
Usability of Development Tools: A CASE-Study

Thomas Weber
fortiss GmbH

Munich, Germany

weber@fortiss.org

Prof. Dr. Alois Zoitl
Johannes Keppler University

Linz, Austria

alois.zoitl@jku.at

Prof. Dr. Heinrich Hußmann
Ludwig-Maximilans-University

Munich, Germany

hussmann@ifi.lmu.de

Abstract—To facilitate model-driven development in practice,
we need tools that support and empower developers. Many of
the tools for it, however, are somewhat lacking with respect to
usability, which can act as a major obstacle in adopting a model-
driven approach and impede productivity. Efforts to find concrete
usability flaws in model-driven tools are still relatively rare,
and in the human computer interaction community, usability
for highly specialized expert software is also not a prominent
topic. In this work we conduct an evaluation using a number of
usability evaluations methods on the 4diac IDE as an example
of a model-driven engineering tool to see what works and where
the problems are. With those different methods we found a
considerable number of usability issues of varying severity as well
as some indication which methods work in what context. These
findings of course help to improve the 4diac IDE specifically
but also offer more general insights that may benefit other
tools in improving their user experience. Overall our evaluation
shows that there is a definite need for better usability and more
evaluation of it.

Index Terms—Model-Driven Engineering, CASE Tool, Usabil-
ity, 4diac

I. INTRODUCTION

While the benefits of model-driven engineering are quite

clear in theory, for them to be realized in practice requires

good tools that enable novices and experts alike to create,

analyze and maintain models that encompass their domain

knowledge, the problem space, and the solution. The goals

should be to empower developers by giving them flexibility

where needed and constraining them when necessary.

For this to be possible, these tools must conform to the

established best practices of tool-, interface- and usability

engineering. Only by being usable, supportive of their users

goals, and by facilitating learning can they fulfil their purpose.

However, the unfortunate reality is that tools for MDE are

somewhat lacking when it comes to usability [8]. Especially,

but not exclusively, tools developed in research and in open

source projects are prone to this. This has many unwanted

effects like limiting their users’ productivity or comprehension

of the systems they create, something that is directly contrary

to the stated purpose of these tools. It the worst case, poor

usability results in users simply not using the tool, which not

only means a lot of development effort gone to waste, but also

stops users from benefiting from the gains of MDE, even if

they are aware of the theoretical benefits [5].

There are of course reasons for this situation: research often

requires these tools as a mere means to the end to showcase

results so usability is not an issue. Once they transition from

pure research prototypes to being used productively, it should

be though. Frequently these tools end up as open source

projects, which by no means is a bad thing, but has some

drawbacks with respect to improving the usability. For one,

open source projects have limited resources, as they often rely

on volunteers and donations, which are invested more into

additional features [9]. The meritocratic governance structure

common in open source projects additionally raises the entry

barrier for volunteers that want to contribute in less tangible

ways, like improving the usability [1], [11], [14]. This, again,

is no criticism of the open source format, especially since

commercial tools can have the same usability issues, but it

shows some of the factors that contribute to the situation

of development tools in general and model-driven tooling in

particular.

In this work we evaluate a CASE tool for MDE, 4diac (Sect.

III), using a variety of well-established methods for empirical

usability evaluation (Sect. IV). We hope that our findings, as

outlined in Sect. V, help to bring stronger awareness to these

issues within the MDE community, give those working on

tools some means for further improving their work, and also

give some specific pointers to issues that may be pervasive

across MDE tools and match up with the findings from other

CASE tool evaluations.

II. RELATED WORK

Concrete indication of the usability problems, for commer-

cial and open source software alike, can be found aplenty in

anecdotes but also some publications [8].

In the plethory of usability evaluations in research, those

with a focus on CASE (computer-aided software engineering)

tools are rare though, even more so for tools in MDE. There

are certainly examples of individual systematic evaluations,

like Vigo et al. [18] who investigated how people use modeling

tools using eye-tracking. Based on their results they to give

some design guidance but as they point out, the nature of

specialized tools reqiures finding some broad common denom-

inator, making it uncertain, how applicable these results are to

other domains or tools. Fowler et al. [6] or Teruel et al. [17]

conducted an evaluation of a tool for requirements engineer-

ing. Similarly, Mealy et al. [10] investigated refactoring tools,

two of which were, just like the 4diac IDE we investigated,

Eclipse-based. Results in these evaluations were mixed and

given the specialized nature of requirements engineering or

228

2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C)

978-1-7281-5125-0/19/$31.00 ©2019 IEEE
DOI 10.1109/MODELS-C.2019.00037

refactoring, it is again debatable how generalizable the findings

can be. Teruel et al. do point out some key challenges for these

evaluations however, namely choosing appropriate test subjects

and tasks given the complex nature of CASE tools. This also

makes comparison of tools challenging, since individual issues

are hardly comparable, so authors like Safdar et al. [15] have

to rely on generalization or aggregation, which does not allow

extrapolation to other tools.

There is also some work on different combinations of the

model-driven world and the usability domain, for example by

integrating usability in the modelling process such that the

models can be inspected for potential usability issues later

in the actual application [4]. The constructive nature of this

approach should prevent usability problems from finding their

way into the application from the beginning but it has some

limitations in scope and unpredicted influences. And while

it may be a way to get MDE practicioners enganged with

usability in a familiar environment, this work has not reached

the maturity of more common usability approaches, and thus

was no feasible alternative for us.

III. SYSTEM UNDER TEST

The following section briefly outlines the design and pur-

pose of the Eclipse 4diac IDE [16] as our test subject. The

choice fell onto Eclipse 4diac because of the close association

with its development team, but as it is based on the Eclipse

IDE and generally similar to other MDE tools, we are con-

vinced that the results of this evaluation can bring value to

other tools and projects.

The 4diac IDE is a specialized tool for graphically de-

veloping systems with a focus on industry automation. The

development process is model-driven, based on the IEC 61499

standard. Applications are constructed from Function Blocks

(FBs) which communicate via signals and data ports. There

is an extensive library of predefined FBs available as well

as the functionality to create new ones. The developer can

choose between state machines, structured text or custom

implementations for implementing new FBs. FBs can also be

an encapsulated composition in a sub-graph of FBs. Next to

defining application logic with FBs, developers also assign

functionality of FBs to individual devices and controllers

in a system and network configuration task. This incurs an

overhead in coordinating between those devices but allows

developers to easily deploy their application across multiple

controllers, as long as they run the 4diac FORTE runtime.

The deployment process onto those devices is also supported

in the 4diac IDE’s interface, as well as debugging and mon-

itoring which allows developers to interactively inspect their

application.

The interface is based on the Eclipse IDE and platform, fol-

lowing its conventions and overall design. The individual steps

in the application life-cycle, defining the FB network, creating

new FBs, configuring the system and assigning functionality

to resources, deployment, and debugging, are separated into

different views or perspectives (Fig. 1). Most constructive

tasks, like building the FB network, can be performed via

drag and drop and direct manipulation. This also includes

some of the configuration work and setting parameters. Other

configuration tasks, programming with structured text or doc-

umentation use traditional forms. Errors and warnings also

closely follow platform conventions as either console output

or via notifications.

There is also a full workflow on recompiling the runtime

with new custom FBs that involves external tools, but this was

not part of our evaluation.

Since the models and semantics used in the 4diac IDE are

constrained by the underlying standard, we do not evaluate

them but rather focus on how the 4diac IDE implements the

user interface to make the standard accessible to developers.

We therefore also did not evaluate the setup phase to get the

4diac IDE to run stand-alone or in conjunction with physical

devices.

The version of the 4diac IDE we used during our evaluation

was 1.10.0. To perform some of our studies we instrumented

the IDE using a plugin that was able to record user interaction

with the interface as well as provide instructions (see Sect.

IV-G).

IV. METHODS

For evaluating the IDE, we relied on a set of methods,

common in the evaluation of UIs. The following section gives

a brief overview of those methods and their execution.

A. Expert Review

The expert review is probably the most straight forward

although unstructured of the methods we used. One or more

experts for usability inspect the system and note all aspects that

they, with their experience, deem unsatisfactory for potential

users. This of course requires the experts to be aware of the

users demands, goals, and needs. Likewise, the experts should

have at least a basic understanding of the system and what it

aims to achieve.

We had a single UX expert review the Eclipse 4diac IDE.

It may be noted that this reviewer was generally familiar with

software engineering tools, graphical and non graphical and

had worked through the Eclipse 4diac tutorial to get familiar

with the IDE.

B. Heuristic Evaluation

A more structured approach to experts review is Nielsen’s

heuristic evaluation [12]. It works along common heuristics

for good UI design and provides experts with a questionnaire

containing items related to these heuristics. This questionnaire

is commonly coupled with specific tasks.

As with the unstructured expert review, it relies on the

expertise of the reviewer although an increased number of

reviewers can yield adequate coverage [13].

Since reviewers of different backgrounds focus on different

aspects, the lack of domain knowledge for UX experts can

be alleviated by having different reviewers, with usability

expertise and with domain knowledge, where the questionnaire

acts as a guidance.

229

Fig. 1. The different perspectives in the 4diac IDE for (top to bottom, left to right): building the application from FBs, configuring the network, defining
new FB types, defining FB behavior by state machine, deployment, debugging.

We performed the heuristic evaluation with a total of five

evaluators, two of which were from the UX domain, two were

users and one was a developer of Eclipse 4diac.

C. Focus Group

A focus group is a form of user involvement in the design or

evaluation process. It involves a group of ideally diverse stake-

holder, in our example that could be developers, expert and

novice users of the IDE and users of machines programmed

with it, and maybe managerial staff that receives information

from their employees demonstrated via the 4diac IDE. These

stakeholders are gathered for a moderated discussion, usually

along some guiding questions. It is also possible to use some

creativity methods, props, etc.

Focus groups are usually utilized in early phases of product

development, since they usually identify user needs and goals

in a qualitative format.

We coupled our focus group with an Eclipse 4diac training

session which not only made it easy to get people to come

together but also made for a diverse group with some complete

beginners, some more experienced users and the expert who

delivered the tutorial.

The group followed along the development process outlined

in the tutorial with print-outs of the most important steps.

We asked them to first individually and then collectively

give feedback along the presented tasks and with the help

of the print-outs. The results we discussed in the group.

After collecting the feedback we also asked the participants

to provide feedback which aspects they prioritized.

230

D. Interview

The interview is a commonly known format of a usually

one-to-one discussion between interviewer and interviewee.

One can differentiate between unstructured interviews, which

are more akin to a conversation, structured interviews, which

follow a clear, predefined catalog of questions, and semi-

structured interviews, which provide a guideline of questions

but allow for discussion beyond those questions.

Interviews are particularly suited to delve into specific

topics in detail, but, like focus groups, yield mostly qualitative

results. Furthermore, interview results are dependent on the

expertise of the reviewer.

In our work we used the latter, semi-structured interviews.

The focus of our interview questions was on how they

currently use the 4diac IDE, what the main challenges in

usage are, how they can be overcome, and how general the

interviewee deemed these issues and fixes. We also briefly

touched on the subject of how suitable graphical programming

and MDE were for the specific domain and in general.

E. (Online) Survey

A format equally if not more common than interviews is

the survey, nowadays mostly conducted online due to the ease

and range of distribution. It asks participants to answer a set

of questions regarding the topic of interest. Results can be

both quantitative, e.g. via Likert-scales, and qualitative via

open text answers. Unfortunately, especially of open questions,

participants are reluctant to give extensive textual answers and

if they do provide written feedback, it can greatly vary in

quality.

The design of surveys is also a challenge, since, for qualita-

tive results, their asynchronous format makes it impossible to

delve deeper into topics or ask follow-up questions. For quan-

titative data, the proper operationalization, format, wording or

order of questions can also be highly influential on the results

if not carefully designed.

Some of the standardized or conventially accepted question-

naires (e.g. [?], [?], [2]) can offer guidance but they primarily

give only an aggregated score for a user interface. So to find

specific, conrete individual issues they are are not necessarily

suited.

F. Lab Experiments

The probably most work-intensive format for user research

is performing usability evaluations in a lab setting or a similar

controlled environment. It requires the user to perform a set

of clearly defined tasks while the evaluator observes the user

during this task, traditionally via a one-way mirror or by

camera, so as not to interfere with the task. Less sophisticated

setups are of course also possible but can potentially introduce

interfering factors.

The instructions for the participant may vary, based on

what is being evaluated. It may range from simply performing

a task where completion time or error rate is measured

quantitatively up to asking the user to provide constant spoken

feedback of activities, perception, and mental-processes during

Fig. 2. The instructions provided by our plugin for remote user test
participants.

task execution. The latter, called “think-aloud” [3], can yield

valuable qualitative insights.

We used the “think-aloud” format and designed the tasks

along the development life-cycle in the 4diac IDE, including

modeling a system, configuring the system, deployment, and,

if necessary, debugging. We roughly aligned the difficulty of

our tasks with that of 4diac tutorials. The tasks were given by

the examiner, who also assisted when the participant found no

solution to the task.

G. Remote Experiments

To mitigate the overhead of getting participants into a

lab setting, evaluation can also be conducted remotely. We

differentiate between synchronous and asynchronous remote

test.

During syncronous remote testing the participant communi-

cates via the evaluator via for example Skype, allowing imme-

diate feedback and supervision. With screen-sharing technol-

ogy, the evaluator can even observe what the participants do

in the software although not what happens beyond the screen.

For asynchronous remote testing, the participants can choose

the time when to perform the study on their own, giving max-

imum flexibility. Since the evaluator does not communicate

with the participant, the prepared instructions must be carefully

constructed to minimize the risk of misunderstandings or

failure of the experiment. Likewise, there has to be a system

in place for either automated observation or recording of the

users action and means for the user to provide feedback. This

of course means a higher workload in preparing the study but

given the flexibility of this approach it may limit the entry

barrier making it more likely people will participate.

For our evaluation we instrumented the 4diac IDE with an

Eclipse plugin, based on the RCP Test Tool, modified such

that it could provide instructions, both in text and image (see

Fig. IV-G), and also recorded the users interactions and spoken

feedback. The interaction recording happened at the level of

UI elements, i.e. the resulting log listed at which point in time

231

the user clicked what UI element or typed in which input field.

This allowed us to accurately play back the actions of a remote

participant at a later time and very accurately measure the time

on task for the individual tasks and sub-tasks. Between each

task the plugin also stored snapshots of the workspace.

This plugin was preinstalled in the version of the 4diac IDE

we distributed to our participants.

H. Other Methods

Of course there are plenty other methods for user research.

Especially field observations are popular, due to them having

users act in a realistic environment. They do, however, pose

the same challenges. Like in classic lab testing participant

and evaluator need to be coordinated in time and location. It

also means that the evaluator observes the participant during

their regular work, which, due to industry secrets, privacy etc.,

can be undesired. Lastly, it also impedes comparability, unless

the observed all perform a roughly similar task. Weighing the

necessary additional overhead and the potential benefit of field

observations, we decided to focus on the methods listed above.

The same applies for more elaborate methods, for example

using eye tracking electro-dermal activity or other sensors

in the lab experiments which can bring additional insights

but require additional overhead which, in our view, was not

justified for our work.

In addition, more methods always require participants.

Given the limited user group of the Eclipse 4diac IDE, finding

participants for the methods we used was already sufficiently

challenging.

V. RESULTS

Overall the results of the usability evaluation indicate that

there is a lot of potential for improving the 4diac IDE. This

section will give a brief overview of the effectiveness of the

individual methods. A complete list of 4diac specific findings

is available upon request.

A. Expert Review

The expert review was conducted by a single UX expert

and found a total of 38 usability issues in the 4diac IDE. This

may appear like a relatively large number, but closer inspection

revealed an issue: Since, especially in a so specialized domain

like MDE, it is somewhat unrealistic that a UX expert is

familiar with the minutiae, they will focus on the aspects that

they can assess, which can result in superficial feedback.

When differentiating between syntactic issues, i.e. pertain-

ing to visual presentation, or general interaction patterns, and

semantic issues, i.e. those affecting the users mental model or

system understanding, we saw that the expert found primarily

syntactic issues. In fact, of the 38 issues, 36 were syntactic

issues, of which 12 were about inconsistent behaviour and

11 cosmetic. Fig. 3 shows the distribution of syntactic and

semantic issues for all the methods we used.

This, to us, is indicative of the fact that the reviewers limited

knowledge of the MDE process can skew the results towards

more superficial issues. This in no way devalues the findings

Fig. 3. The proportion of syntactic, i.e. presentation and interaction, and
semnatic issues, i.e. those regarding understanding.

of the expert, as they are legitimate issues, but one must be

aware that this method is limited in this respect and should

not be the only choice for a comprehensive evaluation. It is

especially the case, since both users and experts ranked the

majority of semantic issues with a higher severity than the

syntactic issues.

B. Heuristic Evaluation

The results of our five heuristic evaluators were mixed

with overall high scores for the “Match between System and

the Real World” and “Consistency and Standards” category.

This is unsurprising, given that the 4diac IDE is based on

an IEC standard. Likewise, the low score for “Flexibility and

Efficiency of Use” can be attributed to some of the rigid

necessities of the standard, but also to the many repetitive

tasks during development which limit the efficiency.

An interesting observation during the heuristic observation

was that even the more experienced users stated that they had

no full confidence in giving criticism, due to the perceived

lack of expertise. It appears that the complexity of a system

like the 4diac IDE is intimidating to evaluators who are not

sure whether an issue is due to a fault in the IDE or because of

their perceived lack of knowledge. This may be an indicator

that for these complex systems an evaluation method without

a examiner with some domain knowledge, may not be the

ideal choice, but also that the entry barrier in terms of domain

knowledge is fairly high for 4diac and probably for similar

tools too.

C. Focus Group

Eight people participated in our focus group.

The focus group stands out from the other methods in that

the participants focused much less on finding issues with the

existing IDE but rather made requests for additional features.

These feature requests can be traced back to problems that are

currently not addressed in the UI or to the fact that existing

features are hard to discover.

The diversity of the group also proved beneficial, yielding

interesting discussions between experts and novices. Overall

232

we did see the strongest participation from the intermediate

users though. This may be specific to our group but also shows

that some facilitation is necessary to encourage especially the

novices. The use of print-outs of the UI for giving feedback

did work very well, giving us some additional cues for later

analysis that had not been discussed in the group.

D. Interviews

We interviewed five industry users of the 4diac IDE in a

semi-structured fashion. The semi-structured interview format

worked well, allowing us to ask for existing issues and delve

deeper into suggested solutions.

The graphical format of the 4diac IDE was rated as positive.

The interviewed experts saw graphical programming as a

viable method as long as there was the option to program

non-graphically. This is in line with their opinion that the

hierarchical nature of many graphical programming methods

is beneficial for understanding and communication while not

restricting the programmer. This also applies for MDE tools

which often take a hierarchical approach, composing larger

models from smaller parts. This allows developers to commu-

nicate on a high level and work on details all in the same

context.

E. Online Survey

After distributing our online survey via the Eclipse 4diac

social media accounts and some direct contact, we received

ten submissions. This already shows the difficulty of getting a

sufficient amount of participants. Given that the most valuable

feedback often comes from the free-text answers and not

all participants have the time or motivation to write detailed

text, the survey depends on the quantity of submissions to

get representative quantitative results and a decent number of

qualitative feedback.

We did however find high engagement with our participants,

with eight answering some of the free-text questions and

four giving fairly extensive feedback, which led to some

immediate improvements. The quantitative results were very

mixed, giving no clear indication where concrete issues might

be.

F. Lab Experiment

For the lab experiment we invited seven participants to

perform a series of predefined tasks under observation. The

overall engagement was high although the participants did

not consistently express their thought process. This may be

because the usage of a complex tool like the 4diac IDE takes

up too much mental capacity.

The participants also relied heavily on the instructions of the

evaluator with little to no experimentation or exploration. This

was the case even though the tasks we selected were similar

to those in a novice tutorial. Given that multiple participants

compared the tasks to their own work, it may be that not

working on a familiar problem was limiting the participants.

In total, the participants did find 14 issues and expressed

some general opinions on the up- and down-sides of tools like

the 4diac IDE. The co-location of evaluator and participant

seemed to encourage general discussion on tool usability as

well as positive feedback.

G. Remote Experiment

We conducted remote experiments with n = 9 participants,

six of which in a synchronous, three in asynchronous setting.

They performed the same tasks as in the lab experiments,

using an instrumented version of the 4diac IDE. The instru-

mentation, an Eclipse plugin, allowed us to record the actions

of the participant in the IDE, allowing us to replay the session

and making it easy to extract timing information. For the

asynchronous setting, we could also show the instructions for

the participants using the plugin.

In total, the participants found 29 issues in the remote

experiment including the only one that was ranked as catas-

trophic severity. Whether the remote setting had an effect on

the severity of the findings cannot be said though.

We also compared the remote experiments with the local one

to see, whether remote studies are a viable alternative to the

more costly local setting. This comparison was with respect

to number of found usability issues as well as the participants

perception, measured via the NASA TLX [7], and the overall

task completion time. Except for the time on a single subtask

we did not find any significant differences between the condi-

tions, indicating that remote studies are a viable alternative. As

mentioned before though, having participant and evaluator co-

located can spark spontaneous discussions, which especially

asynchronous remote studies cannot.

H. Other Results

Throughout all methods we found it somewhat challenging

to find users as participants. This not because of unwillingness;

on the contrary, Eclipse 4diac users were eager to help to

improve their tool. The Eclipse 4diac project targets such a

specialized domain though. Consequently there is no large,

easy to reach community, so we had to rely on personal

connections to users, which led to the difficulty in finding

participants. This probably is the case for other specialized

tools as well, while more general purpose tools may suffer

less from it. Furthermore, in a real-world evaluation, there is

no need to execute the full range of methods, a selection will

suffice. To avoid learning effects and other effects on the result

quality, we also chose a new group of participants for almost

each method. With a single sub-group of three participants,

we conducted both interviews and user tests, which worked

out well, so this may be another way to work with a limited

number of participants.

Another issue we encountered during multiple methods was

the fact that the expertise of participants not only varied greatly

but was also distributed very differently. There were tasks that

a participant would be highly proficient in, but on other task

the participant struggled. By their own reporting, this was the

case because they had to use a feature of the 4diac IDE that

they, in their daily work, did not use. The 4diac IDE and other

complex software development tools, are full of features for

233

very different tasks. Even when going along with a relatively

simple tutorial, we ended up with tasks that were of very

different difficulty for different participants. This clearly shows

the challenge with defining good, common tasks that yield

comparable results. Again, with more general purpose tools

this issue might be less prominent.

VI. DISCUSSION

As described in the previous section, our results were

somewhat mixed. Some methods, like expert review and

experiments with real users worked fairly well, but had some

drawbacks like focusing only a subset of issue or being very

laborious respectively. A method like the focus group proved

a good way to find new feature requests but had limited use

in finding existing usability issues. Other methods again, like

the online survey were unconclusive given the limited number

of participants we could recruit.

Considering the low number of participants, we do not

compare the number of issues found per method. While some

methods clearly did find more issues, not only is it hard to

compare these numbers, given that the issues differ greatly

in nature, but there are many more factors that contribute to

this number. Instead we focus on the methodological insights

we have gained from conducting these methods with software

developers and MDE practitioner.

There is not one method that can always be applied but the

benefits and drawbacks have to be weighed to choose the right

method given the special context of CASE and MDE tools.

The most important factor is the limited number of users,

which in turn means limited test participants. This is a con-

siderable impediment for quantitative methods which rely on

a large number of participants to get representative results.

Another factor that needs to be taken into account with

development tools is the complexity of them. The special-

ized nature of domain specific tooling adds further to this.

A generic usability expert cannot have the detailed domain

knowledge that may be necessary to decide whether an issue

is due to a real issue or just lack of knowledge. This is a strong

argument for user tests, i.e. tests with real users, ideally in

real scenarios. As we discussed, they incurr a high overhead

and suffer from the aforementioned limitation in particpant

numbers.

Since it is possible to build a wide variety of applications

using the 4diac IDE, it is also particularly challenging to find

good, common tasks for users to perform. The reluctance of

participants in the experimental setting to explore and try

things beyond the explicit instructions, may be an indicator

that they were overwhelmed with these relatively simple

tasks. So to find issues, real-world observations may be the

better choice. They are, as mentioned, not without their own

challenges though.

And then there is the matter, as pointed out in an interview,

that software developers can have very particular preferences

that may go against convention or consensus, so results can

be contradictory, making flexibility very important.

One possible recommendation for development of CASE

and MDE tools could be to choose the method depending on

the phase in the life cycle: In the very beginning focus groups

are viable to elicit feature requests. Since they do not have

to comprised entirely of domain experts, they do not suffer

as severely from the low users numbers as other methods do.

During development of individual features, the feedback of a

usability expert can be valuable to prevent obvious fallacies.

When a feature has reached a certain maturity, it may be eval-

uated in small experiments. By focusing the experiments on

specific features, users can participate in multiple experiments

for different features, which allows building a pool of willing

test subjects. Since they are then also familiar with the general

experiment process, the overhead may decrease.

Just as the lack of users and therefore test participants is

impeding usability evaluations, it also impacts this assessment:

we only had a handful of participants for each method and

used a selection of evaluation methods. And while this has to

be kept in mind with respect to generalizability, our findings

are overall consistent with both anecdotal knowledge and the

results from the literature.

Likewise we focused on one specific tool in our evaluation.

The 4diac IDE cannot be representative of all CASE or even

MDE tools. Being Eclipse based, a platform for many other

tools, is a benefit though. A note in the heuristic evaluation

in fact points out that some usability issues are not specific

to the 4diac IDE but an issue of the underlying platform.

Additionally, many interaction patterns and design choices

from 4diac IDE are present in other MDE and other tools and

our methodological results are for the most part independent

from the system under test.

VII. CONCLUSION

In this work we have thoroughly evaluated the usability of

the 4diac IDE, a tool and platform for developing industry

automation software in a graphical, model-driven fashion. We

have used different methods in this usability evaluation with

the goal of finding as many issues as possible and seeing

which methods work best for what purpose. Overall we found

an abundance of usability issues which shows that there is

great potential for improving the 4diac IDE. This finding is

not specific to just the 4diac IDE but we are convinced our

results apply to other graphical and MDE tools as well. For

this reason, we have given a list of both the issues we found

and possible lessons to learn for the development and im-

provement of other tools. We have also outlined the strengths

and weaknesses of the individual methods in the context of

MDE and development tools, as well as some general findings

and recommendations regarding usability evaluations for such

specialized tools.

And while we clearly see a number of challenges, like

finding a sufficient amount of qualified test participants, and

designing good experiments, we are convinced that these

efforts are worthwhile. The reception of our work to improve

the usability of the 4diac IDE was exceptionally positive with

Eclipse 4diac users, showing us that there is a demand for good

234

usability. Participants showed an enthusiasm and gratitude

and concurred in our assessment that good usability will be

beneficial for productivity and user satisfaction. They also

agreed that graphical, model-driven development is absolutely

capable of delivering this.

So, we hope that this work inspires other practitioner,

researchers, and developers, open source or commercial, to

spend some time and effort on improving the usability of the

tools they create, such that they can help spread the benefits

of MDE.

ACKNOWLEDGMENT

This research was funded by the Bavarian Ministry of

Economic Affairs, Regional Development and Energy.

REFERENCES

[1] M. S. Andreasen, H. V. Nielsen, S. O. Schrøder, and J. Stage. Usability
in open source software development: opinions and practice. Information
technology and control, 35(3), 2006.

[2] J. Brooke et al. Sus-a quick and dirty usability scale. Usability
evaluation in industry, 189(194):4–7, 1996.

[3] K. A. Ericsson and H. A. Simon. Protocol analysis: Verbal reports as
data. the MIT Press, 1984.

[4] A. Fernandez, S. Abrahão, E. Insfrán, and M. Matera. Usability
inspection in model-driven web development: Empirical validation in
webml. In A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. J.
Clarke, editors, Model-Driven Engineering Languages and Systems
- 16th International Conference, MODELS 2013, Miami, FL, USA,
September 29 - October 4, 2013. Proceedings, volume 8107 of Lecture
Notes in Computer Science, pages 740–756. Springer, 2013.

[5] A. Forward and T. C. Lethbridge. Problems and opportunities for model-
centric versus code-centric software development: a survey of software
professionals. In J. M. Atlee, R. B. France, G. Georg, A. Moreira,
B. Rumpe, S. Völkel, and S. Zschaler, editors, International Workshop
on Modeling in Software Engineering, MiSE 2008, Leipzig, Germany,
May 10-11, 2008, pages 27–32. ACM, 2008.

[6] L. Fowler, J. Armarego, and M. Allen. CASE tools: Constructivism and
its application to learning and usability of software engineering tools.
Computer Science Education, 11(3):261–272, 2001.

[7] S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load
index): Results of empirical and theoretical research. In Advances in
psychology, volume 52, pages 139–183. Elsevier, 1988.

[8] T. C. Lethbridge. Key properties for comparing modeling languages and
tools: Usability, completeness and scalability. In A. Moreira, G. Georg,
G. Mussbacher, J. Kienzle, R. B. France, and S. Ali, editors, Proceedings
of the Fourth International Comparing Modeling Approaches Workshop
2013 co-located with the ACM/IEEE 16th International Conference

[12] J. Nielsen. 10 usability heuristics for user interface design, 1994.
https://www.nngroup.com/articles/ten-usability-heuristics/ Retrieved Au-
gust 11, 2019.

on Model Driven Engineering Languages and Systems (MODELS
2013), Miami, Florida, USA, October 1, 2013., volume 1076 of CEUR
Workshop Proceedings. CEUR-WS.org, 2013.

[9] A. L. Masson, D. Lalanne, and T. Amstutz. A usability refactoring
process for large-scale open source projects: The ILIAS case study. In
G. Mark, S. R. Fussell, C. Lampe, m. c. schraefel, J. P. Hourcade,
C. Appert, and D. Wigdor, editors, Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, Denver, CO, USA,
May 06-11, 2017, Extended Abstracts., pages 1135–1143. ACM, 2017.

[10] E. Mealy, D. A. Carrington, P. A. Strooper, and P. Wyeth. Improving
usability of software refactoring tools. In 18th Australian Software
Engineering Conference (ASWEC 2007), April 10-13, 2007, Melbourne,
Australia, pages 307–318. IEEE Computer Society, 2007.

[11] R. Z. Moghaddam, M. Twidale, and K. A. Bongen. Open source
interface politics: identity, acceptance, trust, and lobbying. In D. S.
Tan, S. Amershi, B. Begole, W. A. Kellogg, and M. Tungare, editors,
Proceedings of the International Conference on Human Factors in
Computing Systems, CHI 2011, Extended Abstracts Volume, Vancouver,
BC, Canada, May 7-12, 2011, pages 1723–1728. ACM, 2011.

[13] J. Nielsen and R. Molich. Heuristic evaluation of user interfaces. In
J. C. Chew and J. A. Whiteside, editors, Conference on Human Factors
in Computing Systems, CHI 1990, Seattle, WA, USA, April 1-5, 1990,
Proceedings, pages 249–256. ACM, 1990.

[14] M. Rajanen and N. Iivari. Power, empowerment and open source
usability. In B. Begole, J. Kim, K. Inkpen, and W. Woo, editors,
Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, CHI 2015, Seoul, Republic of Korea, April 18-
23, 2015, pages 3413–3422. ACM, 2015.

[15] S. A. Safdar, M. Z. Iqbal, and M. U. Khan. Empirical evaluation
of uml modeling tools–a controlled experiment. In G. Taentzer and
F. Bordeleau, editors, Modelling Foundations and Applications, pages
33–44, Cham, 2015. Springer International Publishing.

[16] T. I. Strasser, A. Zoitl, and G. Ebenhofer. 4diac - ein open source frame-
work für verteilte industrielle automatisierungs- und steuerungssysteme.
In K. Fähnrich and B. Franczyk, editors, Informatik 2010: Service
Science - Neue Perspektiven für die Informatik, Beiträge der 40.
Jahrestagung der Gesellschaft für Informatik e.V. (GI), Band 1, 27.09.
- 1.10.2010, Leipzig, Deutschland, volume 175 of LNI, pages 435–440.
GI, 2010.

[17] M. A. Teruel, E. Navarro, V. López-Jaquero, F. M. Simarro, and
P. González. A CSCW requirements engineering CASE tool: Devel-
opment and usability evaluation. Information & Software Technology,
56(8):922–949, 2014.

[18] M. Vigo, C. Santoro, and F. Paternò. The usability of task modeling
tools. In A. Z. Henley, P. Rogers, and A. Sarma, editors, 2017
IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2017, Raleigh, NC, USA, October 11-14, 2017, pages 95–99.
IEEE Computer Society, 2017.

235

