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ABSTRACT
Recognizing and summarizing persons’ activities have
proven to be effective for increasing self-awareness and en-
able to improve habits. Reading improves one’s language
skills and periodic relaxing improves one’s health. Recogniz-
ing these activities and conveying the time spent would enable
to ensure that users read and relax for an adequate time. Most
previous attempts in activity recognition deduce mental activ-
ities by requiring expensive/bulky hardware or by monitoring
behavior from the outside. Not all mental activities can, how-
ever, be recognized from the outside. If a person is sleeping,
relaxing, or intensively thinks about a problem can hardly be
differentiated by observing carried-out reactions. In contrast,
we use simple wearable off-the-shelf single electrode brain
computer interfaces. These devices have the potential to di-
rectly recognize user’s mental activities. Through a study
with 20 participants, we collect data for five representative
activities. We describe the dataset collected and derive poten-
tial features. Using a Bayesian classifier we show that reading
and relaxing can be recognized with 97% and 79% accuracy.
We discuss how sensory tasks associated with different brain
lobes can be classified using a single dry electrode BCI.
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INTRODUCTION
Determining the user’s activities is central for ubiquitous
computing. Being able to determine what a user is doing en-
ables numerous use cases. The recent quantified self move-
ment, for example, shows that there is an increasing interest
in self-monitoring what we are doing. Certain mental activ-
ities, however, cannot easily be recognized from the outside.
Differentiating between sleeping, relaxing, listening to music
or thinking hard about a problem can look exactly the same
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from the outside. Therefore, recognizing and monitoring cog-
nitive processes has gained momentum as a novel source for
contextual information [8, 21].

Recognizing mental activities usually requires expensive and
bulky hardware (functional magnetic resonance imaging, eye
trackers) with few notable exceptions [2, 8]. Still most of the
systems can just monitor the user for 1-2 hours due to battery
constraints and are cumbersome to wear. In this paper, we
explore to what extent an off-the-shelf, single electrode Brain
Computer Interface (BCI) system can be used to recognize
mental activities. The system itself is relatively unobtrusive,
lightweight (a head band and a mobile phone) and can be used
for long term deployments (battery life of 6-8 hours).

We are particularly interested in cognitive processes related
to learning, especially reading, because the amount we read
directly influences the size of our vocabulary and language
skills [4]. Additionally, the more people read throughout the
day the higher are their general knowledge and critical think-
ing skills [4, 19]. Being able to just count the minutes we
daily read would help to assess the general knowledge of a
person, as there are strong correlations between the two [19].
In addition, regular relaxation, breaks and naps are correlated
with more effective skill acquisition and learning [6, 20]. Re-
laxing sufficiently often and long enough can improve ones
health, mood and fitness [16]. Thus, recognizing when a user
reads and relaxes would enable and extend applications that
help to improve users’ life.

The contributions of this paper can be summarized as follows:
(1) we present a feasibility study of a wearable, unobtrusive
brain computer interface system (BCI) capable of running up
to 6-8 hours for the purpose of mental task recognition. (2)
We are able to recognize reading and relaxing tasks out of 4
other activities with up to 97.2% and 73.2% respectively (user
dependent) and with an accuracy of 70-100 % for 8 out of 15
users (user independent). (3) We provide a dataset to other
researchers for reproducing and building on our results.
RELATED WORK
Previously Brain Computer Interface (BCI) systems have
been mostly used in medical and clinical research. They
are mainly used for enhancing the lives of patients with mo-
tor disabilities and brain disorders such as Alzheimer and
Amyotrophic lateral sclerosis (ALS). For example, there is
a semi-autonomous wheelchair that uses a BCI to retrieve
certain mental signals to move the chair [7]. Furthermore,
researchers have investigated task classification using EEG
signals. Hosni et al. used the Kerin & Aunon dataset [11] and
compared three different feature extraction techniques using
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Radial Basic Function and Support Vector Machine classi-
fication [10]. The best accuracy classification reported was
70%. Del R Millan et al. proposed a user-dependent neural
classifier to recognize three mental tasks from online sponta-
neous EEG signals with 70% accuracy [5]. The tasks were
relax, left/right movement, cube rotation, and subtraction.

Researchers also utilized EEG signals or eye movements to
classify text comprehension, reading skills, and reading tech-
niques. Mostow and Beck used neuro-feedback to discover
reading problems in children [12], being able to discrimi-
nate between reading easy and hard sentences. Bulling et.
al proposed a method for reading segmentation recognizing
eye movement by electrooculography [2]. In contrast to pre-
vious research, in this work we investigate the feasibility of
classifying reading and relaxing tasks based on EEG signals
retrieved from a single electrode BCI.

With the advances in technology off-the-shelf BCIs are avail-
able which can be used in other research domains. The Epoc
BCI by Emotiv and NeuroSky devices (MindSet, MindWave,
BrainBand) are the two most popular BCI sets. The EPOC
has 14 saline sensors and two reference electrodes. Whereas
the NeuroSky BCIs have a single dry electrode. Both de-
vices have been used in various researches. Sahami et al.
use the EPOC to annotate movies based on excitement lev-
els [15]. NeuroPhone [3] and ThinkContacts [13] are mobile
phone BCI applications designed to help users with motor
disabilities to dial numbers without navigating to their con-
tact list. Petersen et al.[14] used the EPOC and attempted to
distinguish among emotional responses reflected in different
scalp potentials when viewing pleasant and unpleasant pic-
tures compared to neutral content.
DATA ACQUISITION
To evaluate the feasibility of classifying reading and relax-
ing using a single electrode BCI, we chose simple tasks that
contain auditory and visual stimuli as well as thinking.
Task set
Apart from reading and relaxing tasks we chose three other
common mental tasks for classification: listening, watching a
movie, and a problem solving task. For reading we had a short
story and for problem solving we used a Sudoku game in the
medium level. We recorded an audio from a popular radio sta-
tion for the listening task. Finally, a short documentary video
was used for the watching task. The task set includes auditory
and visual sensory tasks which occur in different brain lobes.

Apparatus & User Study
We developed an application to collect data from the Neu-
roSky BrainBand device. The device is a commercial BCI
equipped with a single dry electrode placed on the subject’s
forehead. It has one reference electrode on the left ear. The
device includes a chip which filters and preprocesses the EEG
signal and transmits it via Bluetooth to the application(1 Hz).
The EEG processing protocols are not open source. As stated
in the NeuroSky white papers 1, an FFT is done on the raw
signal giving the band powers which are then scaled using a
1www.neurosky.com/AcademicPapers.aspx(accessed
21.02.14)

Figure 1. A participant playing the Sudoko task during the user study

proprietary algorithm to produce outputs which are only rel-
ative to each other.

We recruited 20 participants (8 female) with an average age
of 23.3 years (SD=2.2). The study consisted of the five afore-
mentioned tasks. All content used during the user study was
in Arabic. Arabic was the mother-tongue of all participants
which was particularly important to ensure that no extra men-
tal effort was exerted during the tasks. After a short intro-
duction, the participants was asked to fill in a demographic
questionnaire. Then, they performed the five tasks one after
the other. We counterbalanced the order of the tasks to reduce
sequence effects. The study was conducted in a quite univer-
sity laboratory with normal lighting conditions and minimal
noise from other electronics equipment (Figure1). Each ses-
sion took approximately 35 minutes. Only three participants
had experience using a BCI device prior to the study.

Dataset
We collected following data during the user study:

eSense Values: Attention and Mediation values ranging from
1 to 100, at a sampling rate of 1 Hz. These values are deter-
mined via Neurosky proprietary algorithms. Values between
40 and 60 are considered ‘neutral’ or baseline, between 60
and 80 mean slightly elevated eSense levels, and between 80
to 100 refer to strongly elevated attention/meditation levels.
Values below 40 are interpreted as (slightly/strongly) lowered
levels. A zero eSense value means the signal cannot be cal-
culated reliably due to background noise.

Neurosky Power Values: A series of eight 3-byte long val-
ues ranging from 0 to 224 provided at 1 Hz. These values
are: delta (0.5–2.75Hz), theta (3.5–6.75Hz), low-alpha (7.5–
9.25Hz), high-alpha (10–11.75Hz), low-beta (13–16.75Hz),
high-beta (18–29.75Hz), low-gamma (31–39.75Hz), and
mid-gamma (41–49.75Hz). These values have no units,
therefore can only be interpreted by comparing them with
each other and to themselves, to consider relative quantity
and temporal fluctuations.

Blink: A one byte value ranging between 1 and 255 provided
whenever a blink is detected. The value has no unit and only
indicates the relative strength of the blink.

www.neurosky.com/AcademicPapers.aspx


Raw Wave: A 16-bit value provided at 512 Hz sampling rate.
Values for the communications protocol lie in the interval
between -/+2048. Typically in EEGs, time-frequency trans-
forms are used to change the raw signal to the frequency do-
main, to extract the EEG power values.

The initial analysis revealed that data collected from five par-
ticipants was corrupted. Thus, the data from these five partic-
ipants was removed. Further, the power values were clipped
for some seconds due to reaching the maximum value for
some of the subjects. Since this noise was minimal it was
rectified by taking the average of surrounding signals to com-
pensate for the clipped signal at particular points.

TASK CLASSIFICATION
We used the annotated data collected from the 15 participants
to derive features. These features were used to train classi-
fiers for recognizing relaxing and reading. We developed a
user-independent classifier that determines the mental activ-
ity without prior training and user-dependent classifier spe-
cific for individual participants. In the following, we describe
the features derived from the data and outline the results.

Feature Set
We derived spectral and time-domain features from the col-
lected data. In addition, we use the signals preprocessed by
the NeuroSky development kit. The features are determined
for one second jumping windows using Matlab.

Spectral features are computed by applying a fast Fourier
transform (FFT) on the raw signal and bandpassing the delta,
theta, alpha, beta and gamma frequency bands, the average of
each band is used as the feature. In addition, the ratios be-
tween all pairs of frequency bands are calculated. The mean
FFT value and the variance of the FFT are also used. In to-
tal, 17 spectral features are computed. Seven time-domain
features are extracted from the raw time-domain EEG signal.
These include the maximum positive, minimum negative and
average amplitude of the raw signal per segment, and the Root
Mean Squared (RMS) value of the raw signal. Four features
are extracted from the NeuroSky signals: the average atten-
tion and meditation values as well as the average NeuroSky
power band values for the five frequency bands.

Classification and Results
We used the features as input to train Bayesian networks that
recognize relaxing and reading versus the respective other
tasks. The experimental results reported in the following are
obtained using WEKA [9]. All learning parameters use the
default values in WEKA unless otherwise stated.

We trained user independent classifiers using the leave-one-
out cross-validation to train a classifier and test its perfor-
mance. That means we trained the classifier with data from
14 participants and evaluated the performance using the data
from the remaining participant. The process was repeated for
all participants resulting in 15 runs that were aggregated af-
terwards. In addition, we trained user dependent classifiers.
Four minutes of each activity were used to train the Bayesian
networks leaving 1 minute for evaluation. For both classifiers
we used the feature selection option Weka provides.

Figure 2. The result of the user-dependent classification

Figure 3. The result of the user-independent classification

The result revealed that the user independent classification
between reading and the other tasks was on average 68.2%
and between relaxing and others was 53.5% of all cases. The
user dependent classification determined reading vs. other
tasks with 74.4% and relax vs. others with 79% on average.

Since the classification performance left room for improve-
ment, we pairwise classified reading and relaxing with other
tasks using the same classifiers. The result revealed that the
classification performance between the reading or relaxing
and all other tasks on average were more than 75% except
for the reading vs. watching movie tasks (64%). Therefore,
we excluded the movie task and repeated the classification
using the same classifiers. The result showed that the user in-
dependent classification between reading and the other tasks
excluding the watching movie was on average 68.5% and be-
tween relaxing and others was 58.2% of all cases. The user
dependent classification determined reading vs. other tasks
with 97.2% and relax vs, others with 73.2% on average. As
expected, excluding the data from the watching task increased
the performance of the classifications in total. Figures 2 and
3 depict the results of user dependent and independent classi-
fication for all 15 participants.

DISCUSSION
The results show that the mental task classification has a
higher accuracy if it is preformed subject dependent. With
independent reading classification we achieve between 80 %
to 100 % for 8 of the 15 participants. Although the single
electrode BCIs have a crude spatial and temporal resolution,
the results interestingly show that user-independent classifi-
cation could be possible. Qualitative feedback revealed that
all participants can imagine carrying the BCI for a longer pe-
riod of time during everyday life.



Furthermore, the results reveals that the EEG signals from
the front side of the brain seem similar for the reading and
watching movie tasks. Although there is no one-to-one map-
ping between different mental tasks and certain brain lobes,
certain sensory tasks can be majorly associated to particular
brain lobes. For example, listening, as a auditory sensory
task, is associated with temporal lobe activity. In contrast,
listening to speech involves language understanding which
is associated with frontal lobe activity [18]. During medi-
ating/relaxing the concentration in the relaxation process it-
self leads to high frontal lobe activity [1]. Brain puzzles such
as Sudoko require memory, concentration and high cognitive
load which are all functions of the frontal lobe [17]. Watch-
ing movies and reading are associated with different parts of
the brain. While the occipital lobe is responsible for vision
which is in the rear part of the brain, the frontal lobe is re-
sponsible for interpreting. As watching a movie is mainly a
visual task, the mental activity is also in the rear lobe. Since
the BrainBrand’s electrode is placed on front part of the brain,
it mainly retrieves EEG signals from the frontal lobe. Hence,
it is assumed that the BrainBrand BCI is suitable for classify-
ing the activities mainly happen in the front side of the brain.

CONCLUSION
In this paper, we show that it is feasible to determine read-
ing and relaxing activities using single electrode off-the-shelf
BCI systems. The findings suggest that such BCIs can be
used to determine activities that mainly occur in the frontal
lobe of the brain. The distinction of reading with 97.2%
and relaxing with 73.2% in the user-dependent cases is a first
step to implement an application that can count the minutes
read/relaxed during the day. Such an application helps in as-
sessing one’s language skills, general knowledge and learning
progress [4]. Next step is a larger study to evaluate reading
and relaxing activities during everyday living with more di-
verse activities.

The results also reveal that user independent classification is
possible, whereas all computer brain interfaces needed de-
pendent training. Regarding the importance of reading as
knowledge acquisition task, this is an important insight. For
future work, we plan to investigate how to increase the recog-
nition accuracy of the subject independent classification for
the users with low accuracy. The collected dataset is avail-
able to other researchers for other potential work.
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