI elements to minimize load on the user, as
done, for example, by Gebhardt et al. [19])

Zhang et al. [54] similarly used gaze as a means to infer users’
intent for a text formatting task. Using gaze data alone, they were
only able to achieve an accuracy of roughly 40%. While they did
also use actions for intent classification to greater success, they
did not yet combine multiple data sources and propose this as an
interesting approach. Furthermore, their analysis, so far, focused
on accuracy metrics, and did not assess adaptations based on intent
prediction or the subjective perception of these.

As these examples show, using gaze data has proven an interest-
ing and feasible source of data for adaptive UIs in select specific
contexts and also to infer a user’s mental state [11]. However, it
appears gaze should be leveraged in combination with additional
data sources [54]. In the following paper, we contribute to this by
investigating an adaptive UIs using gaze and interaction data in the
context of software development tools where existing tools offer
a high degree of complexity, putting a lot of mental load onto the
user [26, 41]. These UIs are often not very visual and rely heavily
on the text, while many expert users often rely on shortcuts. A lot
of the interaction thus happens during reading and thinking of the
developer in front of the UI, which makes common data sources for
adaptations like user input or prior-knowledge [48] less helpful on
their own, thus making gaze an interesting additional data source.

2.2 UI Adaptations
The previous section described on which basis an adaptive user
interface should make its adaptations. Now, how can the adap-
tive UI then translate those triggers into the visual layer and offer
assistance? We follow Schmidmaier et al. [43] by distinguishing
between different degrees of adaptation, ranging from adaptations

of the visual presentation to adaptations of the underlying system
functionality.

Changes to the presentation can start with very subtle adapta-
tions. Providing contextual hints and tips is one fairly common ex-
ample. Instead of showing additional information, an adaptive sys-
tem can also do the opposite and hide information, which presents
a slightly more serious intervention in the interaction. Ideally, this
should only affect less relevant information and be easily reversible.
Since this must not be a binary decision, the information is there or
not, but can also mean that information is partially hidden or made
less visible or intrusive, Schmidmaier et al. [43] refer to this as In-
formation Dimming. The goal here is typically to “reduce cognitive
overload and support task focus flow” [43].

Going beyond simple changes to the visual appearance, adapta-
tions can also trigger or change system behavior. This is typically
done in an effort to “dynamically enhance the user’s workflow” [43],
provide shortcuts, and increase efficiency. A system can determine
what sequence of actions is typical for a user and then provide
specific shortcuts that group these actions into a single command.
Taking this one step further, when the system is able to predict
what a user typically would do next, it could go ahead and exe-
cute those commands automatically (cf. Schmidmaier et al. [43]).
To predict the next upcoming command, the system will require
an abundance of contextual information, though, particularly in
complex systems where adaptations make sense, the search space
for potential commands tends to be quite large.

Such dramatic changes only make sense in a few circumstances
and require the user to be very familiar with them so as not to be
confusing, as they otherwise run the risk of having adverse effects
on usability, which could negate the benefit of the adaptations.

2.3 User Acceptance
Adaptations, particularly the more aggressive interventions into
the system’s functionality like those mentioned above, can cer-
tainly reduce the time spent on tasks, but they can also increase
the risk that it becomes unclear to the user why and when actions
are executed and reduce the predictability of the system. “Disori-
entation and the feeling of losing control” [36] make it necessary
that an adaptive UI offers additional mitigating support mecha-
nisms to maintain a certain degree of understanding and control
like post-hoc explanations, confirmation requests, “feedback and
undo functionality” [43]. Whenever adaptations occur, the user has
to be able to understand the automatic changes to the UI – it is
important to support a "feeling of continuity between the UI before
and after adaption" [14] and to show the user what caused the
adaptation, leading to better predictability of the system behavior
[24]. The implementation of a feedback loop can increase trans-
parency and user acceptance. Furthermore, user feedback should
not only be used for future adaptations but, if applicable, undo
current adaptations as well to give back control to the user. Since
incorrect adaptations can be considered an additional burden to
the user [51], the benefits of correct adaptation have to outweigh
the costs of those usability hiccups. Using user-centered methods
during design and continuous user feedback should help reduce the
average usability cost of an adaptive UI, making them more viable
and beneficial.
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2.4 Adaptive UIs in Software Development
Software devleopers, of course, are a different target group than gen-
eral end users. Given their expertise with technology, they may be
open to controlling an adaptive UI or may even expect this level of
user control. There is, in fact, research into how software developers
can facilitate and control UI adaptations, like the Adapt-UI system
by Yigitbas et al. [52, 53] which uses the model-driven development
to simplify the creation of runtime adaptations of UIs. To adapt
the UI that the software developers themselves use, Schmidmaier
et al. [43] propose an architecture, based on a combined approach
where an offline trained model is refined using additional online
learning. So far, most such systems that predict the developers be-
havior are limited in how the prediction is utilized [6, 13, 18, 34],
though, typically in the form of action recommendations and not
in automatic adaptations. These systems build on the interaction
data, which is available directly from the development environment
but do not yet draw on additional external sources of information
about the developer, like gaze. In the context of software developers,
eye-tracking has proven useful, though, yielding information about
the behavior of software developers, e.g., code reading behavior
[7, 37, 50], code comprehension [4, 40], or debugging [3, 23], so it is
a promising additional source of information for UI adaptations. We
will therefore explore how gaze data can contribute to an adaptive
IDE.

3 ADAPTIVE IDE
While adaptive UIs can come in many forms, the goal is always
to ease user access to functionality or information. In the context
of an IDE, a UI that contains an overabundance of information
and functions, we see two particular aspects of the UI that can be
simplified by automatic adaptation: 1) timely access to relevant
information and 2) choosing the correct functionality from the
large range of IDE features. For this, we utilize the users’ gaze
and interaction data to adapt the UI’s layout to make relevant
information and features more visible. In detail, we developed a
Visual Studio plugin, which adapts the layout of the IDE to support
the developer during various tasks by changing the size of window
elements.

3.1 System Design
We base the design of our prototype – as most adaptive systems –
on two primary decisions: 1) what does change in the UI? and 2)
what triggers these changes?

When deciding what parts of the UI should be changed, we
considered that radical UI changes can also be distracting, particu-
larly when UI elements change position [16, 33]. This is particularly
unfortunate when the developer is in the middle of a lengthy task
and is in a state of flow [35], where distractions may be worse than
what is gained by the adaptations. Therefore, we decided to fo-
cus on information dimming and highlighting. Rather than radical
changes in the UI, this means gradually removing less relevant or
redundant information and making important information more
salient.

Most IDEs continuously present much information unrelated
to the user’s current task and only becomes important in certain

situations. Being ever present, the user may easily ignore or over-
look this information when it suddenly becomes relevant. Thus, we
focus on ensuring that this information is noticed adequately by
changing the layout and dimensions of the IDE’s panels to increase
their visual presence. This way, information will grow gradually if
the underlying system deems it increasingly relevant to a variable
size, and no UI element vanishes or becomes inaccessible. By tuning
our system, we also ensured that the main editor of the IDE, where
mostly all user input and little output happens, remains sufficiently
large, as we do not want to deflect from the IDE’s main purpose,
to write code. Layout changes are also fairly easy to implement,
making it a good choice for early design explorations, and it is easy
to determine whether an adaptation was actually performed.

We generally decided to limit the changes and only apply them
in small increments to minimize the risk of the aforementioned
unwanted effects. Other, more aggressive changes, like pop-ups,
changes in color, or even animations to get the users’ attention,
are possible. Such more drastic changes are likely more subject to
personal preferences, though, and would skew the perception of our
users. When subdued changes already elicit positive feedback, then
future studies can determine how much adaptation is acceptable.
Likewise, combinations of different adaptations are a reasonable
approach for real-world applications. However, this makes any
systematic evaluation challenging, so we focused on layout changes
for now.

Concerning the trigger, we wanted them to be triggered by the
context of use and guided by gaze data. With contextual informa-
tion, we had two options: a) manually define rules that map a given
context to an adaptation, or b) automate this process and let the
system infer the relationship using machine learning. Rule-based
systems have the advantage that they are typically easier to compre-
hend and control. However, they require expertise and experience to
define good rules, and it is unclear how exactly we can utilize gaze
data for manual rules. Automation with a continuously learning
system also offers added flexibility, where rules can be personalized
on-the-fly and through continued usage. Thus, we chose the second
choice, using Machine Learning for layout adaptation. Although, it
remained a design consideration that adaptations should not occur
randomly since this would likely distract the user and, thus, limit
efficiency for their tasks. Instead, an optimal adaptation system
triggers the adaptations, ideally so that the user can understand
and expect the adaptations after a learning phase.

3.2 Data Collection Study
For our adaptive IDE, we focused on a time series of gaze and
interaction data, which, given a high enough resolution, give a
detailed context of the user’s focus of attention and the usage of
the IDE, respectively. Since no suitable data set to support such
development was publicly available, we first collected a set of data
enabling us to train a machine learning model for real-time layout
adaptation.

Procedure. After welcoming the participating software develop-
ers and answering any open questions, we asked them to sign an
informed-consent form and fill in a demographics form. Then we
invited the software developers to perform a series of well-defined
tasks using an instrumented IDE. The tasks engaged the users with

270



Supporting Software Developers Through a Gaze-Based Adaptive IDE MuC ’23, September 03–06, 2023, Rapperswil, Switzerland

input width

Prediction

time

Fixated
Window

Gaze Data
and Fixation

Interactions
and Events

Relevant
Window

prediction
width

Fixated
Window

Gaze Data
and Fixation

Interactions
and Events

Fixated
Window

Gaze Data
and Fixation

Interactions
and Events

Fixated
Window

Gaze Data
and Fixation

Interactions
and Events

Figure 2: Ourmodel uses the last twenty entries (input width)
of interaction and gaze data, which are labeled with the fix-
ated UI window, to predict a single step into the future (pre-
diction width) which UI element will likely become relevant
(also cf. [47]).

the IDE to ensure that our training data was meaningful and not
just undirected, idle action. Therefore, we asked them to find and
fix bugs in a set of seven sorting algorithms we provided, as this
included both reading and writing code across multiple files. We
did not give a number of errors in the code, but merely asked the
participant to correct the code until it performs as specified, i.e.,
correctly sorting the input. The task description was always avail-
able on a secondary screen. Each participant had 30 minutes to do
this. This time limit was chosen based on feedback from previous
studies, in an effort to prevent exhaustion, which would negatively
affect task performance, attention and thus potentially diminish
the value of the gaze data.

Apparatus. Participants worked in a well-lit working space with
a mouse, a keyboard, and a 27-inch screen with a 1920 × 1080
pixels resolution. We used a Tobii Eye Tracker 4C1 to record the
gaze. We calibrated the eye tracker for each participant. With the
iTrace software [44], we could then match gaze to UI elements in
the IDE window. Due to compatibility with the iTrace software,
we exclusively worked with Microsoft Visual Studio 2017. To get a
richer data set, we also utilized the Visual Studio API to extract the
window’s name, i.e., UI segment, on which iTrace detected the gaze.
Beyond this, we used the Visual Studio API to capture the user’s
interactions with the IDE in the form of UI events.

Participants. Six participants contributed to the data set, yielding
180 minutes of gaze and interaction data with about one million
data points. The participants were between 20 and 30 years old
and had an academic computer science background and at least a
bachelor’s degree, with up to five years of professional software
development experience. All of them completed the bug fixing task
to completion in the given timeframe.

3.2.1 Recorded Data. We preprocessed the raw gaze data from our
participants, mainly a standardization of the timestamps. Next, we
extracted the gaze fixations; leaving all other gaze points in the data
set could lead to information being hidden or highlighted, even
though the triggering gaze was only a glance and not intentional
attention. For this, we used the algorithm of the PyGaze [12] library
to filter these gaze points and transform the raw gaze coordinates

1https://www.tobii.com

into fixation points. With continuous gaze turned into discrete time
events, we could then pair each fixation with the corresponding
UI events from the IDE. The combination of fixated UI event and
actual interactions in the IDE should further reduce the likelihood
of unexpected changes. The Visual Studio API constrained the kind
of UI events we could collect. It provided us with four event types –
Window Event, Command Event, Document Event, and Solution
Event – each representing an interaction with the corresponding
part of the IDE. Every event itself also holds additional properties
and meta-information, for example, the triggering interaction and
what element the target was. The Visual Studio API, iTrace [44],
and FeedBaG++ [2] allowed us further to enrich each fixation with
information from the UI elements. In total, each sample has 168
features values. So, wematched each fixation to one of the following
elements:

• The code editor window that allows the user to write and
change code inside an open file.

• The output window where a running program prints out
logs and results.

• A window that allows the user to change project-specific
settings.

• The file explorer from which a user can open or move files.
• A Visual Studio window that displays varying content de-
pending on the IDE tools used by the user.

The combination of fixations from the gaze data, themeta-information
for its corresponding UI element, and the UI events left us with a
data set of about half a million sequential data.

3.3 Model
We trained a long short-term memory (LSTM) model with this data
set to predict a suitable UI adaption using TensorFlow and Keras.We
used a window size of 20 samples to predict the next important UI
element, see Figure 2. While window size can be selected arbitrarily,
we used a window size of 20, as it yielded good results and seemed
to capture the current task. We trained the LSTM model to output
a numerical importance score for each of the five possible panels.

After hyperparameter tuning, we found that 3 LSTM layers with
32, 64, and 32 neurons, followed by a dense layer as the output layer,
performed the best. Moreover, we used a categorical cross-entropy
loss function with a softmax activation function on the output
layer. Any other parameters were left as their default value. As
optimizer, we used the Adam optimizer with a batch size of 32, and
we trained the model for 50 epochs. Finally, we used a time-based
70:30 train-validation split.

The final model achieved ∼ 82% accuracy on the validation set.
This model may leave room for improvement, but it does provide
good results, given our validation set. The number of respective
units and the amount of stacked LSTM layers may be altered in the
future to optimize the model further.

3.4 Prototype
To incorporate this model into an IDE, we implemented a Visual
Studio extension using the Visual Studio Extension API to access the
IDE’s internal event logging and the ability to change its behavior,
in our case, the size and layout of the panels within the IDE window.
A Python backend hooked up via a REST API is responsible for
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Figure 3: The prototype captures events inside the IDE and
sends them to a backend via REST API. There the data is
preprocessed, and a Machine Learning system predicts what
UI elements are likely to be relevant. After sending this pre-
diction back to the IDE, the IDE extensions adapt the UI
accordingly, scaling the elements to match their predicted
relevance.

incorporating the Machine Learning model, which decides when
and how to change the UI. The expansion forwards any registered
user input at the UI level to the backend. The backend uses 20 user
inputs to generate a prediction and assess which UI element will
be relevant next. The backend returns the prediction to the IDE,
which adapts its user interface accordingly.

The whole architecture of our adaptive IDE Visual Studio Exten-
sion is illustrated in Figure 3. The Visual Studio Extension captures
the Event Stream similarly to the FeedBaG++ tool [2]. The backend
Transformer preprocesses the data for the Predictor. We pre-trained
the Predictor with the Training Data from the data collection study.
Whenever theWindow Controller receives a prediction, it adapts the
UI windows in size; in detail, it extends the default UI elements such
that they can be stretched and shrunk at will (as showcased in Fig-
ure 1). Users can still manually change their size by drag-and-drop,
and the Window Controller adapts their size relative to this manual
preset. So, when the Predictor predicts one window of greater rele-
vance, the Window Controller stretches this window and shrinks
the other windows accordingly. If the prediction is ambiguous, the
Window Controller promotes the code editor as a fallback solution.
The changes made to the window sizes happen instantaneously
without animation, so abrupt size changes are possible.

At this stage, even with the limited input data set, the prototype
system can capture the user’s context of use in real time and for-
ward this information to a trained LSTM model that attempts to
predict a window the user might consider relevant for the given
context of use, and adapt the IDE’s user interface to the predictions
accordingly. The whole process takes no more than a few seconds
and does not slow down the IDE’s performance. While the technical
feasibility is a good starting point, feedback from users is neces-
sary to determine whether this technical solution also provides
meaningful benefits in practice.

4 SYSTEM EVALUATION
We conducted a qualitative evaluation to assess whether our proof-
of-concept already provides enough support that developers notice
the adaptations and see their benefits. Since programming in an IDE
is a highly creative activity where many ways can lead to a solution,

comparability between software developers and programming tasks
is often barely possible.

As personal experience with Visual Studio and its many features
result in personal preferences, quantitative performance measures
are hard to assess. Gajos et al. [17] highlighted this as they attempted
to evaluate adaptive UIs quantitatively but found it challenging,
while subjective and qualitative measures were more expressive.
In contrast, qualitative feedback can still give a good impression
of how people view the changes in our adaptive IDE generally,
whether they see value in them and how the current prototype can
be improved in the future into a production-ready tool. Therefore,
we only collected qualitative feedback about the adaptations and
their benefits. For this, we invited six new participants to use the
adaptive IDE for a small set of tasks, after which we interviewed
them about their experience. Additionally, we recorded the internal
behavior of the adaptive component to be able to reproduce when
and how often UI elements changed during the evaluation.

4.1 Procedure
After welcoming participants in person, we explained the purpose
of the study and answered any open questions. Then we asked
them to give written informed consent. Afterward, we asked them
to sit down in front of a 27-inch monitor with a 1920 × 1080 pixel
resolution, a keyboard, a mouse, and a Tobii Eye Tracker 4C (as in
the data collection study). We presented the task as a Visual Studio
project.

We asked participants to work on tasks in a controlled environ-
ment using the adaptive IDE with the eye tracker for 30 minutes.
During the interaction, the adaptive IDE recorded and analyzed
their behavior and adapted the UI accordingly. To avoid confusion,
we informed the users of this behavior – after all, when someone
would use an adaptive IDE in the wild, they too would know of this
feature. The objective of the tasks was to keep the participants busy
and interacting with the IDE, thus triggering a constant stream
of events. In detail, we asked them to implement an algorithm for
searching text and benchmark their code against a provided linear
search algorithm. The success of the task itself was not the goal
here. Instead, we designed the task to involve various interactions
within the IDE, including writing and reading code, executing it, as-
sessing the output, and making adjustments to ensure that different
UI adaptations would occur.

After performing this task for 30 minutes, we asked the par-
ticipants a series of questions in the form of a semi-structured
interview. During the interview, participants had the opportunity
to provide us with feedback and were encouraged to share their
ideas with us for potential improvements.

4.2 Interview Guide
We wanted to know whether participants noticed any adaptations
and how they perceived them. After getting a first impression, we
moved on to more precise questions regarding the adaptations that
occurred during the task, e.g., did they maintain their state for
too long or too short? With a firm grasp of the capabilities of our
prototype, we then asked to give specific feedback for our prototype,
specifically what changes in the UI were helpful and which were
detrimental, which further aspects of the UI they would like to see
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adapted, and what their expectations are for long-term use. Moving
from our prototype to adaptive UIs in general, we also discussed
different types of adaptations and methods of personalization in
IDEs and how the participants perceived them.

4.3 Participants
We invited six participants. Like the group for data collection, they
all fell in the 20 to 30-year age group, and had at least a bachelor’s
degree in computer science and prior experience with professional
software development. According to their feedback, all felt com-
fortable with the given code and had no problems with the task. All
of them also had previously used an IDE, although not necessarily
this version of Visual Studio, and were thus familiar with all the
general UI elements which were present in our study.

4.4 Results
We used affinity diagramming [22] to label and cluster the state-
ments of our participants into common themes and by their value
judgment. For example, whether they perceived the IDE adaptation
as positive or negative.

All participants noticed adaptations, although some only barely.
Some appeared to remember some changes to the UI happening
during their coding, and only in hindsight could they attribute
those impressions to the adaptive IDE. However, even if they did
not notice all of them, the extension logs revealed that each par-
ticipant had between 5 and 70 adaptations in the 30 minutes. The
participants were surprised when we confronted them with the
absolute number of adaptations during the 30 minutes task, as they
assumed a lower number. However, it is important to note that
not all adaptions during the usage were extreme changes to the
UI. Sometimes changes were subtle, short-lived, and incremental,
which participants can easily miss due to change blindness [45].

The overall impression was fairly neutral when asked about their
attitude toward the adaptations. The adaptations did not negatively
impact the coding task or distract participants from their workflow.
Moreover, participants agreed that adaptations were suitable for a
given context. Finally, participants identified that the adaptations
were suitable for the context in which they appeared. They could
see the value of an adaptive, supporting UI regarding ease of use
and efficiency.

Participants stated that to rate the adaptation positively, they
needed to perceive the impact of the adaptation more clearly. Thus,
the participants concluded that they observed too few adaptations
and that a longer period of working with an adaptive IDE would
be necessary to gauge their effect better. In contrast, we argue that
perceivable adaptations are not desirable, as they most likely will
distract from the development task itself.

The participants agreed that the worst-case scenario for adap-
tations in real-world use would be that they could hide relevant
information, since the system erroneously considers other infor-
mation to be more important. Fortunately, during our evaluation,
this only occurred in a single instance. Here, the output window
overlapped the code editor, hindering them from proceeding with
coding. However, the participant fixed the issue quickly by ad-
justing the window layout. To account for such issues, another

participant noted that a useful constraint could be to have the code
visible at all times.

We also asked whether our participants would prefer smooth,
animated transitions or more abrupt changes. Here, everyone ex-
cept one participant agreed that they preferred the transition-less
adaptations. They argued that animations could attract too much
attention. Beyond our initial IDE adaptation, participants positively
perceived UI adaptations but remained skeptical towards adapta-
tions that influence the system’s functionality. Many categorically
stated that they did not want this adaptation in their IDEs but re-
mained open to less intrusive adaptations like the layout adaptation.
One participant was only willing to try adapting the functionality
when extensive feedback and intervention mechanisms were in
place to counteract the adaptations when necessary. The wish for
more control and transparency was a common theme overall. One
of the participants mentioned preferences with user-based priority
weighting for supported windows. Several participants mentioned
that predefined rules could also lead to better adaptations.

In summary, all participants showed interest in an adaptive IDE
that has more to offer than what this proof of concept was capable
of delivering. Everybody said they would try an adaptive IDE that
highlights and hides information to see how it affects their work in
the long run.

5 DISCUSSION
In this chapter, we discuss our findings with a focus on two key
aspects: (1) our experience with eye tracking as a data basis for
our implementation and the resulting learnings from implementing
an adaptive IDE, and (2) the feedback from the users during the
evaluation.

5.1 Gaze as Data-Basis for an Adaptive UI
We showcased the viability of using gaze data for an adaptive UI.
Our prototype and the subsequent evaluation show that a func-
tioning, adaptive UI is possible and even with the limited data set
provides adequate adaptions. Our LSTM model could define and
recognize usage patterns from the fixations. Our evaluation also
showed that these patterns, e.g., highlighting of the output window,
differed between the users, allowing for a personalized experience.
The users, in turn, considered the adaptations suitable and unobtru-
sive for their context. Nevertheless, our implementation provided
only a limited degree of adaptation, highlighting some panels and
UI elements for users. However, this is a natural consequence of
the relatively small data set we were able to use as input data. An
industrial solution with wide adoption could utilize a more exten-
sive initial set and incrementally increase its performance through
online learning and real-world usage. On the one hand, it would
allow training more complex models, yielding better accuracy. It
would also need to support various use cases. In our data-collection
and evaluation, we focused only on searching and sorting algo-
rithms for which participants had to write or update code. While
the adaptions we trained from one task and showed in another one
were perceived as adequate, these task can already offer a wide
variety. Of course, software development encompasses even more
tasks and use cases and how people use their IDE can depend on
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factors like the programming language or the phase in the devel-
opment life cycle. Furthermore, the flexibility of IDEs allows for
broad personalization beyond the fairly fixed state in our study.
While most people will likely not completely alter the layout of
their IDE for every task, it still highlights the challenge of tools
as complex as IDEs and the broad range of starting conditions an
adaptive UI will be able to cope with. So, for practical use and wider
adoption, the underlying model needs to be expanded, which also
requires additional data. The fact that even our small data set was
able to generate meaningful adaptions, though, is promising, par-
ticularly for a personalized version of such an adaptive IDE, i.e., a
use case where no large amounts of data will be available. Once
a developer has configured their IDE, it would seem that training
and personalization can happen quickly. particularly when using a
combined online and offline learning approach [43]. The fact that
a small data set was sufficient to show meaningful results is also
relevant for future studies, where one might investigate other data
sources. Not having to collect a large volume of data means that
we can, in the future, quickly prototype variations of an adaptive
IDE and evaluate them to get a better understanding which types
of data are beneficial for timely and meaningful adaptations.

Window Size. As we learned during our work, individual gaze
points or UI events can only be one part of such a data set, though,
and are barely suitable in isolation. For example, when developers
are searching for a solution or just thinking, their gaze may wander
across the screen. Thus, interactions and gaze points may fluctuate
over a short period. These fluctuations offer limited value compared
to the larger context and longer periods of previous interactions.
Thus, as was apparent during our work, it becomes a challenge
to choose the right degree of granularity for both input data and
adaptations to ensure that the changes in the UI are timely and
context-sensitive but not overly sensitive and thus over-steering.
In our prototype, we chose a window of 20 samples to aggregate a
time series, which worked well for our use case. The exact effect
of this aggregation window, i.e., whether larger or smaller frames
would improve the adaptation quality, remains an open question,
which warrants further investigation. The same goes for the variety
of data, particularly how more data source like gaze will increase
the quality or whether we will reach a point of diminishing returns.

Improving the Performance Further. Beyond this, our prototype
also highlighted some issues with gaze as one such data source
and the resulting adaptations. The most notable of these is a conse-
quence of how we look at the world: while we may be cognitively
focused on one thing, our eyes and gaze may wander, sometimes
erratically. Furthermore, sudden jumps of the eyes are much more
likely than for other input modalities, e.g., the cursor. Not only does
this complicate predictions, but since patterns may be interrupted
by completely irrelevant jumps, it also affects the resulting adap-
tations. If the input jumps frequently and these jumps affect the
adaptations in the short term, the system may recommend barely
noticeable adaptations because they are immediately overwritten
and reset. In the worst case, this could lead to a jittery, flickering
UI. Therefore, using a windowing approach is necessary. Moreover,
our LSTM network architecture helps to reduce jittering.

Gaze and events are valuable sources on their own, and show-
casing their feasibility for prediction is the core of this research.

However, other data sources, such as the mouse, will be of value in
improving the prediction, cf. [10, 31, 54]. On the other hand, expert
users rely less on the mouse and instead use keyboard shortcuts.
In addition, mouse movement tends to be very individual, c.f. [55].
Thus, in line with prior work Zhang, we argue that mouse move-
ments will support the prediction, but a successful prediction will
only be possible with gaze data. However, mouse data, in addition
to gaze data, will further stabilize the prediction.

Comparison to Rule-Bases Adaptation. Rule-based adaptations
could work around the challenges of fully autonomous adapta-
tion. However, the granularity of gaze data makes it unfeasible to
prescribe rules on the low-level data points manually. Automated
classification methods and aggregation in conjunction with high-
level rules that utilize the classified context could provide a hybrid
solution. The human involvement then checks whether the aggre-
gation works to determine the correct context. In such a scenario,
users could then use this context to specify in which situations
they want what changes and the system would primarily determine
whether the conditions for an adaptation are met. We support such
a hybrid approach, with feedback during our evaluation regard-
ing rule-based, which was fairly positive. It would give additional
control to the user, who can enable, disable, and change individual
rules to suit their personal preferences. Increased user control could
also facilitate a greater understanding of the adaptations, which
prevents confusion due to sudden UI changes.

5.2 User Feedback
The feedback from our evaluation was primarily positive. Since
all participants could perform the tasks we asked them to do, our
prototype and its adaptions did not prove to be a hindrance. Our
participants did not perceive the adaptive UI as distracting or inter-
rupting.

Based on the feedback from the evaluation study, we conclude
that implicit data sources like gaze can provide additional usage con-
text and help with predictions. Nevertheless, their implicit nature
makes them hard to control and understand for users. Therefore, it
is essential to balance user control and automation. Thus, we argue
that a hybrid system where automation determines the context and
user feedback defines the behavior might foster enough trust that
fully autonomous adaptation gains long-term adoption.

An objective performance metric certainly would be desirable,
but this is challenging with a creative activity like programming
and an artificial, short task in the lab. Long-term field observations
may yield more insights into how adaptions in the IDE affect work-
ing behavior. For the subjective assessment of their performance,
however, they did consider themselves to perform at least as good
with the adaptions as without, so they proved not to be detrimental
and potentially beneficial.

Longitudinal evaluations would offer further insights into which
adaptions are most valuable. If adaptions have sufficiently impactful
that they change the work practice of developers, we would also
investigate how these behavioral changes interact with the adapta-
tions, i.e., whether the initially trained adaptions remain adequate
or whether the system needs to continuously improved, evolving
adaptions and developer behavior alongside each other. Further,
we chose only to investigate information dimming (adapting the
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UI layout), but alternative adaptations are possible with our setup.
Such studies inform the decision of which aspects of the adaptions
can be fully automated and which ones users wish to control and
manually personalize. Here, we see two options: a) the rule-based
adaptations, where users explicitly define the system’s behavior in
a given context, and b) continuous human-in-the-loop feedback,
where users provide immediate feedback when an adaption occurs.

However, we must keep in mind that the target group for an
adaptive IDE, i.e., software developers, also does not represent
the general public. It is very plausible to assume that those that
develop software have a certain inclination to control it. They also
have a higher degree of expertise in defining software behavior,
so writing rules that map from usage context to system changes
may be straightforward for them but not the average user. So, how
these findings generalize beyond the context of our work will need
to be tested, e.g. in similarly complex software where eye tracking
already has shown potential like multimedia editing tools [39].

6 CONCLUSION
With this paper, we showed the viability of gaze data to turn an IDE
into an adaptive UI. Using a relatively limited data set of gaze data,
we could train and integrate a Machine Learning model, which
changes the layout of the different IDE panels to match different
contexts during software development. A first qualitative evalu-
ation with developers showed that meaningful adaptations are
possible and that the concept is overall well received, fostering
an inherent value. At the same time, our participants wanted to
retain a certain degree of control, so full automation based on gaze
and interactions does not seem to be the final solution. Instead,
hybrid approaches that utilize automation for context detection
coupled with rule-based or human-in-the-loop feedback are our
target group’s preferred solution moving forward.

Our prototype acts as a starting point for future iterations and
variations, as so far, we have only changed the layout of the IDE.
More aggressive changes are possible, e.g., more direct highlighting
of viable next steps, missed important information, active inter-
vention, and automatically performing tasks that the developer
typically does. Given the feedback we have gathered so far, such
adaptive UIs will need to be evaluated in long-term, real-world stud-
ies to see how the adaptions and their usage evolve and whether
the adaptations remain beneficial. These future investigations will
yield exciting insights into how developers react to changes in their
work.
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