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ABSTRACT 
Users often fail to create strong passwords. Besides lack of 
motivation, another possible explanation are misconceptions 
about the factors that contribute to password strength. Such 
misconceptions play an important role for the design of feedback 
systems during password selection. In this paper, we present an 
online game that helps quantifying the perception of password 
strength. Players score points by rating the strength of 
passwords accurately under time pressure. We analyzed the 
usage logs from the first four months after rollout. We found 
that users underestimate passphrases by 1.4 points on a 5-point 
strength scale, while their other ratings are fairly consistent with 
our estimates. Although we used a different methodology, we 
were able to corroborate related findings and narrow down the 
features that users think contribute to password strength. We 
highlight how the data collected through PASDJO can help 
designing better password feedback and boost user experience 
during account creation. 
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1 INTRODUCTION 
The most prevalent method to authenticate users for numerous 
types of systems is still a combination of a username and a 
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password [2]. The process is easy to implement and requires 
little learning because most users have become accustomed to it. 
However, in many cases users do not select strong passwords, 
despite the available tools and countermeasures taken by service 
providers [12]. Among other usability issues [2,10,12], it is often 
argued that users sometimes have a suboptimal perception of the 
factors that add to password strength [35,36,38]. Encountering 
inconsistent and misleading password creation rules and policies 
contributes to faulty password strength perceptions [7,13,29,40].   
 
Moreover, many services utilize password strength meters [37]. 
These visual aids are shown as growing colored bars close to the 
password input and provide instant feedback on the estimated 
strength of the selected password. Instead of forcing the users to 
choose a stronger password, password meters use a softer 
approach. One of their goals is to persuade users to rethink their 
choice if the password is rated poorly. However, just like 
policies, the ratings are largely inconsistent across services: A 
password like “password$1” can be considered “very strong” by 
one website, while it may receive a much lower rating by 
another [5]. In any case, the password would be accepted which 
leads to a positive reinforcement that it is okay to use the 
password despite security concerns. This can also confuse users 
and reduce the overall credibility and understandability of 
password meters.  
 

 
Fig. 1. Screenshot during game-play. The player guesses 
how strong the password is by rating it with one to five 
stars. A countdown incentivizes to act quickly and 
intuitively. “radicallyvogue” is a passphrase and was rated 
with four stars by the game, while the median of users’ 
perception was two stars for password category. 
 
Misleading policies and password meters can thus lead to 
suboptimal perceptions of the factors that add to password 



 

strength. This is an important problem because an understanding 
of password strength is a necessary prerequisite to create 
appropriate passwords. In order to design more useful and 
reliable systems to help users with password selection, we need 
to find out which kind of feedback is necessary, e.g. for password 
meters and what can be omitted. To achieve this goal, we aim to 
identify factors which are erroneously considered beneficial for 
password strength and which are underestimated. As a 
consequence, we would be able to provide more understandable 
and trustworthy feedback. Ideally, users are then able to choose 
passwords of appropriate strength that they have a fair chance to 
remember and type in easily. Studies to this day focused on the 
perception of common passwords and alterations of them [36], 
while the perception of other types of passwords is still less 
understood. 
 
Our work provides further insights into password strength 
perceptions. Besides common passwords and character 
substitutions, we wanted to understand how accurately users 
can rate random passwords and estimate the strength of 
passphrases. The latter strategies provide security benefits 
because such passwords require a high effort to guess them. 
However, those benefits are potentially unknown to the users 
[23,32]. To evaluate this quantitatively, we created PASDJO, an 
online game that awards points for accurate strength estimation. 
The game displays four different types of passwords and lets the 
user estimate their strength (see Fig. 1). Passwords are picked 
from four different categories: They are either (a) common 
passwords or (b) alterations of them, (c) combinations of two 
random dictionary words, or (d) randomly generated character 
sequences. The game selects one of the four categories at random 
with equal probabilities.  

1.1  Contributions and Findings 
Our work contributes novel insights into password strength 
perceptions and a method to acquire them. We show how a 
research question in the field of usable security can be studied 
inexpensively and reliably with a game-based approach. 
Moreover, we present following key insights on password 
strength estimation, which were drawn from real-world usage of 
our game: 

a. Users are capable of assessing the strength of random 
passwords and of common passwords nearly equally well. 
We provide first quantitative evidence that users attribute 
the highest strength to random passwords, which 
highlights that users are generally aware of their benefits. 

b. With our data, we show that passphrases are perceived as 
weaker than objective analyses show. 

c. We corroborate Ur et al.’s findings [36] that common 
character substitutions are erroneously perceived to have a 
large positive effect on password strength.  

The game as well as the dataset from the first four months after 
release are made publicly available on GitHub2, which paves the 
way for further investigations. 

1.2 Overview 
The paper first presents an overview of related work and 
background information on password strength, policies, and user 
perceptions. We then explain the game mechanics and present 
usage analytics and results. The Limitations are discussed before 
the paper sheds light on future directions, and concludes with a 
reflection of the contribution.  

2 Background and Related Work 
We position our work in the field of usable security, particularly 
the study of passwords. In this section, we give a brief overview 
about the characteristics of strong passwords and how users go 
about creating them. 

2.1  Password Strength Metrics 
Finding an objective and reliable measure for the strength of a 
given password is difficult. The “NIST-entropy” of a password is 
a commonly used measure. It reports the degree of randomness 
of the characters inside a password (see Appendix A in [4]). 
However, as more advanced threat models emerged, more 
realistic measures were necessary. In offline-attack scenarios, 
attackers download the entire database containing the passwords 
as hashes. Such attacks sporadically occur even with highly 
frequented services like LinkedIn [11,27,31]. This means 
attackers can try millions of times to guess passwords and their 
efforts are only limited by time and computing power, which is 
difficult to defend against.  
 
Multiple researchers proposed that the number of guesses 
required to crack a password is often a more accurate metric for 
strength than entropy [19,31,41]. To obtain the number of 
guesses, Carnegie Mellon University has established a Password 
Guessing Service (PGS) that allows uploading a list of passwords 
and receive success rates from various cracking approaches [39]. 
To use the service, however, the passwords need to be collected 
and uploaded in clear-text. This is not always possible in 
password studies, because sometimes participants re-use 
passwords from a real account for the study [24]. To avoid 
collecting disclosed passwords, there are other means to estimate 
the required number of guessing attempts, without storing the 
passwords. For example, the zxcvbn algorithm estimates strength 
similarly and shows high accuracy up to one million guesses, 
which is a realistic cut-off threshold for online attacks, which are 
easier to defend against [13,42]. The zxcvbn estimator can be 
implemented as a lightweight script and is easy to include in 
pro-active password checks. 
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2.2 Human Factors in Password Strength 
Leaked data from real-world accounts has repeatedly shown that 
user-selected passwords are often predictable [1]. Given the 
freedom to select any password, many people opt for simple, 
short, memorable words or numbers that are easy to type. 
Because such passwords are vulnerable to informed guessing 
attacks, service providers try to prevent them by introducing a 
set of requirements to reduce the risk of account hijacking. 
However, such composition policies are not implemented 
identically on all web services [29,40]. Often, when users create 
an account, they re-use a password from elsewhere [7,14], which 
is prevented if policies differ in requirements. Users then tend to 
modify the password until the requirements are met [17,21]. The 
resulting passwords do not necessarily gain strength, if they are 
only extended by digits or symbols at predictable positions [41]. 
Thus, balancing the demands in terms of usability and security of 
a policy is challenging and has been under constant research in 
the past years [25,31,33,40].  
 
Password policies are important for our work, because they 
affect how users evaluate password strength. The authoritarian 
character of policies induces an educational effect [6]. 
Unfortunately, users are often exposed to requirements that do 
not necessarily lead to stronger passwords. The length of a 
password is often more crucial for the strength than character 
diversity. For instance, when policies require three different 
character classes with minimum length twelve (3class12), user-
selected passwords are often more guessable than those created 
with a simple length requirement of 16 characters (basic16) [33]. 
At the same time, users are being told that character variety is 
necessary to form strong passwords [37]. The long-term 
consequences are that users sometimes have a suboptimal 
perception of the factors that add to the objectively measurable 
strength of a password [36,38]. Some researchers investigated if 
passphrases, i.e. a combination of dictionary words, can 
effectively boost both usability and security. The results at this 
point are mixed, with some arguing in favor (e.g. [18]) and 
others against the usage of passphrases (e.g. [3,33]).  

2.3 What Else Influences Password Choice? 
Beside the constraints dictated by composition policies, many 
users have developed coping strategies for handling 
authentication tasks [34]. For example, the value of an account is 
decisive whether users pick a strong or weak password from 
their portfolio. Stobert and Biddle argue that this process is 
deliberate and even IT experts are prone to choose weak 
passwords for accounts that they do not deem worthy to protect 
[35]. Florêncio et al. argue that this behavior is inevitable if users 
do not use any digital aid, e.g. a password manager [12]. Still, if 
users receive security advice by trusted peers, they might 
reconsider behaviors like password re-use [8]. 
 
Apart from deliberate choice, there may be other preconditions 
that make some users pick stronger passwords than others. In a 
large field study, Mazurek et al. found that computer science and 

engineering students created passwords that were less guessable 
than those from business or politics students [24]. Beyond 
demographic background, context factors like the emotional 
state during password selection have also been investigated. 
Gulenko examined the effect of presenting positive textual 
messages and icons during password selection and found 
benefits for the adoption of passphrases [15]. Social pressure as 
another type of psychological leverage was investigated by 
Egelman et al. [10]. While they argue that the account value 
affects the effectiveness of password meters in the first place, 
others have shown that also the design of a password meter has 
a measurable impact on the effort users put into creating a 
password [37]. Moreover, password creation can be subtly 
influenced by suggesting strong passwords at the opportune 
moment. In a controlled online study, participants created 
stronger passwords if a longer password was shown beneath the 
password input field [30].  

2.4 Summary 
The related work suggests that users choose suboptimal 
passwords either by accident or by deliberate choice. The 
former is more crucial, but might be solvable through better 
feedback. However, it is often difficult to distinguish the two 
cases. There is also mixed evidence about how users estimate 
the strength of their own passwords and what they think is 
necessary to create an appropriately strong password. To better 
understand potential misconceptions, we investigate how 
accurately users can assess password strength in a playful way.  

3 Game Mechanics  
The goal of PASDJO is to rate as many passwords as accurately 
as possible within 60 seconds. The game is easy to understand 
and play: When the game starts, passwords are displayed and 
their strength needs to be assessed by giving it one to five stars. 
In the following we explain the scoring, conditions, and design 
elements in the game.  

3.1 Scoring Algorithm 
The scores depend on the zxcvbn password strength estimator 
[42]. Its JavaScript implementation rates passwords on a scale 
from zero (weak) to four (strong), which is mapped to a scale 
from one star to five stars in PASDJO. The remainder of the 
paper uses the scale from one to five.  
 
For an answer that matches the zxcvbn score, the player is 
awarded 100 points. We call the difference between the user 
rating and the zxcvbn score the deviation (D). In the worst case, 
a player’s rating deviates by four stars, e.g. when they rate a 
password with five stars, while zxcvbn gives it a one-star rating. 
In this case, the player would not get any points. There is an 
error penalty of 100 / 4 = 25 points per error. Hence, rating a 
four-star password with only two stars will give the player a 
score of 50. The scores of each round are summed up and build 



 

the achieved score (A). The game also calculates a percentage 
(P) of achieved and possible points at the end of the game.  
 
The game thus has the following score calculation, where U is 
the user’s estimation, Z is the zxcvbn score, and N is the number 
of passwords the user sees during the game: 
𝐷 = 𝑈 − 𝑍    (1) 
𝐴 = 	 100 − ( 𝐷+ ∗ 25)0

+    (2) 

𝑃 = 2
0∗344

    (3) 

3.2  Password Generation Algorithms and 
Conditions 

There are four ways in which PASDJO picks the displayed 
password. The condition during a round is chosen at random 
with equal probabilities. 
 
Common passwords are taken without any modification from a 
list of commonly used passwords. They are shipped with the 
zxcvbn library and originate from data leaks of password 
databases at RockYou, Yahoo, and Xato [42]. There are 47023 all-
lower-case passwords in this list. These passwords are usually 
very memorable but the least secure. The top 1000 passwords, 
e.g. “12345” or “password”, score one star, while the rest receives 
two stars (e.g. “iloveyou2” or “thuglife”).   
 
Mangled passwords come from the identical password list, but 
are randomly altered with common substitutions and 
uppercasing. We only used substitutions that zxcvbn recognizes 
as “l33t” substitutions, for example @ is mapped to the letter a3. 
We modify at most 30% of the characters this way. Moreover, at 
most 20% of the characters are transformed to uppercase. 
Mangling passwords is a strategy that users choose to make their 
passwords seemingly less predictable, which indeed often works 
[24]. Mangled passwords are rated with two stars most of the 
times. In very rare cases, they receive higher scores, e.g. 
“Qaz123wsx456” is rated with two stars, while a simple l33t 
substitution (s à $) would score 4 points in this particular case.  
 
A Passphrase is a random combination of two dictionary words. 
We use the English Wikipedia 1-grams which are also shipped 
with zxcvbn. Only words between 4 and 11 characters in length 
are considered, leaving 27202 remaining words. This makes for 
272022 ≈ 109 possible combinations, or ≈ 29 bits of entropy. We 
can assume that such passwords well withstand online attacks, 
where attackers are throttled in the number of guesses they can 
perform per second [13]. At the same time, they offer a 
memorability benefit [3,18,33]. Zxcvbn scores the resulting 
passphrases mostly with three or four stars.  
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Random passwords are generated using the German alphabet 
plus digits, i.e. 39 characters [a-z0-9äöü]. All random passwords 
are ten characters long and lowercase, which makes for 3910 ≈ 
1016 different combinations, or ≈ 52 bits of entropy. Such 
passwords are the most difficult to crack and require brute-force 
approaches [13,42]. However, from a usability perspective 
random passwords are more difficult to memorize and to type 
than, e.g., passphrases, so their benefit in online attack scenarios 
is questionable [13]. Zxcvbn scores random ten character 
passwords with four points.  
For the remainder of the paper, we refer to these four conditions 
as “Common”, “Mangled”, “Passphrase” and “Random”. 

3.3 Feedback Screen 
After the game, the player can review their achievements. The 
objective analyses and player ratings are displayed alongside to 
facilitate comparison. Moreover, the accuracy is color-coded 
(dark red = off by four, red = off by three, orange = off by two, 
light green = off by one, dark green = accurate). The score is 
displayed as fraction of achieved and maximum points, as well as 
a percentage. Fig. 2 shows a screenshot of the feedback screen. 
From there, the players can reflect on how they came to their 
ratings and identify patterns in the objective analysis, which 
aims to produce a learning effect.  

3.4 Game Design Elements 
The most important game design elements are points and time 
pressure [9]. To keep the players motivated, the scoring 
algorithm and the conditions are designed to produce rather 
high scores. Since both one-star and five-star passwords are less 
likely to occur across all conditions, players will at least get 25 
points per round most of the time. This aims to leverage the 
“goal gradient effect” [16], where the player is expected to 
intensify their efforts, the closer they are to the goal. In our case, 
the ultimate goal would be to achieve a score of 100%.  
 

 
Fig. 2. The feedback screen lets the user review the game. 
Here, the user played 22 rounds and achieved 91% of the 
points. The accuracies for individual rounds are color 
coded to facilitate comparison of objective and subjective 
rating (deviation). There is no further explanation. 



 

3.5 User Experience 
The game was designed with user experience and usability in 
mind using the Progressive Web-App Design heuristics4. We 
hoped to lower the barrier to try out the game and make 
onboarding as easy as possible. The game can be started from 
any modern web browser. The user interface is automatically 
localized to German or English depending on the user’s location 
and device settings. The welcome screen gives a brief instruction 
and lets the user try out the rating mechanics before they start 
the game. This facilitates getting comfortable with the 
interaction and preparing to act quickly. The rating task is also 
fairly simple to understand and there is no large time 
commitment, because one game takes at most 60 seconds. The 
game caches all necessary data to work off-line using the 
browser’s IndexedDB APIs [20]. If the game is played without an 
internet connection, the browser synchronizes the game 
standings as soon as the connection becomes available. Finally, 
the user interface is responsive to various screen sizes and 
devices. Although user experience was part of the design and 
implementation phase, we did not evaluate this aspect because it 
goes beyond our research question. 

3.6 Further Considerations and Disclaimers 
When first visiting the site, users need to acknowledge a short 
disclaimer inside a notification window. The text says “We use 
cookies to collect anonymous statistics about the usage of this 
game. If you keep using our site, you agree to our Data Usage 
Terms.”. The notification is displayed until the user actively 
acknowledges it.  Furthermore, the “About” section of the web 
site makes transparent how the passwords are selected or 
generated, and that ratings are logged anonymously unless users 
choose to log in via their Google account. The same section also 
clearly states that the objective password ratings are just 
estimates and that passwords may be weaker or stronger in 
reality. This is to make users cautious not to directly use 
passwords from the game as their own. However, realistically, 
not all users will visit this part of the website, which is a small 
drawback of this study method. 
 
Finally, we try to keep the amount of data to be transferred to a 
minimum because we expected many people would play the 
game on their mobile devices. However, we need to transfer the 
password lists to the devices to make it available offline. Thus, 
the first page-load consumes 1.9 MB of data.  

4 Usage Analysis 
We collected usage information in the first four months after 
deployment (December 2016 to March 2017). The game was 
advertised personally to peers, by putting up posters at our 
institution, and with demos during student orientation days.   
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4.1 Log Data  
The log data contains the minimum information required to 
assess password strength perceptions. We identify users by a 
unique user ID which is generated when the first game is started. 
Each game receives a unique game ID. The log data for each 
round contains the condition and a minified result of the 
strength estimation, i.e.  the password in plain text, the score and 
the estimated number of guesses required to crack the password 
for professional attackers. Moreover, the user’s rating as well as 
the deviation from the zxcvbn score is stored to the database. For 
example, if the password has a zxcvbn score of 3 and the user 
gave it a 1 star rating, we log the deviation as -2. Finally, to be 
able to look into the time taken, we also log a timestamp when 
the rating occurs.  

 
Fig. 3. The zxcvbn scores from 1 (weak) to 5 (strong) for 
N=5915 passwords in the four conditions are mostly 
predictable. Random passwords are consistently rated with 
score 4. Scores for Mangled passwords range from 1 to 5.  
Users and Overall Score Distribution  
 
115 users finished at least one game on their own device5 and 
played 2.1 full games in average (SD = 2.83, Min = 1, Max = 16). 
All but two users chose to use the game without logging in. In 
total, we recorded 242 full games amounting to 5915 individual 
rounds (24.44 rounds per game, SD = 10.39). The zxcvbn scores 
were distributed mostly as expected – all random passwords had 
a score of 4 and all common passwords were rated with either 
score 1 or 2 (see Fig. 3). However, mangled passwords received 
the full spectrum of scores, although the large majority had score 
2. Compared to the other conditions, which received fairly 
consistent strength ratings, passphrases are the least predictable 
condition. 24.9% of the passphrases received a score of 3, while 
74.4 % resulted in a score of 4. These ratings can originate from 
the length of the randomly chosen words. Thus, upon correctly 
identifying the displayed password as a passphrase, the user has 
a lower chance of guessing correctly than in the other 
conditions. This aspect adds an element of unpredictability to the 
game, which is a common game design pattern [22].  
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Moreover, the achieved distribution of the system’s password 
ratings makes underestimating common and mangled passwords 
less probable than underestimating e.g. passphrases or random 
passwords: a common or mangled password can usually be 
underestimated by one point, in case the user gives it a one star 
rating. 

4.2 Statistics of the First Game 
A user’s first game informs us about their pre-existing 
perceptions of different passwords. After completing the first 
game and learning about its rating algorithm, the perception 
might change and should be evaluated separately in a later step.  
On average, players achieved a score of 2010 points in their first 
game (SD = 653.16, Min = 350, Max = 3675), and they managed to 
play 27.21 rounds (SD = 8.56). This means it took 2.2 seconds to 
rate a password on average. Players initially achieved 74.58 
percent of the points (SD = 8.34). On average, a game consisted 
of 6.9 Common (25.3%), 6.8 Mangled (25%), 7.2 Random 
passwords (26.5%), and 6.3 Passphrases (23.2%). Thus, the 
conditions were evenly distributed (F(3) = 2.36, p > 0.05).  

4.2.1 Deviation from zxcvbn Score 
Next, we evaluate by how much the players’ estimation deviated 
from zxcvbn’s score for a given password. In order to run valid 
pairwise tests for each password condition, we removed data 
from four users who did not rate a password for every condition 
in their first game, which leaves us with N=111 users. We use 
non-parametric tests to account for the lack of fine-grained 
password ratings. 
  

 
Fig. 4. Mean deviation from zxvbn score. The users’ 
estimations were most inaccurate for passphrases, which 
they rated 1.4 stars lower than the zxcvbn estimator. 
 

 
Fig. 5. Pairwise comparison of the estimated medians with 
confidence intervals. Accuracy for random and common 
passwords was similar, while other pairs show significant 
differences. 
 
Mangled passwords were overestimated compared to the score 
of zxcvbn (estimated median deviation Md = 0.5). While common 
and random passwords were only slightly underestimated (Md = 
-0.5), the passphrases were rated worst (Md =-1.6). The means 
and confidence intervals are visualized in Fig. 4. A Friedman 
rank-sum test showed significant differences regarding the 
deviation in the four conditions (F(3) = 187.84, p < 0.001). On a 

Bonferroni-corrected significance level of αBonf = 0.008, post-hoc 
Wilcoxon paired sample tests showed significantly different 
deviations between all conditions, except between common and 
random passwords deviations (see Fig. 5). This means the users’ 
over-/underestimation differs significantly across most 
conditions. 

4.2.2 Multiple Game Score Development 
33 users played at least two games. We performed a linear 
regression with gameIndex as predictor and achieved percentage 
as dependent variable, weighted by total rounds played. The 
model shows that, on average, players are able to improve their 
accuracy significantly when playing more often (F(1) = 49.37, p < 
0.001, β = 0.54, 𝑅6789 = 0.23). Fig. 6 shows the development of the 

achieved percentage for users who played multiple times. While 
playing more often shows a learning effect, the element of 
randomness (conditions, passwords) might lead to some games 
being more difficult than others. This could explain why players 
do not consistently become better with each game played. 
 

 
Fig. 6. Series of achieved percentages by individual players 
with fitted line. Larger dots indicate more rounds per 
game. The achieved percentages form an upwards trend. 

5 Discussion 
The data shows how users perceive the strength of different 
password creation styles. In this section, we point out the 
implications the effects have on the design of persuasive 
password feedback.  

5.1 Users know what makes for very weak and 
very strong passwords. 

From the results of the players’ first games we can infer that 
users’ perceptions of common, mangled, and random passwords 
are fairly consistent with the scores of zxcvbn. Here, they were 
only off by 0.5 stars on average. Although we used different 
methods, we were able to corroborate findings by Ur et al. [36]. 
We can conclude that if users select weak, common passwords, 
they are well aware of the consequences. In particular, we 
hypothesize that deliberately choosing a common password 
indicates how valuable account is to the user. Therefore, we 
propose that services react differently to a user’s deliberate 
choice of common passwords. Instead of displaying password 
meters or enforcing their policies, it might be a good idea to 
adapt the service itself to the reduced security level. Thus, 
reacting to common passwords, the service might limit the 
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amount of sensitive information in the user’s profile to prevent 
financial damage or identity theft. Once users pick stronger 
passwords, those options can be re-enabled.  
 
Moreover, the random passwords in our game were all lower-
case letters plus digits. The lack of uppercase letters may have 
led to a slight underestimation, as the paper by Ur et al. suggests 
[36]. However, in their study, participants attributed the highest 
self-reported security benefit to random passwords, which we 
can now confirm quantitatively with our data.  

5.2 Strength estimation is learnable. 
We observed that players found out how to beat the game the 
longer they played. Consequently, playing the game had an 
educational effect regarding password strength. On a larger 
scale, we believe that user behavior regarding password usage 
can be influenced with better positive reinforcement. For those 
users who actually played more than one round (29%), achieving 
a higher score than before was intrinsically motivated, because 
there was no obligation to play the game at all. If feedback 
mechanisms can induce the same level of intrinsic motivation, 
i.e. users wanting to make their own passwords stronger, it is 
likely an improved feedback actually achieves this goal.  
 
For instance, password managers already try to leverage this 
effect by calculating general “security scores” that are supposed 
to persuade users to increase their scores, e.g. if users update 
certain passwords. However, how do we apply this tactic for 
users who do not use password management software? Here 
again, service-providers could have more responsibility and 
show a security score to each user on their profile pages. This 
might help them learn what causes a score-boost and ultimately 
motivate them to change their behavior - at least for services 
that become more valuable to them over time. A social network, 
for example, might implement the social proof persuasion 
pattern [6] and inform users how many of their peers have 
activated the security score feature.   

5.3 Generated passphrases are fine, but user-
selected passphrases probably are not. 

The theoretical password space of passphrases is high, given the 
number of entries is in the dictionary is large enough. In our 
case, almost 30,000 words were considered and zxcvbn scored 
the majority of two-word passphrases were with four out of five 
points. However, it is very unlikely that users draw from a 
vocabulary this large when they select their passphrase 6 . 
Bonneau and Shutova also point out that two-word passphrases 
are much more predictable if users select the words [3]. Thus, if 
system designers aim to persuade users to choose a strong 

																																																								
6  We could not find consistent, convincing estimates of a native 
speaker’s active vocabulary, but there is some evidence that 1000 different words 
make up ≈ 85% of spoken language on TV (https://hackernoon.com/learning-
languages-very-quickly-with-the-help-of-some-very-basic-data-science-
cdbf95288333) 

passphrase, they have to suggest a random passphrase to them. 
However, this may not be a satisfying solution due to the low 
acceptance of randomly generated passphrases – users usually 
want passwords that have a meaning for them. However, Seitz et 
al. showed how passphrase-suggestions can still have a positive 
effect on self-selected passwords [30]. Moreover, Shay et al. 
studied system-assigned passphrases and concluded that 
participants found them too unattractive [32]. Our participants 
were doubtful about the strength of passphrases, too.                       
In conclusion, if we take the users’ perspective and account for 
the reduced vocabulary, the users’ rating might in fact reflect the 
strength of real-world passphrases better than the zxcvbn score.  

5.4 Limitations 
As PASDJO was publicly deployed, there are a number of 
limitations in the data that arise from this methodology. First, all 
players can choose to remain anonymous. They are only 
identified by a cookie containing a random user ID, which can be 
deleted from the browser. Thus, unless users sign in and 
associate the game play history with their Google account, we 
lack demographic information. The context makes young adults 
the most likely user group: During the first four months after 
releasing PASDJO, there were no other announcements than 
word-of-mouth and posters around campus. The posters 
challenged the skills of passers-by. While this may be a side-
effect on the results of the game, the distribution of IT-security 
knowledge across campus is not completely different than in 
other populations. Yet, we must be careful not expect the same 
password estimations from a larger audience. Despite these 
limitations caused by anonymity, the benefits of collecting 
measurements through real-world usage instead of artificial lab 
scenarios boost the ecological validity of the data. 
 
Moreover, to sign in, we specifically did not offer password-
based authentication, as this might scare off users: Creating 
passwords at a game-site dedicated towards password strength 
could make users think their password is scored and saved to the 
game, too. The high number of people who chose to remain 
anonymous speaks in favor of this decision.  
 
The password strength ratings in PASDJO are somewhat 
opinionated due to the use of the strength rating approach as 
implemented by zxcvbn. Still, zxcvbn is a scientifically evaluated, 
state-of-the art tool, which was shown to deliver reliable 
estimations when compared to more sophisticated strength 
metrics. This gives us confidence that scores can be considered 
accurate regarding on-line guessing attacks. Moreover, it 
simplifies the task of matching user ratings and password scores, 
because other metrics do not implement a [1;N] scoring 
algorithm. However, it would be interesting to add other 
strength rating mechanisms (e.g. neural network guessing [26]) 
to evaluate their consistency with user ratings and vice versa. 
 
 



 

6 Future Work 
At the moment, PASDJO’s features and game mechanics were 
sufficient to assess the feasibility of studying password 
perception in the wild. The data can serve as a baseline for future 
studies. For example, the next step is to move from password 
perceptions to actions. Currently, we do not know if playing the 
game has a measureable effect on choosing passwords. Thus, a 
lab experiment which studies password selection after 
participants had played the game for a while appears 
worthwhile.  
 
We are also confident that other modules can be plugged into 
the game to conduct a larger variety of studies on passwords. 
Therefore, we released PASDJO as open source software on 
GitHub as well as the anonymous data that we collected so far. 
For example, this also allows it to be used as an educational tool 
at schools. Alternatively, if demographic data is required for a 
certain study, researchers can easily plug-in new modules to 
collect this kind of information.  
 
We plan to use new versions of PASDJO in fundamental 
research on authentication mechanisms. We are particularly 
curious about the influence of personality traits on the 
perception and selection of passwords. We aim to answer the 
question which user groups are more accurate in their strength 
assessments and why. To do this, we need to implement privacy-
sensitive ways to collect additional information about the 
players. 

8 Conclusion 
In this paper, we presented a new game about passwords that 
was used to collect and analyze strength perceptions of different 
password categories. The game allows assessing the problem that 
some users lack an accurate understanding of what contributes 
to password strength. This kind of perception is important when 
users actively seek to create strong passwords. During the first 
four months of public usage, we found that many users are fairly 
accurate in their assessment of common, mangled, and random 
passwords. On the other hand, they perceived two-word 
passphrases as significantly weaker than objective measures. 
This suggests that randomly generated passphrases require more 
explanatory text as to their strength in order to convince users of 
their benefits or when to use them. For instance, when users 
create their master password in password managers, they may 
be offered a generated, memorable passphrase, which should 
then be accompanied by a reasonable explanation why this 
password is sufficiently strong and appropriate in this context.  
 
Our results can more generally inform the design of feedback 
systems during password selection, as well as security policies. 
For example, we argue that while common passwords can be 
considered a dangerous choice, users are probably aware of this 
risk. Feedback like password meters should respect users’ 
choices carefully to favor usability over security. At the same 
time, services can decide to offer different levels of functionality 

depending on how securely individual users use the services. 
Personalization as a persuasive measure could be an effective 
motivator of secure actions [28]. This may improve the user 
experience of password-based authentication, and reduce the 
burden of passwords until a viable solution to replace them is 
found [2].  
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