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With impressive developments in human–robot interaction it may seem that technology
can do anything. Especially in the domain of social robots which suggest to be much more
than programmed machines because of their anthropomorphic shape, people may
overtrust the robot’s actual capabilities and its reliability. This presents a serious
problem, especially when personal well-being might be at stake. Hence, insights about
the development and influencing factors of overtrust in robots may form an important basis
for countermeasures and sensible design decisions. An empirical study [N � 110] explored
the development of overtrust using the example of a pet feeding robot. A 2 × 2
experimental design and repeated measurements contrasted the effect of one’s own
experience, skill demonstration, and reputation through experience reports of others. The
experiment was realized in a video environment where the participants had to imagine they
were going on a four-week safari trip and leaving their beloved cat at home, making use of a
pet feeding robot. Every day, the participants had to make a choice: go to a day safari
without calling options (risk and reward) or make a boring car trip to another village to
check if the feeding was successful and activate an emergency call if not (safe and no
reward). In parallel to cases of overtrust in other domains (e.g., autopilot), the feeding robot
performed flawlessly most of the time until in the fourth week; it performed faultily on three
consecutive days, resulting in the cat’s death if the participants had decided to go for the
day safari on these days. As expected, with repeated positive experience about the robot’s
reliability on feeding the cat, trust levels rapidly increased and the number of control calls
decreased. Compared to one’s own experience, skill demonstration and reputation were
largely neglected or only had a temporary effect. We integrate these findings in a
conceptual model of (over)trust over time and connect these to related psychological
concepts such as positivism, instant rewards, inappropriate generalization, wishful
thinking, dissonance theory, and social concepts from human–human interaction.
Limitations of the present study as well as implications for robot design and future
research are discussed.
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INTRODUCTION

Today, it may seem that technology can do anything: from
medical surgeries to cleaning jobs in our households, many
tasks are nowadays performed by robots. Being faced with
such impressive developments, people tend to overlook that
technology which still has limits. Especially in the domain of
social robots, which through their anthropomorphic shape may
suggest to be much more than programmed machines, people
may overtrust the robot’s actual capabilities and reliability—and
even explicit demonstrations of the robot’s limits are not effective
preventions. In a recent study (Robinette et al., 2017), an
emergency evacuation scenario was simulated by spreading
smoke and activating a fire alarm and an emergency
evacuation robot was supposed to lead people to the nearest
exit. Tragically, the participants followed the robot even when it
performed faulty in a previous demonstration and even when
they noticed that the robot was going in a wrong direction.
Overtrust presents a serious problem, especially when it comes to
sensitive domains in which lives or personal well-being might be
at stake. On the other hand, besides overtrust, distrust could
prevent effective human–robot interaction (HRI) as well. With
distrust, human operators do not use but turn off or even
consciously disable systems that can help them. Both types of
miscalibrated trust represent severe problems, also for other
applications of robots and intelligent systems such as
automated stock trading systems (Folger, 2019), surgery robots
(Clinic, 2019), or in general, robotic coworkers.

Another prominent example of miscalibrated trust is the
automotive context and particularly autonomous driving, as
discussed in relation to the recent series of accidents with
Tesla cars. As reported, several drivers assumed to have a self-
driving car instead of partial automation. They trusted that the
system could do more than it was actually capable of and took
their hands off the wheel in other situations than its limited,
intended field of application (Giesen, 2016). Overall, the tendency
to trust in technology beyond its actual capabilities seems
widespread, and overtrust in an emergency evacuation robot
or assisted driving are just two instances of a more general
phenomenon.

The more innovative the domain, the more difficult it may be
for people to assess the capabilities and limits of a technology.
This makes the exploration of overtrust and possible
countermeasures highly relevant for HRI and especially for the
interaction with social robots, designed to evoke affect, emotion,
and probably trust and acceptance. However, the relevant
mechanisms may not be specific for the domain of robots but
be related to general psychological effects and cognitive biases.
Knowing what creates overtrust, in turn, may help to address this
issue in the design and application of robots.

RESEARCH QUESTIONS

Our research aims at a more profound understanding of the
development of overtrust in the context of HRI and beyond. In
particular, we are interested in the psychological mechanisms and

biases that may foster the development of overtrust. As known
from many situations of everyday life, a common problem is that
people take their previous positive experience as a proof for their
belief and trust in whatever seems convenient (e.g., Bye, 2012).
For example, when arguing about whether it is safe to use
unboiled tap water for preparing baby nutrition, a mother
saying "I have raised four children and they all survived"
might take this as a proof for trusting tap water, while it
remains unclear whether she is right or just lucky. A similar
effect could play a role in the domain of trust in technology.
Instead of seeking potentially helpful external sources of
information, and profiting from statistics and experiences of
others, people often concentrate on what they assume
plausible based on their personal prior experience. As long as
their experience does not stand against it, people may readily trust
a system without noticing that repeated positive experience does
not imply actual reliability. Just because no accident has
happened so far when taking one’s hand off the wheel, this
does not mean that the car is actually capable of fully
managing the driving task in all situations—but people behave
as if it could. Such an inappropriate usage of assisted driving
systems may be interpreted as overtrust.

In parallel to such cases and as a working definition, we refer to
overtrust as a phenomenon when a person seemingly trusts—or
at least uses—a system beyond its actual capabilities (see next
sections for a detailed discussion of the concept of overtrust in the
research literature). In other words, we interpret a person’s
behavior as expressing trust, although we do not know to
what degree this would be reflected in a person’s explicit
ratings of a system’s trustworthiness. This is in parallel to
many of our everyday interactions, where we behave in a
certain way (e.g., buying something to eat at the bakery
around the corner, taking a medicine, and taking the airplane)
and thereby express trust toward a person or a system, without
explicitly stating or reflecting on that fact. However, also
additional factors besides trust may affect such observable
behavior and we possibly could have endless academic
discussion about whether a particular behavior is actually a
sign of trust or just "mindless" behavior. For example, also
habituation toward warning signs or sensory stimuli may play
a role, such as "I have become used to the red warning light in my
car," without actually reflecting on whether I can still trust that the
car will perform as flawlessly as before. Therefore, our research
considers a person’s decision to use a system as a proxy for (over)
trust. This, however, only represents a snapshot within a more
complex interplay of additional influencing variables between the
psychological concept of trust on the one hand and system usage
on the other hand.

Based on these considerations, our research centers around
two main questions related to the development of overtrust: First,
we explore the assumed paradigm of overtrust and the expected
primary effect of previous experience. Second, we discuss possible
additional influencing and de-biasing factors such as skill
demonstration, reputation, and experience reports of others.

We will start by giving an overview of related work in the field,
then present a general paradigm of overtrust, discuss a case study
on the development of overtrust toward a robot, and connect our
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findings to related psychological concepts such as positivism,
inappropriate generalization, and dissonance theory. In this
sequence, our case study serves as an abstraction of the
general assumed mechanism behind overtrust and allows a
systematic exploration of various possible influencing factors
in contrast. In order to minimize possible biasing factors such
as personal prior experience with the system under exploration,
we deliberately decided on a rather unusual example of HRI,
namely a pet feeding robot. At the same time, the example of trust
in the pet feeding robot allowed us to create a scenario of
(hypothetically) high personal relevance, that is, taking care of
or risking harm to one’s beloved pet. Our actual interest, however,
was to understand the general mechanisms contributing to
overtrust, which is of high relevance to various application
domains of robots and intelligent systems, such as our daily
working environment.

RELATED WORK

This section summarizes recent research and literature reviews
(e.g., Bagheri and Jamieson, 2004) on trust in robots and
intelligent systems as well as overtrust and its influencing factors.

Definitions and Different Levels of Trust
A review of trust definitions in general (e.g., Rotter, 1967; Barber,
1983; Rempel et al., 1985; Luhmann, 2018) highlights the
multidimensionality of the concept, each focusing on different
aspects of people’s everyday usage of trust. For example,
Luhmann (2018) emphasizes the role of trust as a method for
reducing social complexity, arguing that without trust, an
individual would be overwhelmed by the necessary number of
decisions and controls. The sociologist Barber (1983) defined
trust as a mental attitude an agent maintains regarding its social
environment. In his view, trust results from accumulated
individual experiences in a social system. Other approaches
emphasize the aspect of vulnerability (Moorman et al., 1993;
Johns, 1996; Rousseau et al., 1998), namely a person who trusts
another takes a risk by doing so. Accordingly, Lee and See (2004),
p. 51) define trust as "the attitude that an agent will help achieve
an individual’s goals in a situation characterized by uncertainty
and vulnerability." In the field of HRI, a prominent definition is
that of Wagner (2009), specifying trust as "a belief, held by the
trustor [i.e., the agent who trusts] that the trustee [i.e., the one
who is being trusted] will act in a manner that mitigates the
trustor’s risk in a situation in which the trustor has put its
outcomes at risk" (Wagner, 2009, p. 31).

Referring to different levels of trust, many researchers use the
concept of calibration. Calibration describes to which extent a
person’s trust in a technology corresponds to the technology’s
actual capabilities (Muir, 1987; Lee and See, 2004). Depending on
the calibration between trust and capabilities, three levels of trust
can be differentiated: calibrated trust, distrust, and overtrust
(Zeit-Online, 2016). Calibrated trust means that the level of
trust matches the technology’s capabilities. Distrust means that
the level of trust falls short of the technology’s capabilities.
Consequently, people may not benefit from technical progress

and/or take more risk than necessary. For example, in 1988, there
were operators who did not want to trust automated controllers
in paper mills and thus could not profit from their benefits
(Zuboff, 1989). Similarly, distrust in robots, which are actually
optimized and often more reliable than humans in particular
domains of work, may lead to unnecessary losses and risks of
human lives. Finally, overtrust means that a person’s trust exceeds
the system capabilities. In extreme cases, humans may trust a
robot to perform a task that it was never designed to do and
thereby risk a complete mission failure. For instance, pilots of an
Airbus A320 relied so heavily on an autopilot that they eventually
were not able to act manually and caused an airplane to crash
(Sparaco, 1995). Overtrust can also lead to skill loss or loss of
vigilance during monitoring tasks, as discussed in the context of
automated cars and medical diagnosis systems (Carlson et al.,
2014). Such excessive trust in "intelligent" technology can be seen
as a more extreme version of automation bias, that is, the
tendency of people to defer to automated technology when
presented with conflicting information (Mosier et al., 1992;
Wagner et al., 2018). In parallel to this, overtrust has also
been defined as a state in which "people accept too much risk
because they think that the entity which they trust lowers that
risk" (Robinette et al., 2016, p. 105). Referring to the specific case
of overtrust in robots, Wagner et al., 2018, p. 22 defined this as "a
situation in which a person misunderstands the risk associated
with an action because the person either underestimates the loss
associated with a trust violation, underestimates the chance the
robot will make such a mistake, or both."

Examples of Overtrust in Robots and
Intelligent Systems
One of the most prominent recent examples of overtrust was the
accidents caused by Tesla’s autopilot. Tesla is a company located
in the United States which produces electric cars (Tesla, 2019a).
The first version of Tesla’s autopilot (Hardware 1, 2014–Oct
2016) is an advanced driving assistance system classified as a level
2 automated system by the National Highway Transportation
Safety Administration (SAE) (SAE-International, 2018).
According to Tesla, "it is designed as a hands-on experience to
give drivers more confidence behind the wheel, increase their
safety on the road, and make highway driving more enjoyable by
reducing the driver’s workload" (Tesla, 2019b). In level 2 (partial
automation), one or more driver assistance systems of both
steering and acceleration/deceleration are active, for example,
cruise control and lane-centering. However, the driver must still
always be ready to take control of the vehicle and perform the
remaining aspects of the driving task (SAE-International, 2018).

In May 2016 in Florida, a Tesla S crashed into a truck which
was turning at a crossing. The reason for this accident was
probably that the cameras of the car did not recognize the
white side of the trailer truck and could not distinguish it
from the sky, thus it was considering it a street sign (Zeit-
Online, 2016). In another Tesla crash in China, the driver
crashed into a car, which was parking near the guardrail; he
survived. The driver acknowledged that he was not concentrating
on the traffic. Instead, he was assuming that his Tesla could
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identify dangers and react accordingly. Based on the promotion
of Tesla cars, he assumed having bought a self-driving car instead
of a car with partial automation. Other customers in China
confirmed this statement as they reported of vendors taking
their hands off the wheel to show what the car is capable of,
suggesting a deceptive understanding of the technology
(Giesen, 2016).

Hence, in the following public discussion, the main concerns
were not about the performance of the system but about the users’
inadequate expectations. The term "autopilot" could encourage
drivers to assume that they do not need to monitor the vehicle.
This was further reinforced by anecdote user stories such as the
report of Reek (2015) on his first drive in a Tesla using autopilot.
He stated that after a few minutes, he already felt accustomed to
the technology. He also tested what happened when he took his
hands off the wheel. Instead of warning the driver immediately to
place his or her hands back on the wheel, nothing happened. The
reports of Reek and many other drivers on YouTube illustrate
how easy it is for people to develop trust in a system, finally
leading to irresponsible use: Even though Tesla’s autopilot was
still in a test phase, people started posting videos on YouTube,
playing games, or sleeping and ignoring the warnings form
Tesla’s autopilot to place hands back on the wheel (Autobild,
2018). More and more people seemed to trust the system and
forgot that the car has not been fully autonomous (Süddeutsche-
Zeitung, 2016). The drivers felt comfortable and demonstrated
irrational behavior, such as driving hands-free in their cars and
playing games (Day, 2016). In addition, the motive to seek
rewards from the YouTube audience may have cast all
hesitations aside. One video, featured by a German radio
moderator, even shows how he takes his hands off the wheel
and instructs the car to change to the right lane. This is seriously
critical as Tesla’s autopilot still does not recognize cars with a
speed of 300 km/h but this speed is allowed (albeit not frequently
found) on certain motorways in Germany (Reek, 2015).

From the statistical point of view, self-driving cars may trigger
far less accidents than human drivers and provide a huge
potential from many perspectives. Innovations in this field
could change the car insurance industry by reducing accidents:
a report from the audit firm KPMG predicts that accidents will
drop by 80% by 2040 (Albright et al., 2015). Employees could gain
productive hours during the day by working instead of driving
during daily commutes. Hence, after the first car crash emerged,
Tesla already clarified that this was the first crash after 200million
completed kilometers, compared to one deadly car crash after an
average of 150 million kilometers if a human is driving (Autobild,
2018). All the more, it is tragic that even the few deadly accidents
might have been prevented if drivers had formed adequate levels
of trust instead of overtrust.

Similar examples of overtrust can also be found in the domain
of robots. As noted above, Robinette et al. (2016) studied trust in
emergency evacuation robots. In one of their recent studies in a
real-world environment (Robinette et al., 2017), they first showed
a demonstration of an emergency evacuation robot to the
participants, which was supposed to lead them to the nearest
exit. In 50% of the cases, the robot failed and in 50% it succeeded.
Afterward, the actual emergency evacuation scenario was

simulated by spreading smoke and activating a fire alarm. To
Robinette et al.’s surprise, the participants followed the robot even
when it performed faulty in the demonstration, and even when
they actually noticed that the robot was going into the wrong
direction. This was surprising for Robinette et al. as in their
former studies in virtual environments, where no direct harm was
present, people did not follow the faulty robot (Robinette et al.,
2016). Possibly, feeling actual danger may still enhance the risk
for overtrust: in a secure situation in which no direct harm can be
done to the user, trust in a faulty robot is lower than in an
emergency situation in which the user’s health is dependent on
the robot’s behavior. From a socio-psychological point of view,
higher trust in robots in especially risky situations may also reflect
a form of responsibility shift and diffusion of responsibility.
Diffusion of responsibility describes the phenomenon that a
person is less likely to take responsibility for action or inaction
when others are present1. If this other may also be a robot, an
emergency robot may also appear as an opportunity to share
blame and guilt for a potentially bad outcome in severe situations.

Besides dramatic consequences for the users themselves (e.g.,
getting hurt in an accident), overtrust also threatens the
manufacturer’s image. Even if the technology did perform well
within the spectrum of situations, it was built for, usage
in situations beyond the system’s capabilities result in a
negative experience, a dramatic drop in trust, and an "unfair"
negative reputation. The same effect of inappropriate
generalization that may lead to overtrust (if it is good
in situation A it must be good in situation B) then leads to
distrust (if it failed in B it is a failure in general). Thus, from an
individual, societal, and economic perspective, neither overtrust
nor distrust is desirable.

Trust in Robots and Parallels to Other
Domains of Trust
Regarding the development of trust in robots and intelligent
systems, prior research in two domains may be particularly
informative: trust in automation and trust in humans. To
some degree, trust in humans, automation, and robots are
based on similar fundamental characteristics such as reliability,
predictability, and ability (Jian et al., 2000). Empirical studies
showed that trust in robots is strongly correlated to trust in
automation (Sheridan, 2002; Lee and See, 2004; Parasuraman
et al., 2008; Chen et al., 2010), and definitions in the context of
trust in automated systems are typically applicable to trust in
robots as well (Lee and See, 2004; Hancock et al., 2011). Starting
from the definition of automation as "the execution by a machine
agent (usually a computer) of a function that was previously
carried out by a human" (Parasuraman and Riley, 1997, p. 231),
robots expand the field by perception and intelligence and other
important factors (Feil-Seifer and Mataric, 2005; Yagoda and
Gillan, 2012). In addition, and in contrast to most automated
systems, robots often even look similar to humans or animals.
Consequently, robots may trigger psychological mechanisms

1https://en.wikipedia.org/wiki/Diffusion_of_responsibility.
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from social interaction between humans, suggesting that research
on trust between humans may also play a role here. Objectively
considered, the mutual dynamics of trust among humans and
trust between humans and (humanlike) artifacts bear
fundamental differences. If, for example, someone trusts me, I
will have the feeling that I must not disappoint this person. An
artifact, on the contrary, will not have those feelings
(Coeckelbergh, 2012). Despite these basic differences, it cannot
be ruled out that people still transfer behavioral patterns from
human–human interaction to human–robot interaction. As
repeatedly shown, humans recognize robots as social actors
(Keijsers and Bartneck, 2018): Humans talk to robots as if
they understood what is being said (Bartneck et al., 2007), feel
sorry for them when they are being punished (Slater et al., 2006),
and try to prevent robots from getting hurt (Darling, 2012).

Related to the discussion of robots and computers as social
actors, as it has already started in the 90’s (Nass et al., 1994; Lee
and Nass, 2003), is the factor of anthropomorphism. This means
the application of human characteristics (form and behavior) to
artificial agents such as robots (Bartneck et al., 2009). It is based
on the tendency of a human to treat objects with humanlike
appearance more like a human. Thus, appearance and behavior of
the robot may cause its perceived intelligence and interaction
(gestures and moving eyes) with the human to be increased
(Cathcart, 1997; Qiu and Benbasat, 2009; De Graaf and
Allouch, 2013). Accordingly, multiple studies have revealed
that a robot’s appearance can affect user’s expectation,
perception, and evaluation of its behavior and capabilities
(Kiesler and Goetz, 2002; Goetz et al., 2003; Robins et al.,
2004; Syrdal et al., 2007). Building on such insights, avoiding
features that may nudge users toward anthropomorphizing
robots have already been suggested as a possible starting point
to mitigate overtrust (Wagner et al., 2018).

Influencing Factors of Trust in Robots
Previous studies on potential influencing factors of the
development of trust in robots and intelligent systems
included the impact of users’ knowledge of the system’s
capabilities (Sanchez, 2006), the recency of errors by the
system (Sanchez, 2006), the timing of a robot’s apologies for
failure (Robinette et al., 2015), the assumed degree of user
influence on the robot (Ullman and Malle, 2016), the
particular effect of social and emotional human–robot
interactions (Lohani et al., 2016), and others. In a literature
review on trust in the domain of robots (Hancock et al.,
2011), one of the most dominant influencing factors turned
out to be reputation in the sense of knowledge about the
robot’s reliance (Bagheri and Jamieson, 2004) or knowledge
about the robot’ past performance (Lee and See, 2004; Chen
et al., 2010). In general, reputation is defined as the "overall
quality or character as seen or judged by people in general" and
"recognition by other people of some characteristic or ability"
(Merriam-Webster-Dictionary, 2019). Another central
influencing factor of trust is the robot’s actual performance,
which may be experienced through real time feedback about
the robot’s performance (Hoffman et al., 2009; Chen et al., 2010).
In general, performance is defined as "the execution of an action"

and "the fulfillment of a claim, promise, or request" (Merriam-
Webster-Dictionary, 2019). Judgments about the robot’s
performance may be inferred from demonstration (e.g., 2017;
Robinette et al., 2016) or peoples’ prior and current personal
experience with a robot. If they repeatedly experience that the
robot performs well, they build up trust in the robot in general,
manifesting in positive expectations about the robot’s future
performance.

Besides reputation, demonstration, and personal
experience as the central influencing factors of trust in
robots, another relevant factor may be the humanlike
nature of robots. As discussed above, people experience
robots as social actors and often apply behaviors from
human–human interaction (Keijsers and Bartneck, 2018).
While a social relationship and similarity to humans are
no prerequisites for trusting technology, a social
relationship (as promoted in the case of social robots and
other intelligent systems entering a dialog with the user) may
make it even easier to build up trust. Consequently, different
levels of "socialness" may also affect trust in robots. For
example, Martelaro et al. (2016) studied the effects of
different robot personalities such as a "vulnerable" robot
personality, revealing that participants had more trust and
feelings of companionship with a vulnerable robot.

GENERAL PARADIGM OF OVERTRUST

We assume that the development of overtrust does not happen at
random but follows specific inherent regularities in the
interaction of system design, probability distribution, and
human trust development. Thus, we suggest a general
paradigm of the development of overtrust. Figure 1 illustrates
this based on a hypothetical distribution, based on the following
central considerations:

A technical system is designed to be capable to perform the
tasks in the environment it is intended for. It is typically tested for
these very situations with a certain degree of tolerance for both
divergent tasks and environmental variables. It will fail, however,
if the deviation between the intended and the actual application
environment becomes too large.

FIGURE 1 | General paradigm of the development of overtrust.
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Based on a standard distribution of probability, most crucial
variables (e.g., task difficulty and disruptive factors) will spread
around average values and will result in successful task
accomplishment. System failure is a rare occurrence.

Every single interaction accumulates in the user’s perceptions
of the system and therefore results in a specific (change in the)
degree of trust.

Since such a system is effective and successful in most cases,
the participants will inevitably build up trust until it surpasses the
level of calibrated trust, resulting in the development of overtrust.
At this point, users will be more likely to use the system in
inadequate situations (e.g., using an autopilot on a curvy
mountain road) making system failures more probable.

Note that learning about the system’s capabilities may not
always be on an explicit level and one’s ideas about what a system
is capable of or not may not always be clear cut. In many cases,
trust may be built on rather vague and intuitive associations based
on unconscious, non-declarative memory systems, such as in the
case of perceptual learning (e.g., Packard and Knowlton, 2002;
Gazzaniga et al., 2006; Yin and Knowlton, 2006) and the
improved abilities of sensory systems to respond to stimuli
through repeated experience. Indeed, many of our everyday
interactions rely on non-declarative learning, being typically
hard to verbalize. For example, a mother that attends her
child while walking along the street may predominantly rely
on her intuitive feelings regarding the child’s capabilities, based
on her prior everyday experiences, without referencing specific
developmental stages or declarative book knowledge about a
child’s cognitive abilities at a certain age. Depending on the
mother’s estimations to what degree the child is capable to
realize danger, figure out the traffic situation, or can follow
traffic rules, she may take the child by the hand or not. In the
latter case, she (implicitly) trusts that the child will not perform
any unexpected dangerous behavior such as suddenly running to
the street. If this happens, nevertheless, that is, the child runs to
the street although it never did before, this may also be denoted as
a case of overtrust. Maybe, the mother overestimated the child’s
cognitive abilities. Maybe, the reason that the child did not run to
the street before was that there never was a reason (e.g., seeing a
friend on the other side of the street and a ball rolling to the street)
and not that it realized that running to the street is dangerous. In
parallel, users of the Tesla autopilot may have overestimated its
abilities—but this discrepancy between expectations and actual
capabilities behind a shown behavior did not become obvious
until there was a critical situation which revealed the fatal
misconception.

CASE STUDY: THE DEVELOPMENT OF
OVERTRUST IN A PET FEEDING ROBOT

The following case study provides a simulation of the assumed
general paradigm of overtrust using the example of a pet feeding
robot. In the course of the study, the participants were presented
with the hypothetical scenario of leaving their cat alone in their
flat when going on holiday. To make sure the cat survives, they
used a pet feeding robot. However, in their holiday location, they

also had a possibility to check if the feeding was successful by
means of a control call. In parallel to a risk and rewards
perspective (e.g., driving hands off wheel to use the
smartphone for entertainment), in our study scenario doing
the control call was connected to missing another, possibly
more entertaining option (i.e., a jungle trip). We assumed that
depending on how much the participants trusted the robot,
they would either make use of the control call or not. In order to
explore the influencing factors of overtrust, the study design
implemented a failure of the pet feeding robot after a certain
number of successful feedings. Thus, those participants
deciding against the control check in this scenario
represented a case of "overtrust." One might critically
question whether this type of overtrust is comparable to
other cases since there are many differences to other
contexts such as autonomous driving, AI medical decisions,
or stock recommendations. However, the striking parallel is
that for any reason, after a number of positive experiences,
there may be cases when the system does not perform as
previously experienced and trusting the system without
critical questioning can have dramatic consequences.

Our study focused on three potential influencing factors of
trust identified as central in prior research (see previous sections):
one’s personal experience with the robot, its reputation, and the
demonstration of its capabilities. In addition, we checked the
subjective relevance of such factors in a pre-study (sample size
N � 186), where we presented a list of further potential
influencing factors discussed in the literature (e.g., personality)
and asked the participants to rate the most relevant factors for
trusting a robot (1 �most important and 6 � least important). In
parallel to previous literature reviews (Hancock et al., 2011),
personal experience (M � 2.00), reputation (M � 3.35), and
demonstration (M � 3.51) were rated the most important
factors. In order to control for potential effects of personal
involvement and emotional weight of the study scenario, we
also surveyed whether participants actually owned a pet
themselves and considered this as a control factor in statistical
analyses. Also, we surveyed whether participants actually
perceived the jungle trip as the more attractive option
compared to the control call. If this was not the case, there
was no obvious reason to miss the control call and put the system
to the test, and therefore no basis to explore trust. In order to
control for potential differences of the testing environment, the
study was conducted as a lab study [subsample size n � 44] and an
online study [subsample size n � 66]. One might assume that
since the procedure contains annoying and boring parts, the
participants in the online study might do other things alongside
to make the study more enjoyable, which could bias the results.
However, no significant differences were found between the two
study environments. In the following sections, we thus present
the pooled data of both study environments [sample size
N � 110].

Method
Participants and Study Procedure
The participants were recruited via mailing lists and incentivized
by receiving course credit or amazon coupons. 110 participants
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took part in the study, 53.6% female, mainly students or people
with academic background. The average age was 25.6 years (range
18–53, SD � 6.19). Personal experience with the robot was
realized via repeated usage, in which the participants would
collect experiences of the performance and reliability of the
robot. Altogether, the scenarios consisted of 28 usage events.
The influencing factors capability, demonstration, and reputation
were experimentally manipulated, resulting in a 2 × 2
experimental design, consisting of two independent variables
with two levels each.

Capability demonstration: The demonstration of the robot’s
capabilities was operationalized by means of a short video clip,
showing a successful (positive) or faulty (negative) food
preparation.

Reputation: The robot’s reputation was realized via customers’
reviews of the robot, containing enthusiastic (positive) or
disappointed (negative) experiences.

The two factors were varied between subjects and the
participants were randomly assigned to one of the four
experimental groups. Figure 2 gives an overview of the study
procedure and questionnaires.

The study scenario asked the participants to vividly imagine
the following situation: "You are a tourist, going for a 28 days long
safari trip and leave your beloved pet (a cat) at home. In order to

ensure a regular feeding, you are using a pet feeding robot." In
addition, the participants were told about the following context
conditions:

1) The cat survives 2.5 days without feeding. This implies
that after the second missed feeding, a call at your relatives
(living in another town, who could do the feeding in case
of emergency) should occur, or else the cat will die.

2) Every day, the participant has to make a choice: go to a day
safari (having fun and learning interesting things about
the jungle) or make a trip to another village to check if the
feeding was successful (boring car trip).

In order to simulate the typical course of mainly positive
experience with intelligent technology such as in the case of the
Tesla autopilot, the feeding robot performed flawlessly most of
the time. However, in the fourth week, it performed faultily on
three consecutive days, resulting in the cat’s death if the
participants had decided to go on the day safari on these
days. Note that this scenario (i.e., an unexpected technology
performance, ending in a disaster, after a long period without
realizing any problems or failures) was intentionally designed
to create a ground for overtrust and its experimental
investigation.

Before the start of the safari trip, the participants were shown a
video clip containing the demonstration of the robots’ capability
(positive or negative, see Figure 3) and several (positive or
negative) customer reviews, depending on the assigned
experimental condition.

Measures
The initial questionnaire included a manipulation check where
the participants indicated their trust in the feeding robot after
watching each of the manipulation stimuli, the video, and
customer review (single item measure on a 7-point scale, 1 �
low and 7 � high). The initial questionnaire administered before
starting the safari served as a baseline measure.

Then, the safari began with a repeating daily procedure for
28 days, every day containing a decision (safari or robot check)
and a resulting video (varying jungle pictures and interesting
facts or an annoying car trip video and feeding results). The
participants thus had to decide between risk and reward and
safety and no reward. It was recorded whether the participants
decided for the control call or the safari, which also allowed us
to calculate the "cat death rate" after the four-week period.
After each safari week, the participants filled another
questionnaire with trust measurements. For these repeated
trust evaluations during the study, we used the trust scale
by Schaefer (Wagner, 2009), consisting of 14 items measured
on a 11-point scale (0 � low and 10 � high), and averaged to a
total trust score.

After the four safari weeks, the participants filled in a final
questionnaire with control variables, demographic, and general
questions to check for external validity (e.g., whether the
participants owned a pet and how realistic they found the
scenario).

FIGURE 2 | Study procedure.
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Results
Overview of Analyses
In the following sections, we first present manipulation checks
and preliminary analyses of our data, testing the effectiveness of
our manipulations (e.g., whether participants actually preferred
the jungle trip as an attractive option), questions of external
validity (e.g., how realistic participants perceived the scenario and
the pet feeding robot), and the impact of control variables (e.g.,
the potential impact of owning a pet in reality on the cat death
rate in our study). In general, we performed overall analyses
(i.e., analyses of variance and general linear model analyses)
testing the combined effects of experience (i.e., time),
reputation, and capability demonstration in one model if
possible. However, for reasons of clarity and
comprehensibility, we report the results in three separate
sections, each referring to one of the three studied influencing
factors of trust (experience, reputation, and demonstration),
referring to the three central dependent variables, namely trust
(attitude), control calls (behavioral trust), and cat death rate.

Manipulation Checks and Preliminary Analyses
The manipulation checks confirmed the successful
operationalization of reputation and capability demonstration.
A multivariate analysis of variance with the two experimental
factors reputation and capability demonstration as between
subject factors and the manipulation check trust ratings as
dependent measures revealed that participants in the positive
reputation condition, who saw the positive reviews, provided
higher trust ratings than those who saw negative reviews (M �
4.35 vs. M � 2.40, F(1,106) � 58.200, p < 0.001, ƞ2 � 0.354).
Similarly, positive demonstrations resulted in higher trust ratings
than negative demonstration (M � 4.00 vs. M � 2.46, F(1,106) �
25.827, p < 0.001, ƞ2 � 0.196). Furthermore, one sample t tests
checked if the jungle trip represented an effective reward
operationalization. In fact, participants’ ratings confirmed that
they liked the jungle videos (M � 1.97, 5-point scale, 1 � agree,

5 � disagree, T(108) � 9.46, p < 0.001, d � 0.906), found the jungle
facts interesting (M � 1.76, T(108) � 13.729, p < 0.001, d � 1.315),
and liked it more than the car trip (M � 1.79, T(108) � 13.542, p <
0.001, d � 1.297). The fact that for all three ratings, the deviations
from the scale midpoint were significant, speaks for a successful
manipulation of the jungle trip as an effective reward.
Furthermore, the participants felt they behaved in the study
just the same as they would have done in reality (1 � just the
same, 7 � completely different, M � 2.01, T(108) � 9.77, p < 001, d
� 0.936). The presented pet feeding robot was rated as moderately
realistic (1 � not realistic, 7 � realistic, M � 3.81, T(109) � 1.01,
n.s.). Finally, we asked if the participants owned a real pet. 42.7%
of all participants answered this question positively, with cats or
dogs as the most mentioned pets.

Overall, we observed a cat death rate of 58.2%, meaning out of
all 110 cats only 46 survived across all conditions. Among pet
owners, the cat death rate was slightly lower (51%) than among
participants not having a pet (63%), but the difference in death
ratios was not significant (χ2 (1) � 1.709, n.s.).

Effect of Experience
The jungle trip lasted for 28 days and included five measurement
points for participants’ trust in the system (baseline and after each
week). This allowed us to investigate the effect of experience on
trust over time. A general linear model (GLM) analysis with the
five trust ratings as within-subjects factor and the two
experimental factors (reputation and capability demonstration)
as between-subjects factors revealed a significant main effect of
experience (i.e., time) on trust (F(4,424) � 245.80, p < 0.001, ƞ2 �
0.699). Within-subjects contrasts revealed significant effects
between all measurement points: While the mean trust rating
for the baseline measurement was 5.0, it increased significantly to
7.2 after one week (F(1,106) � 176.30, p < 0.001, ƞ2 � 0.625). This
trend continued in the following two weeks, with trust levels of
7.5 and 7.8, respectively (week 1 vs. 2: F(1,106) � 19.51, p < 0.001,
ƞ2 � 0.155; week 2 vs. 3: F(1,106) � 15.538, p < 0.001, ƞ2 � 0.128).

FIGURE 3 | Video stills from the positive (left) and negative (right) demonstration clips.
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Then, ratings dropped significantly to 3.4 in week 4, reflecting the
experiences with the malfunctioning robot (F(1,106) � 418.81, p <
0.001, ƞ2 � 0.798, see Figure 4).

A second general linear model (GLM) analysis explored trust
on a behavioral level, that is, the performed control calls. The
number of control calls for each of the four weeks was considered
as within-subjects factor and the two experimental factors
(reputation and capability demonstration) were considered as

between-subjects factors. A significant main effect of experience
(i.e., time) emerged (F(3,318) � 25.16, p < 0.001, ƞ2 � 0.19). The
participants made 3.2 calls on average in the first week. Within-
subjects contrasts showed that the number of calls significantly
decreased in the following two weeks to 2.6 and 2.3 calls,
respectively (F(1,106) � 39.98, p < 0.001, ƞ2 � 0.274; F(1,106) �
14.34, p < 0.001, ƞ2 � 0.119). Followed by a rebound to 2.6
(F(1,106) � 6.48, p � 0.012, ƞ2 � 0.058) in the final week.

FIGURE 4 | Trust ratings (range: 0–10) for baseline and four measurement points. The pet feeding robot’s malfunction in the last week is indicated by the
exclamation mark.

FIGURE 5 | Trust ratings (range: 0–10) for positive and negative reputation and demonstration conditions.
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Effect of Reputation
The above described GLM analysis with the five trust ratings as
within-subjects factor and the two experimental factors
(reputation and capability demonstration) as between-
subjects factors revealed no significant main effect of
reputation (F(1,106) � 0.12, n.s.) but a significant interaction
effect between reputation and experience (i.e., time) (F(4,424) �
5.55, p < 0.001, ƞ2 � 0.05). Figure 5 depicts the trust ratings
(range: 0–10) for the four different experimental conditions over
the course of time.

A multivariate analysis of variance with the two experimental
factors (reputation and demonstration) and the trust ratings for
the five points of measurements as dependent variables showed
significant differences between the two reputation conditions for
the baseline ratings, with initially higher trust in the positive
reputation condition (positive vs. negative: M � 5.3 vs. 4.7,
F(1,106) � 4.11, p < 0.05, ƞ2 � 0.037). In the then following
weeks, the ratings converge with no significant differences
between the reputation conditions, indicating that the effect of
reputation is no longer relevant. Only for the final measurement
again, a statistically significant difference emerges, however,
indicating lower trust in the positive reputation condition
(positive vs. negative: M � 2.98 vs. 3.87; F(1,106) � 6.14, p <
0.05, ƞ2 � 0.055).

The above described GLM analysis with control calls per
week as within-subjects factor and the two experimental
factors (reputation and capability demonstration) as
between-subjects factors revealed no significant main effect
of reputation on the number of control calls (F(1,106) � 3.84,
n.s.). Also, reputation had no effect on the cat death rate
(positive vs. negative reputation: 61 vs. 55%, χ(1) �
0.457, n.s.).

Effect of Capability Demonstration
The above described GLM analysis with the five trust ratings as
within-subjects factor and the two experimental factors
(reputation and capability demonstration) as between-subjects
factors revealed a significant main effect of capability
demonstration (F(1,106) � 20.03, p < 0.001, ƞ2 � 0.159) and
also a significant interaction effect between capability
demonstration and experience (i.e., time) (F(4,424) � 22.61,
p < 0.001, ƞ2 � 0.176), but no significant three-way interaction
between reputation, capability demonstration, and experience
(F(4,424) � 1.81, n.s.).

The above described multivariate analysis of variance with the
two experimental factors (reputation and demonstration) and the
trust ratings for the five points of measurements as dependent
variables showed significant differences between the two
capability demonstrations for three of the five measures
(baseline, week 1, and week 3), whereby a positive
demonstration resulted in higher trust ratings than the
negative demonstration. However, except of the baseline
measures, the differences and effect sizes were quite small
(positive vs. negative reputation: baseline: M � 6.5 vs 3.5,
F(1,106) � 122.59, p < 0.001, ƞ2 � 0.536; week 1: M � 7.6 vs.
6.8, F(1,106) � 5.92, p � 0.017, ƞ2 � 0.053; week 3: M � 8.2 vs. 7.3,
F(1,106) � 7.01, p � 0.009 , ƞ2 � 0.062).

The above described GLM analysis with control calls per week
as within-subjects factor and the two experimental factors
(reputation and capability demonstration) as between-subjects
factors revealed no significant main effect of capability
demonstration on the number of control calls (F(1,106) �
0.82, n. s.). Also, capability demonstration had no effect on
the cat death (positive vs. negative demonstration: 64 vs. 52%,
χ2(1) � 1.74, n.s.).

Interpretation of Study Findings Regarding the
Development of Overtrust
A central aim of our study was to test the expected development
of overtrust by simulating the typical dynamics of experience with
technology over time. In line with the assumed general paradigm,
repeated positive experience with the pet feeding robot leads to a
continuous increase in trust and eventually overtrust on a
behavioral and attitudinal level for the majority of
participants. Reputation and demonstration had less influence
and were primarily relevant for trust measured as a baseline, that
is, before the participants could gain any personal experience
themselves. Thus, in a simplified scheme, demonstration and
reputation form relevant factors for the base level of trust. After
this, one’s positive or negative experience with the intelligent
technology determines the further development of trust. If the
experience is repeatedly positive, as in the first trials of our study,
this results in trust even beyond the level of calibrated trust.
Figure 6 illustrates this.

In general, given our findings about the primary role of
subjective experience (i.e., demonstration and personal
experience) compared to cognitive insight (e.g., reputation),
interventions that relate to the users’ subjective experience
may appear more helpful than rational persuasion (e.g.,
"Warning, do not use the system for other purposes than
intended"). In the following sections, we discuss our study
findings and other cases of overtrust from a wider perspective
and highlight additional psychological mechanisms that might
explain user behavior, the development of overtrust. Finally, we
suggest potential countermeasures and design approaches toward
calibrated trust.

GENERAL DISCUSSION

Instant Rewards and Lack of Falsification
A main reason for the creation of overtrust seems to be the
predominance of positive short-term feedback. Initial
information such as reputation or demonstration is quickly
outweighed by short-term rewards and positive experiences.
As long as there is no obvious reason to distrust, people
follow the more comfortable way, assuming that the robot is
reliable. In our study, this resulted in the participants’ decision for
the safari instead of the control call. Psychologically, this is quite
comprehensible. First, it is well known from consumer choice that
people have a natural preference for hedonic, experiential options
(here: the safari) over pragmatic options (here: the control call),
especially if they can find a reason to justify their choice (e.g.,
Böhm and Pfister, 1996; Okada, 2005). When translating this to
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our scenarios, justifications for the hedonic choice may include:
the robot performed well so far, why should this change,
everybody would have done the same.

Second, people have a general tendency to "test" their
assumptions by positivist approaches, searching for confirming
information, instead of the more informative contradictory
information, the so-called confirmation bias (e.g., Bye, 2012).
A classical task to demonstrate this bias is the Wason card task,
confronting participants with four cards showing letters or
numbers (i.e., A, D, 4, and 7) and a rule about the four cards,
namely "if a card has a vowel on one side, then it has an even
number on the other side." Participants are then asked which
card(s) they need to turn over in order to determine if the rule is
true or false. The logically correct answer is to choose A and 7. A
is necessary to check whether it has an even number on the other
side (otherwise the rule would be falsified); 7 is necessary to check
whether it has no vowel on the other side (otherwise the rule
would be falsified). However, only about 4% of the participants
give this correct answer. The most prominent answer is A and 4,
obviously displaying a wish for confirming information.
However, in order to retain reliable information about
whether an assumption is true or not, one needs to search for
situations in which the assumption could possibly be falsified and
not situations which are compatible with existing assumption
anyway. This is also proposed by Popper’s scientific method of
falsificationism (e.g., Percival, 2014): Instead of proposing
hypotheses and then checking if they can be confirmed by
evidence, Popper suggests making conjectures that can
potentially be refuted. In the domain of technology this
means: if you want to find out about the reliability, you have
to confront technology with tasks at the expected limit of its
capability.

Inappropriate Generalization and Lack of
Differentiation
Another mechanism behind overtrust could be inappropriate
generalization from one successful experience to a general
capability or, in other scenarios than the pet feeding robot, the

lack of differentiation between situations of varying difficulty. As
the example of overtrust in the Tesla autopilot showed, people
generalize from positive experience in situation A that the system
will be able to handle situation B as well. They seem to apply a
global concept of trust toward technology similar to that of trust
toward humans. Of course, even for humans, a global trust
concept does not always hold true (e.g., "My wife is a fantastic
driver, I trust she must be a fantastic pilot as well"). But in general,
a human might detect what skills from other domains might be
transferrable (e.g., "I never played badminton—but it looks a bit
like tennis, let’s try it with similar moves"), so that trust
generalization can to some degree be adequate. For
technology, it depends on whether the new situation has been
defined beforehand and provides any triggers to activate helpful
system skills. Even if a task seems quite "easy" to a human, a robot
may not be able to solve it if its algorithms did not define any
reaction for it. However, people might lack an exact concept of a
technology’s capabilities and limitations. If a robot can do
stunning things and impress people in one domain, they may
see it as a "magician," and readily believe it could do anything.
Accordingly, Wagner et al. (2018) already emphasized the
importance of mental modeling research and building robots
that are more transparent, allowing people to fully understand
how the technology will behave.

Transfer of Social Concepts From
Human–Human Interaction
As mentioned in the previous section, people tend to transfer
concepts from human–human interaction (e.g., the concept of
global trust) to human–robot interaction. This tendency also
becomes visible in the relative effect of experience vs. reputation.
A main finding of our study was that the participants’ decision to
trust the robot (and the cat death rate) primarily depended on
their personal prior positive experience with the robot, whereas
the reputation was less relevant. People may follow a rationale of
"If I personally have experienced the robot to perform well so
many times, it won’t let me down the next time." On the contrary,
others’ shared experiences about the robot’s performance were

FIGURE 6 | Development of trust beyond system capabilities.
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not crucial. Interestingly, this pattern parallels a typical and
sensible behavior from human–human interaction: The
reliance on personal experience for attitude formation. Even if
others tell me about a person, I will build my own opinion based
on my own experience. Even though others think that a person is
not trustworthy, my relationship to this person can be a different
one. I might have a special connection with this person and trust
that he or she will never disappoint me. The same counts vice
versa: others may have experienced the person as trustworthy, but
I have not. Our findings suggest that people may transfer a learnt
and sensible behavioral pattern from human–human interaction
to human–computer interaction. In parallel to previous studies,
showing that people often transfer behavioral patterns from
human–human interaction (e.g., rules of courtesy, self-serving
attribution biases, and group conformity) to the interaction with
computers (e.g., Kiesler and Goetz, 2002; Goetz et al., 2003;
Robins et al., 2004; Syrdal et al., 2007), participants behave
toward the robot as if the robot had a personal relationship
with them and might be more reliable for them than for others.
Consequently, they disregard the valuable information they could
get from others’ experience reports.

Wishful Thinking
Finally, wishful thinking may also play a role for the phenomenon
of overtrust. As we know from everyday experience in many
contexts, people often do not want to hear about negative aspects
or potential risks, given that this would question the current
comfortable way of usage. This may pertain to individual
behaviors such as the risks of smoking or unhealthy nutrition
but also risks on a global level such as nuclear energy, where many
people do not want to hear the technology could fail. In fact, the
discussion about nuclear energy could be interpreted in parallel to
the partly irrational behavior as it appeared in our study:
Reputation has no effect at all: In spite of the scientific and
media reports about the dangers of nuclear energy, people "trust"
it will never fail. Demonstration has a temporary effect: Briefly
after the nuclear disasters in Chernobyl and Fukushima,
governments around the world decided to ban this technology,
but as the memory faded only a few years later, these decisions
started to crumble as well. Experiences with the machine
dominate other information: In the everyday operation of
nuclear power plants worldwide, the positive experience (no
direct emissions and plenty of supposedly "clean" energy) by
far outweighs the knowledge about the imminent dangers, which
creates a widely positive attitude and a flourishing nuclear
industry.

Hence, one may question whether it is genuine trust in the
technology or to some degree wishful thinking which makes
many people still consider nuclear energy a safe technology. In
fact, wishful thinking may be particularly pronounced, if people
feel that there is no alternative to trusting the technology (e.g., a
lack of convincing alternatives to nuclear energy at a large scale).
Wishful thinking can also function as a way of dissonance
reduction. As dissonance theory (Festinger, 1957) assumes,
people strive for conformity between their attitudes, beliefs,
and behaviors. If a conflict or dissonance occurs, they typically
alter one of the elements. For example, if I do not want to give up

smoking, I may alter my belief from "smoking is unhealthy" to "it
has never been fully proven that smoking is unhealthy, actually
many smokers get quite old" etc. Regarding our study scenario of
trusting a pet feeding robot for being able to enjoy a safari trip, a
similar mechanism could. If I do not want to change my behavior
(e.g., go to the safari instead of doing the boring way to town to
make a control call) I better adjust my beliefs (e.g., I trust that the
robot is 100% reliable and there is no risk for my pet).

Overtrust From a Phenomenological
Perspective and Implications for Design
In the end, this leads to a quite academic discussion whether it is
actually trust, altered beliefs, wishful thinking, or any similar
factor which is the driving force behind overtrust and risking a
technology’s failure. On a phenomenological level, all these forces
may affect behavior in the same way as genuine trust. This is why
we consider it helpful to use the term overtrust in a wider sense
for all cases in which people apply a technology beyond the limit
of its capability or reliability. If we know that people are prone to
the psychological mechanisms discussed above, this implies
opportunities but also increased responsibilities for design.
The more impressive and overwhelming the technological
advancements in various domains, the more difficult it
becomes for people to imagine what technology can do or
cannot do, and to adequately assess a system’s capabilities and
limits. Designers must find ways for how a system effectively
communicates its features and limits. As discussed under the
notion of explainable AI (Monroe, 2018), designers have an
ethical responsibility to ensure that their systems explain their
strengths and weaknesses to the users and justify their suggestions
and decisions in order to prevent unjustified projections and
inappropriate trust. In many contexts of HCI design, using
psychological mechanisms is actually helpful, for example,
using metaphors or designing computer dialogs in parallel to
dialogs in human–human interaction. On the other hand, design
needs to foresee potential problems resulting from this transfer
process and make sure that people do not transfer concepts
against their own interest, for example, interpreting an
autopilot in parallel to a human driver, which can easily
transfer skills from one situation to others.

A central question is how to avoid overtrust and how to
support calibrated trust without educating people to generally
mistrust technology. Previous suggestions often described
"intelligent" system reactions as a possible solution, for
example, robots being able to generate information about the
person’s attentive state (Böhm and Pfister, 1996). However, in
order to widen this perspective, we explore how to counteract
overtrust by understanding its psychological foundations,
including approaches that might not look like smart system
behavior at all. A straightforward way to avoid the
development of overtrust could be to prevent exclusively
positive experience by (harmless) preprogrammed system
failure at regular intervals. If, for example, your intelligent
fully automatic coffee machine pours too much water into the
coffee cup about every third time you press the espresso button,
you probably will not trust the machine and leave the room after

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 55457812

Ullrich et al. The Development of Overtrust

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


starting the coffee. Although the coffee tastes excellent, you would
feel themachine is not reliable and you better have an eye on it. Of
course, this approach of preprogrammed system failure is
questionable for several reasons. It causes unneeded difficulties
for the user and unneeded negative reputation for the
manufacturer. Another, probably more realistic approach
could be to work with implicit cues of imperfection (e.g.,
imperfect grammar in dialog systems), reminding the user that
the technology does not work as accurately as the user may
assume. From a psychological perspective, such little quirks may
even make it appear more human and likable. As revealed in
previous research on peoples’ relationships with their technical
products, a little friction in system interaction is even interpreted
as a part of a positive relationship and forgiving statements such
as "It [the smartphone] behaves like a modest, loyal servant also
be a bit funny—sometimes a program doesn’t work properly—it’s
not the perfect support. But little quirks also make it more likable,
more humane" (Chris, cited after Diefenbach and Hassenzahl,
2019, p. 11).

LIMITATIONS AND FUTURE RESEARCH

At least four basic limitations need to be considered for the
interpretation of our findings. The first and most general
limitation refers to the nonrepresentative sample of
participants, that is, rather young people within a limited age
range, most of them having an academic background. Although
there is no obvious indication that overtrust should be less
frequent among older or nonacademic samples, future studies
should include more diverse samples of participants.

The second aspect refers to the study’s external validity and
quantitative focus. Participants’ decision to trust the robot or not
could realistically affect their emotional experience (i.e., seeing
jungle pictures and interesting facts when trusting the robot or an
annoying car trip video and feeding results when not trusting the
robot) but the risk related to trusting the robot (i.e., the cat dies)
was only fictional. Hence, one could question whether the
participants would have made the same choice if their real
pet’s life was in danger. Also, our study was focused on
quantitative measures of trust and there was no qualitative
assessment of the participants’ subjective feelings and how
they experienced the scenario. It should be noted, however,
that the main aim of our research was the exploration of the
assumed paradigm of overtrust and possible additional
influencing factors. Even though the general trust rates might
have been slightly different if studied in a real-life setting, there is
no obvious reason to assume that this would have changed the
relative effect of the influencing factors experience, reputation,
and demonstration. Future studies should include field studies
and complement quantitative accounts with qualitative
approaches.

Third, our study was limited to three influencing factors of
overtrust (personal experience, reputation, and demonstration)
which we identified as dominant in the literature and our pre-
study. Hence, while our model provides a valid starting point and
framework for the study of overtrust, future research should

extend this by an exploration of further influencing factors such
as the different social and psychological mechanisms discussed
above. Integrating such factors in future research will provide a
more holistic picture of the phenomenon of overtrust, its
consequences, and potential interventions.

Fourth, one may argue that the course of robot experience our
study design provided (i.e., the robot performs well for repeated
times and then suddenly fails) was not very realistic, especially given
that failures are in themselves rather unlikely. One might even argue
that our study design was "unfair" since everybody would trust a
machine that has proven somany times. However, even if rarely, the
same pattern may occur in real-life scenarios: the cases in which
technology fails are rare and experienced only by single users. As a
consequence, the most common experience (e.g., watching many
people on YouTube doing funny things and taking their hands off
the wheel while using the Tesla autopilot and no accident happens)
does not reflect the associated risk of blindly trusting the technology.
The same happens in other situations without technology being
involved, for example, skiing in an avalanche risk area without any
problems for many times and then getting killed one day. Above all,
these repeated positive experiences make people develop
inappropriate trust in a technology or situation and this is what
we wanted to simulate. In sum, we created a highly artificial scenario
with high internal validity, however, connected to limitations
regarding external validity.

In addition to these specific limitations, future work could also
further explore the connections to other psychological concepts
listed in the discussion section such as inappropriate
generalization or cognitive dissonance.

CONCLUSION

As shown by the discussion above, the development of
inappropriate trust in intelligent systems has to be seen not as
the exception but as the rule. This presents a serious problem
when it comes to sensitive domains in which lives or personal
well-being might be at stake. The presented case study and
psychological analysis make the underlying mechanisms
comprehensible, yet they do not deliver any obvious general
solutions. The challenge to design and develop technologies in
such a way that they prompt an adequate or calibrated level of
trust will remain one of the most pressing ones, as long as we are
not in a position to develop systems which justify the great
amount of trust they are met with by working perfectly.
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