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Figure 1: We propose a Super-Resolution Generative Adversarial Network to facilitate tangibles on capacitive touchscreens (5). 
By equipping conductive tangibles (1) with fducial markers (2), we gather low-resolution capacitive images (3). The network 
super-resolves these images (4) and enables of-the-shelf fducial detection algorithms to track the fducial markers. 

ABSTRACT 
Over the last few years, we have seen many approaches using 
tangibles to address the limited expressiveness of touchscreens. 
Mainstream tangible detection uses fducial markers embedded in 
the tangibles. However, the coarse sensor size of capacitive touch-
screens makes tangibles bulky, limiting their usefulness. We pro-
pose a novel deep-learning super-resolution network to facilitate 
fducial tangibles on capacitive touchscreens better. In detail, our 
network super-resolves the markers enabling of-the-shelf detec-
tion algorithms to track tangibles reliably. Our network generalizes 
to unseen marker sets, such as AprilTag, ArUco, and ARToolKit. 
Therefore, we are not limited to a fxed number of distinguishable 
objects and do not require data collection and network training for 

new fducial markers. With extensive evaluation, including real-
world users and fve showcases, we demonstrate the applicability 
of our open-source approach on commodity mobile devices and fur-
ther highlight the potential of tangibles on capacitive touchscreens. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI). 

KEYWORDS 
human-computer interaction, deep learning, super resolution, ca-
pacitive touchscreen 

ACM Reference Format: 
Marius Rusu and Sven Mayer. 2023. Deep Learning Super-Resolution Net-
work Facilitating Fiducial Tangibles on Capacitive Touchscreens. In Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing Systems 
(CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 
16 pages. https://doi.org/10.1145/3544548.3580987 

1 INTRODUCTION 
Touch is the primary means of interaction with a comprehensive 
set of devices, such as smartphones, tablets, smart appliances [37], 
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and cars [61]. Nonetheless, touch interaction lacks input expressive-
ness [70, 75]. Researchers proposed using tangibles to enhance the 
interactive experience, cf. Grosse-Puppendahl et al. [28]. In detail, 
researchers explored stackable [3, 7, 31], deformable [71, 84], and 
touch-sensitive [24, 26] tangibles enabling a wide range of appli-
cations, such as architecture [80] and learning [51]. Despite their 
apparent advantages, commercially available tangible interfaces, 
such as TangiPlay1 and Microsoft’s PixelSense2, still remain scarce. 
On the other hand, today’s capacitive touchscreens enable easy 
and accurate fnger tracking [68] using its coarse sensor size (e.g., 
∼4mm [56]), for instance, via simple centroid estimation [44]. In 
contrast, it is hard to facilitate tangible tracking using these sensors 
as detecting many bits is required. Moreover, detection algorithms 
for fducial markers are optimized for higher resolutions using RGB 
cameras. Thus, tangibles on capacitive touchscreens must either 
be bulky or limit the number of distinguishable objects to allow 
recognition using the coarse touch sensor. This drastically limits 
the applicability of tangibles on today’s touch devices, despite the 
many promising applications. 

Researchers applied state-of-the-art methods to the raw data of 
the capacitive sensor allowing tangible tracking on today’s capaci-
tive touchscreens. For instance, they used geometric multi-frame 
super-resolution techniques [56] and super-resolution deep learn-
ing [75, 76]. They showed that super-resolution techniques efec-
tively improve the resolution of everyday objects and adjacent touch 
points. However, today’s approaches mostly do not restore the im-
print of the tangibles on the screen but directly predict the proper-
ties of the objects, e.g., marker id and rotation [70]. Therefore, they 
neglect the high-quality domain-specifc detection algorithms de-
veloped in the last decade, such as ArUco [23] and AprilTag [62, 85] 
detectors. Thus, having a generalizable super-resolution model to 
super-resolve capacitive fducial marker imprints would allow us to 
bring back of-the-shelf detection algorithms to today’s capacitive 
touchscreens. 

In this paper, we extend over prior work by proposing a super-
resolution generative adversarial network to super-resolve fducials 
and facilitate tangibles on capacitive touchscreens using of-the-
shelf detection algorithms. Our approach is visualized in Figure 1 
and super-resolves single 30×30 pixel capacitive images of fducial 
markers to 60×60 pixel. This enables of-the-shelf detection algo-
rithms to track tangibles as small as 24×24mm with a high accuracy 
of 91.9% and a small rotation MAE of 3.85◦. We conditioned the 
network only on AprilTag 36h11 [62, 85] markers. 

Our results show that the network generalizes well beyond these 
known markers and allows the detection of AprilTag 16h5, ArUco 
original [23], and ARToolKit 4×4 [38, 83] markers. Addtionally, we 
show that our approach outperforms a traditional interpolation 
algorithm (Lanczos-4 interpolation [45]) and a Single-Image Super-
Resolution (ESRGAN [86]) baseline. Therefore, our approach is not 
limited to a fxed number of distinguishable objects and does not re-
quire data collection and network training for new fducial markers. 
Furthermore, we enable of-the-shelf fducial detection algorithms 
to operate on capacitive images and reduce the development efort 
for custom algorithms. We deploy the network on a commodity 

1

tablet for real-time fducial tracking with 124ms inference duration 
and perform a real-world user evaluation for tangible interaction 
showing average detection times between 832ms and 2231ms. We 
showcase applications for learning, text editing, and gaming, where 
tangibles improve the interactive experience. We share the model, 
data, and code in our open-source repository3, enabling others to 
beneft from our approach and allowing them to build even more 
applications. 

2 RELATED WORK 
This work intersects three major research areas: capacitive sensing, 
tangibles, and Super-Resolution algorithms. First, we investigate 
recent developments in capacitive sensing and touch interaction. 
Then, we discuss tangibles and their feasibility on capacitive touch-
screens. Lastly, we explore Super-Resolution algorithms for facili-
tating tangibles on capacitive touchscreens. 

2.1 Tangibles on Capacitive Touchscreens 
Grosse-Puppendahl et al. [28] thoroughly covered the large body of 
research on capacitive touchscreens in HCI. Recently, researchers 
explored tangibles to improve the lacking interactive experience on 
touchscreens (e.g., [70, 71]). Tangibles are physical objects, such as 
pens [16, 70], that serve as input modality with their location and ro-
tation. They were proposed for learning applications [30, 96], music, 
image and video editing [24, 57, 88], and gaming [4, 6]. For example, 
GraspDraw [22] allowed users to draw and manipulate geometric 
primitives, such as lines and rectangles, using two tangible bricks. 

Originally, domain-specifc detection algorithms tracked em-
bedded fducial markers, such as ARTag [96] and AR-Toolkit [3] 
markers with regular (e.g., Pedersen and Hornbæk [66]) or infrared 
cameras (e.g., Merz et al. [57]). To alleviate the need for additional 
sensing hardware, tracking gradually shifted towards capacitive 
touchscreens that ofered standalone tracking with a smaller form 
factor (e.g., [68]). Instead of cameras, touch imprints were used to 
track spatial point patterns (e.g., [33, 82]) and geometric shapes [70]. 
Kratz et al. [43], for example, designed tangible knobs with touch 
point patterns that could be used on Apple iPads. These capacitive 
tangibles are oftentimes 3D-printed [70, 71] and combine insulating 
materials with conductive materials to create touch imprints. 

However, the coarse sensor size of capacitive touchscreens pre-
cludes traditional fducial markers and their detection algorithms. 
Cameras can represent areas as small as 2mm and are constantly im-
proving, e.g., in smartphones [88], whereas commodity capacitive 
touchscreens are limited to 4mm without improvement [47, 56, 76]. 
Research handles this limitation with bulky tangibles and limits the 
number of distinguishable objects (e.g., [27, 81]). 

To alleviate this issue, Itsy-Bits [70] used deep-learning to classify 
geometric shapes (12×12mm, n=30) improving upon prior work, for 
instance, CapCodes (31 × 21mm, n=12) [27]. Still, this approach was 
limited to a fxed set of tangibles and necessitated elaborate data col-
lection and network training. Steuerlein and Mayer [75] proposed a 
deep-learning toolkit for simulating and classifying AprilTag mark-
ers as small as 24×24mm and geometric shapes. While their toolkit 
improved upon prior work [70] by reducing data collection efort, 
their classifer still required network training. Mayer et al. [56] 
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argued for a geometric super-resolution algorithm to restore the 
imprint of fducial markers and bring back of-the-shelf detection 
algorithms for AprilTag markers (24×24mm). Yet, this approach 
required moving tangibles across at least ten images. 

2.2 Super-Resolution Algorithms 
Super-Resolution (SR) algorithms aim at obtaining a high-resolution 
(HR) image from one or multiple low-resolution (LR) images [60]. 
SR goes beyond traditional interpolation algorithms [17, 64], for 
instance, Lanczos interpolation that does not reconstruct fne de-
tails [60]. Nasrollahi and Moeslund [60] contributed an excellent 
survey on this topic. The most prominent application area is pho-
tography (e.g., [15, 89, 93]). 

The most common methods are Multi-Image-Super-Resolution 
(MISR) and Single-Image-Super-Resolution (SISR) [60]. MISR is a 
reconstruction-based approach aiming to merge multiple LR images 
into one HR result [60, 78]. As previously mentioned, Mayer et al. 
[56] proposed a MISR algorithm for capacitive touchscreens. How-
ever, prior research highlighted the limitations of MISR [2, 20, 52], 
such as high computational complexity for an increasing number 
of frames [20]. 

SISR is a learning-based approach that aims to reconstruct miss-
ing information from a single LR image [60]. The learning is typi-
cally achieved by Machine Learning models, such as simple neu-
ral networks [32, 59] and Deep Convolutional Neural Networks 
(DCNN) [14, 39, 40]. SRCNN [15] is a frequently cited example that 
outperforms state-of-the-art algorithms with a lightweight DCNN. 
With recent advances in Machine Learning, Generative Adversarial 
Networks have become attractive for SISR. 

2.3 Super-Resolution Generative Adversarial 
Networks 

Generative Adversarial Networks (GANs) learn the distribution 
of training data to create convincing samples mimicking that dis-
tribution [13]. They consist of two networks, the Generator (G) 
and Discriminator (D), that are trained in competition with each 
other [13]. Traditionally, GANs were unconditioned and operated 
on noise vectors from a latent space. These unconditional GANs 
were used for image [25, 35, 36], 3D shape [90], and audio [53] 
synthesis. 

However, unconditional GANs did not allow direct control over 
the generated data. For this reason, Mirza and Osindero [58] pro-
posed conditional GANs (cGANs). cGANs opened up new possibili-
ties, such as data augmentation [5], image [73] and speech [42, 65] 
enhancement, image editing [10], and image style-transfer [34, 50]. 
As previously mentioned, Steuerlein and Mayer [75] used style 
transfer to simulate capacitive images from templates of fducial 
markers and geometric shapes. 

cGANs have also been explored for super-resolving MRI im-
ages [9] and photographies [95]. CapContact [76] adopted cGANs 
to the capacitive image domain. The network mapped LR capacitive 
images to FTIR HR images of touch points, efectively upsampling 
the LR image by factor eight [76]. The authors achieved high ac-
curacies (87%) for separating closely adjacent touch points [76]. 
However, the authors did not pivot their research on tangibles. 

2.4 Summary 
Tangibles improve the interactive experience of capacitive touch-
screens [28]. However, the coarse sensor size precludes the track-
ing of traditional tangibles equipped with fducial markers. To 
alleviate this limitation, researchers explored deep-learning clas-
sifers [70, 75] for a fxed set of tangibles that entailed elaborate 
data collection and network training. Alternatively, MISR [56] was 
proposed to restore the imprints of fducial markers bringing back 
of-the-shelf fducial detection algorithms and eliminating the need 
for neural network training. 

In this work, we propose SISR using cGANs. As cGANs were 
promising for super-resolving touch points [76], we expect them to 
outperform MISR [56] and super-resolve stationary tangibles from 
one single image. In contrast to prior work [71, 75], our network 
is not limited to a fxed number of tangibles and does not require 
data collection and network training for new fducial markers. Ad-
ditionally, we bring back of-the-shelf fducial detection algorithms 
and reduce development eforts for custom algorithms. 

3 DATA COLLECTION 
We super-resolve 30×30 pixel capacitive images of fducial markers 
to 60×60 pixel. We defne this as a mapping from a low-resolution 
fducial marker to a high-resolution counterpart: � : �� → ��. To 
train a cGAN on this equation, we require a large dataset of LR 
and HR image pairs. In this section, we present the selected fducial 
markers, outline the apparatus and procedure, and describe the 
preprocessing steps for the collected data. 

3.1 Fiducial Marker Fabrication 
We           
consisted of ten AprilTag 36h11, three AprilTag 16h5, three ArUco 
original, and three ARToolKit 4×4 markers. This diverse dataset 
allowed us to assess the generalizability of the network to unseen 
fducial markers. All selected fducial markers can be detected with 
of-the-shelf detection algorithms, such as ArUco detector [23]. To 
create �� → �� image pairs, we fabricated all fducial markers in 

selected four fducial markers visualized in Figure 2. Our dataset

ArUco
original

ARToolKit
4x4

AprilTag
16h5

AprilTag 36h11

Figure 2: Overview of the selected fducial markers. Each 
marker was fabricated for two conditions SMALL and LARGE. 
Each condition consists of two resolutions, LR and HR. 
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two resolutions, LR and HR. For this, the HR markers were twice 
as large as the LR markers. 

Furthermore, we created �� → �� marker pairs for two condi-
tions, SMALL and LARGE. These conditions allowed us to super-
resolve fducial markers with two diferent pixel sizes and can be 
expressed as: 

����� : 4mm (LR) → 8mm (HR) (1) 

����� : 6mm (LR) → 12mm (HR) (2) 
The pixel size describes the width of the square-shaped black 

and white pixels encoding information in the fducial marker. Ta-
ble 1 shows an overview of the two conditions and the resulting 
dimensions of the fducial markers. The marker size was limited 
by the tablet screen width, which allowed for a maximum diameter 
of 14.78cm. Therefore, the largest fabricated fducial marker had a 
diameter of 13.57cm. 

The markers were laser-cut from conductive aluminum-coated 
paper and attached to 3mm thick wooden plates. We added a strap 
to each fducial marker that allowed users to touch the marker and 
close the electric fow without touching the screen. In total, we 
fabricated 19 markers × 2 resolutions × 2 conditions = 76 markers. 

3.2 Apparatus 
We recorded the fducial markers on a Samsung Galaxy Tab S2 
SM-T813 with a 9.7" touch display (2048×1536 pixel) and powered 
by Android 5.0. Since manufacturers do not grant access to the 
raw sensor data, we used a custom kernel to record 37×49 pixel 
(4mm per capacitive pixel) capacitive images at 15fps. We used 
an OptiTrack-V120:Trio optical motion capture system to track 
the rotation of the markers on the touchscreen. This allowed us 
to map LR images to HR images with identical rotation. The de-
vice’s software Motive was deployed on a Windows laptop and 
recorded position and rotation at 120fps. We fabricated a custom 
mount from 3D-printed resin and laser-cut wood to attach fve 
refective OptiTrack markers required for the optical tracking to 
the fducial markers. In the software Motive, we defned the mount 
as a rigid body and aligned the pivot point with the center of the 
fducial markers. Figure 3 visualizes the custom mount and gives an 
overview of the entire apparatus. As the recording was performed 
on two devices simultaneously, we relied on Unix timestamps to 
synchronize the data. 

Table 1: Overview of the fabricated fducial markers. There 
are two conditions SMALL and LARGE. Each condition con-
sists of two resolutions, LR and HR. The shape of the fducial 
markers is given by border pixels and data pixels. The totalÍ
tag size ( ) in mm results from the pixel size (mm) and the 
shape (border pixels, horizontal pixels × vertical pixels). 

SMALL LARGE 

Marker type n Shape 

LR Í
Px 

HR Í
Px 

LR Í
Px 

HR Í
Px 

AprilTag 36h11 
AprilTag 16h5 
ArUco original 
ARToolKit 4×4 

10 
3 
3 
3 

1, 6×6 
1, 4×4 
1, 5×5 
2, 4×4 

4 
4 
4 
4 

32 
24 
28 
32 

8 
8 
8 
8 

64 
48 
56 
64 

6 
6 
6 
6 

48 
36 
42 
48 

12 
12 
12 
12 

96 
72 
84 
96 

Pin

Handle

Op�Track 

marker

Exchangeable plate

Fiducial marker

(a) The custom mount. (b) The setup for data collection. 

Figure 3: (a)The technical sketch of the custom mount used 
during data collection (left). (b) The setup for data collection. 

3.3 Procedure 
We attached the tablet with double-sided adhesive tape to a table 
with a sheet of non-conductive foamed plastic in between to shield 
it from interference. We fxated the OptiTrack system above the 
table and calibrated the tablet as the ground plane. The upper left 
corner of the tablet was the origin of the tracking area. We divided 
the data collection process into multiple recording sessions and 
synchronized both devices’ local Unix time to an NTP server at 
the beginning of each session. During the recording sessions, we 
ground ourselves to the tablet by touching the exposed metal frame. 
To gather capacitive images in all possible rotations, we steadily 
rotated each marker clockwise along its y-axis. A recording session 
for one marker took, on average 4min 22sec (SD: 5sec). 

3.4 Preprocessing 
Each fducial marker yielded 4,151 (SD = 119) capacitive images and 
31,412 (SD = 577) OptiTrack samples. In total, we recorded 315,517 
capacitive images and 2,387,302 OptiTrack samples. We mapped the 
rotation recorded by the OptiTrack device to the capacitive images 
recorded by the tablet using the synchronized Unix timestamps. 
To account for system latencies, we manually synchronized the 
frst capacitive image containing a marker with the frst OptiTrack 
sample. We corrected the timestamps by an average of 394ms (SD: 
698ms). We additionally performed a visual analysis to verify the 
rotation mapped to the capacitive images manually. 

We discarded 8.6% of the data by fltering weak and empty ca-
pacitive images with a mean pixel value below 40.0% of the overall 
mean pixel value. We fipped the remaining 290,609 images to ac-
count for the mirrored recording on the touchscreen. Then, we 
normalized the images and applied contour detection [77] to isolate 
the blobs of the markers within the capacitive images. To obtain 
uniform image sizes, we added padding to the blobs. We generated 
30×30 pixel images for the LR markers and 60×60 images for the 
HR markers. Since we required �� → �� image pairs, we merged 
the LR and HR capacitive images by their rotation using an inner 
join. This merge created 1,581,523 capacitive image pairs. Figure 4 



Deep Learning Super Resolution CHI ’23, April 23–28, 2023, Hamburg, Germany 

Figure 4: Overview of the preprocessing steps for a �� → �� 
image pair of condition LARGE. 

visualizes the processing of a �� → �� image pair. To further 
augment the data, we rotated each image pair clockwise by 90°, 
180°, and 270°, which quadrupled the size of the data to 6,326,092 
samples. We identifed the median (MED: 452) of samples per rota-
tion for each pair of markers and balanced the dataset by randomly 
selecting 452 samples respectively. The balanced dataset contained 
452 × 360 = 162, 720 samples for each pair of markers and 6,326,092 
samples in total. Each data sample {��� , ���, ���, �� } contained an 
unique identifer, the LR capacitive image, the HR capacitive image, 
and the rotation in degrees. 

To train a cGAN, we split this data into training, validation, 
and test datasets using a class-wise split. This method guaranteed 
unique datasets with no overlapping fducial markers. We chose 
eight AprilTags 36h11 markers for the training dataset and the re-
maining two AprilTags 36h11 markers for the validation dataset. To 
assess how well the cGAN generalizes to other markers, we reserved 
all AprilTag 16h5, ArUco original, and ARToolKit 4×4 markers for 
the test dataset. The training dataset contained 2,603,520 samples, 
the validation dataset 650,880 samples, and the test dataset 2,928,960 
samples. To facilitate training, we scaled the capacitive images to 
the range [−1, 1]. During training, we shifted each image pair by a 
small random pixel value given by the normal distribution around 
0 with a spread of 1. This shift augmented the dataset by adding 
variance to the capacitive images. 

4 SUPER-RESOLUTION NETWORK 
Next, we formally defne our proposed cGAN. We describe the 
network’s architecture, learning objective, and training process. 
The presented cGAN is the result of extensive trial-and-error testing 
and hyperparameter tuning. Additionally, we performed a search 
to fnd a suitable model architecture by altering the architecture, 
e.g., adding or removing layers. 

4.1 Defnition 
Since we condition on the mapping � : �� → ��, the network is 
a cGAN. The Generator learned to create fake HR images (hence-
forth SR images) from given LR images. Therefore, the Generator 
can be expressed as � (� ) →��  ��� . The Discriminator learned 

to distinguish between real HR images and SR images. The result 
�� describes the probability of the image being real. For real HR 
images, �� approximates one, and zero for SR images. This behavior 
can be expressed as � (�) → �� with � ∈ {��, ��}. 

During adversarial training, the Generator and Discriminator 
compete against each other. The Generator strives to fool the Dis-
criminator with SR images, while the Discriminator strives to rec-
ognize all SR images. Literature [34, 75] expressed this learning 
objective as: 

� ∗ = arg min max L��� (�, �) (3)
� � 

During training, both LR and HR images are available to the cGAN. 
Once trained, the Generator super-resolves LR images, and the HR 
images are no longer required. 

4.2 Objective Function 
The adversarial loss in the learning objective is given by the Discrim-
inator’s ability to recognize SR images. Research [34, 49] expressed 
this as: 

L��� (�, �) = �� [
� � log � (��� )]+�� [

�� log(1−� (� (��� ))] (4) 
In addition to the adversarial loss, we employed a pixel-wise L1 
loss that encouraged sharper images [34, 49]. Prior work [34, 75] 
expressed the L1 loss as: 

L�1 (�) = ��� � ,� [∥
��  ��� − � (��� ) ∥1] (5) 

We added the L1 loss with the weighting parameter ��1 = 100 to 
the objective function: 

� ∗ = arg min max L��� (�, �) + ��1 · L�1 (�) (6)
� � 

4.3 Generator Architecture 
The Generator has 1,002,433 parameters. Its architecture draws 
inspiration from prior work on SISR [49, 76]. Furthermore, we 
adhered to the architectural recommendations by Radford et al. 
[67]. As depicted in Figure 5a, the network consists of four residual 
blocks [29] with convolutional layers. Residual blocks perform well 
in SISR with a reasonable number of parameters [49, 76]. Residual 
blocks apply an identity mapping by adding the output of the block 
to its input [29]. The PixelShufer layer [72] transforms 30×30 
pixel images into 60×60 pixel images. The fnal layer uses a tanh 
activation function to scale the 60×60 SR images to the initial range 
[−1, 1]. 

4.4 Discriminator Architecture 
The Discriminator has 1,187,073 parameters. It fuses prior work on 
SISR [49, 76] with the PatchGAN [34, 50] that counteracts blurry im-
ages, similar to Steuerlein and Mayer [75]. Again, we adhered to the 
architectural recommendations by Radford et al. [67]. It’s architec-
ture is illustrated in Figure 5b. The Discriminator downsamples the 
images in six convolutional blocks using strided convolutions [74]. 
The fnal layer uses a Sigmoid activation function to scale the 8×8 
pixel patches to the probability range [0, 1]. 

4.5 Adversarial Training 
Standard backpropagation [69] adjusted weights and biases of the 
cGAN to minimize the objective function. We trained the cGAN 
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a) Generator Architecture

Figure 5: a) The architecture of the Generator with 1,002,433 parameters. b) The architecture of the Discriminator with 1,187,073 
parameters. 

using the Adam optimizer [41]. The Generator had the learning rate 
��� = 4 × 10−4, and the Discriminator ��� = 2 × 10−4. We trained 
the network for 4520 epochs. This took 25 hours and 13 min on an 
Nvidia Tesla V100 GPU. Each epoch contained 180 training and 45 
validation batches with a batch size of 32. Statistically, one sample 
for each marker, condition (SMALL and LARGE), and rotation oc-
curred within one epoch. We saved preliminary networks every 100 
epochs. We assessed the image quality and detection accuracy of 
all preliminary networks for the validation and test datasets. Based 
on this assessment, we selected the best network that trained for 
500 epochs. 

5 EVALUATION 
In this section, we evaluate the SR images created by the GAN. For 
this, we froze the Generator and converted it to the Keras H5 (.h5) 
format. First, we assess the image quality visually and with vari-
ous metrics proposed by prior work. Then, we investigate the net-
work’s ability to enable of-the-shelf fducial detection algorithms 
to track fducial markers reliably. For this, we use the AprilTag [85], 
ArUco [23], and ARToolKit4 detectors. Before the evaluation, we 
performed a grid search combined with trial-and-error to determine 
the best detection parameters. 

5.1 Image Quality 
We assessed the quality of the generated SR images visually. For this, 
we de-scaled the capacitive images to the range [0, 255]. We chose 
Lanczos-4 interpolation [45] as a baseline for the image quality, as 
it has been shown to yield the best results among interpolation 

algorithms [64]. Figure 6 shows randomly selected fducial markers 
of each type. Compared to the Lanczos-4 baseline, the SR images 
resemble the HR images better. Particularly, the SR images of SMALL 
markers outperform the baseline. 

In line with prior work [49, 94], we also assessed the metrics 
MAE, SSIM, and PNSR. The pixel-wise Mean Absolute Error (MAE) 
was part of the objective function for the GAN expressed as L�1 (�). 
It described the pixel-wise error between real and fake images. The 
Structural Similarity Index (SSIM) approximates the perceived im-
age quality as a value between 0 and 1, where 1 describes identical 
images. We used the function parameters proposed by Wang et 
al. [87]. The Peak-Signal-to-Noise Ration (PSNR) approximates the 
reconstruction quality in dB. Higher values indicate better image 
quality. For this, we also used the pre-trained Tensorfow imple-
mentation of the ESRGAN 5  proposed by Wang et al. [86] as an 
additional SISR baseline. Table 2 shows all performed analyses. 

Since most pixels had the value zero, larger markers with more 
non-zero pixels lead to larger errors. Overall, our SR images outper-
formed traditional Lanczos-4 interpolation and the ESRGAN base-
line for all metrics; see Table 2. The largest MAE for SR images was 
6.99, which meant a small 2.74% pixel-wise discrepancy. The largest 
MAE for the Lanczos-4 baseline was 11.21. Therefore, the pixel-wise 
discrepancy was 4.40%. The ESRGAN baseline performed similarly 
to the Lanczos-4 baseline without noticeable improvements. 

Lastly, we compared the distribution of pixel values between HR 
and SR images. Figure 7 visualizes histograms for each dataset. The 
SR images from the validation dataset deviated moderately from 
the HR images for pixel values 90-140. This deviation increased 

https://github.com/artoolkitx/jsartoolkit5
https://tfhub.dev/captain-pool/esrgan-tf2/1
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Figure 6: The SMALL and LARGE markers from the validation and test datasets are shown in paired columns, the LARGE ones 
on the left and the SMALL ones on the right. The frst show shows representative ground truth images for each of the eight 
diferent subsets of the dataset. Recorded LR images upsampled using Lanczos-4 interpolation [45] are shown for comparison 
in the second row. The SR images in the third row are created using our Generator. Finally, a corresponding ground truth 
high-resolution image is shown in the last row. 

Table 2: MAE, SSIM and PSNR for SR images created by the network compared to the real HR images. The baselines are 
Lanczos-4 interpolation [45] using the OpenCV implementation and the Tensorfow implementation of the ESRGAN [86]. The 
optimal values are MAE = 0, SSIM = 1 and PSNR = ∞. The values in green indicate best results. 

Our Lanczos-4 baseline [45] ESRGAN baseline [86] 

MAE SSIM PSNR MAE SSIM PSNR MAE SSIM PSNR 

M SD M SD M SD M SD M SD M SD M SD M SD M SD 

Training datasets 
AprilTag 36h11 - SMALL 2.86 .34 .93 .05 25.9 3.6 5.7 .47 .89 .03 21.2 1.5 5.81 .39 .88 .04 20.7 1.7 
AprilTag 36h11 - LARGE 4.03 .17 .88 .07 24.8 3.1 11.2 .41 .8 .05 18.3 1.5 11.15 .38 .8 .06 18. 1.6 

Validation datasets 
AprilTag 36h11 - SMALL 3. . .91 .05 24.8 2.6 6.79 .4 .87 .03 20. 1.3 6.88 .33 .87 .04 19.5 1.5 
AprilTag 36h11 - LARGE 5.92 .27 .86 .07 22.8 2.3 11.02 .12 .81 .05 18.5 1.4 11. .25 .8 .06 18.1 1.5 

Test datasets 
AprilTag 16h5 - SMALL 2. .02 .93 .03 25.3 2.7 3.03 .17 .92 .02 23.1 1.6 3.29 .45 .92 .03 22.6 1.9 
AprilTag 16h5 - LARGE 4.02 .14 .89 .04 23.1 2.3 6. .06 .88 .04 21.1 1.5 6. .1 .88 .04 20.8 1.8 
ArUco original - SMALL 4. . .89 .04 22.3 2. 5.71 .45 .88 .03 20.5 1.4 5.9 .31 .87 .03 20. 1.6 
ArUco original - LARGE 6.07 .25 .84 .05 21.5 2.1 10.3 .46 .8 .05 18.4 1.5 10.11 .33 .81 .05 18.2 1.6 
ARToolKit 4×4 - SMALL 3.11 .32 .92 .04 24. 2.2 5.01 .09 .89 .03 21.7 1.8 5.01 .11 .9 .04 21.5 1.9 
ARToolKit 4×4 - LARGE 6.99 .09 .83 .05 21.3 2. 11.02 .3 .8 .06 18.6 2.1 10.69 .52 .8 .06 18.4 2.2 

https://21.71.85.01
https://21.11.56
https://23.12.36
https://23.11.63.29
https://25.32.73.03


CHI ’23, April 23–28, 2023, Hamburg, Germany Marius Rusu & Sven Mayer 

Table 3: Marker detection for the SR images created by the network. The shape of the fducial markers is (border pixels, 
horizontal pixels × vertical pixels). The baselines are Lanczos-4 interpolation [45] using the OpenCV implementation and the 
pre-trained Tensorfow implementation of the ESRGAN [86]. The rotation MAE is relative to the recorded OptiTrack rotation. 
The values in green indicate best results. 

Pred. 

Our 

Rotation 

Lanczos-4 baseline [45] 

Pred. Rotation 

ESRGAN baseline [86] 

Pred. Rotation 

Markers Shape Acc. MAE SD Acc. MAE SD Acc. MAE SD 

Training datasets 
AprilTag 36h11 - SMALL 587 1, 6x6 97.7 2.3 7.6 . − − .3 2.6 7.7 
AprilTag 36h11 - LARGE 587 1, 6x6 75.1 1.6 5.1 74.7 2.1 6. 14.7 2.5 7.6 

Validation datasets 
AprilTag 36h11 - SMALL 587 1, 6x6 67.8 2.1 7.5 . − − .3 2.7 8. 
AprilTag 36h11 - LARGE 587 1, 6x6 96.3 1.6 5.6 77.9 1.9 5.4 17.5 2.2 6.5 

Test datasets 
AprilTag 16h5 - SMALL 3 1, 4x4 91.9 3.9 10.2 . 26.7 27.2 2.7 4.8 11.6 
AprilTag 16h5 - LARGE 3 1, 4x4 99.3 2.6 7.4 93.7 3.2 6.9 55.6 2.7 5. 
ArUco original - SMALL 1024 1, 5x5 58. 4.8 9.3 . − − 1.2 2. 7.9 
ArUco original - LARGE 1024 1, 5x5 67.6 2.1 6.1 25.8 2. 3.6 71.9 2.2 5.4 
ARToolKit 4×4 - SMALL 5 2, 4x4 20.3 3. 2.6 6.6 3.8 1.7 2.6 1.9 1.6 
ARToolKit 4×4 - LARGE 5 2, 4x4 85.7 3.3 2.8 35.9 2.9 2.3 2.9 1.1 1.6 

for SR images from the test datasets. The ARToolKit 4×4 markers thresholded the images using Otsu’s method [63]. This postprocess-
ing is done to support the detection algorithms and improve the 
results. 

The LARGE markers have higher detection accuracy than the 
SMALL markers for the validation and test datasets. The largest 
discrepancy occurred for the ARToolKit 4×4 markers. Here, the  
detector was accurate for 85.7% of LARGE markers and only 20.3%  
of SMALL markers. Yet, there is no statistically signifcant diference 
in detection accuracy (� (6) = 1.22, � = 0.29) and rotation MAE  
(� (6) = 1.93, � = 0.13) between all LARGE and SMALL markers. The  
largest MAE was 4.83, which meant a small 1.3% deviation from  
the ground truth. 

We used Lanczos-4 interpolation [45] from OpenCV as a simple 
baseline, and a pre-trained ESRGAN proposed by Wang et al. [86] 
as an advanced SISR baseline. For the Lanczos-4 baseline, the LR 
images were upsampled directly to 600×600 pixels, and the same 
postprocessing was applied. Overall, our SR images considerably 
outperformed both baselines, especially for SMALL markers. The 
detection accuracy of SMALL markers was 67.16% compared to only 
1.85% for the Lanczos-4 baseline. The best improvement for LARGE 
markers was from 35.9% to 85.0% detection accuracy for the AR-
ToolKit 4×4 markers. Notably, the ESRGAN baseline outperformed 
the SR images for LARGE ArUco original markers. Otherwise, the 
ESRGAN baseline underperformed both our SR model and the 
Lanczos-4 baseline. 

showed the largest deviation for pixel values 60-140. 

5.2 Fiducial Marker Detection 
We assessed the network’s ability to super-resolve fducial mark-
ers based on the detection accuracy and the rotation MAE, Table 3
shows the detection results. The recorded OptiTrack rotation served
as the ground truth for the rotation MAE. Before detection, we de-
scaled the images to the range [0, 255] and normalized them. Then,
we upsampled the SR images to 600×600 pixels using Lanczos-4
interpolation. We applied Gaussian blur with a 5×5 kernel and

Figure 7: Distribution of pixel values for the training, val-
idation, and test datasets. Pixels with a value of 0 are not 
visualized. The bin size is 10. 

5.3 Comparison to Mayer et al.’s [56] approach 
As a next step, we compare our result to the geometric MISR method 
by Mayer et al. [56]. Our test data set using their pipeline achieves 
an accuracy of 82.8% for SMALL 16h5 AprilTags and 99.9% for 
LARGE 16h5 AprilTags. 

https://55.62.75
https://74.72.16


6https://www.tensorfow.org/lite 
7https://github.com/johnjwang/apriltag-android 
8https://opencv.org/android/ 
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Mayer et al.’s [56] method rotates the 37 input images and aligns 
them. As the user additionally might rotate the tangible during 
input, there is no single unique rotation making it impossible to 
determine a single ground truth value. For our dataset, within 
the 37 input images, the rotation varied between 3.8◦ and 49.8◦ 

(� = 11.1◦, Med = 3.8◦, SD = 3.8◦). For the performance measure of 
the approach on our dataset, we used the average rotation over the 
37 images; however, the results will be skewed due to the variation 
in rotation. The average MAE is 9.8◦ for the SMALL 16h5 AprilTags 
(SD = 25.1◦, min = 0.0◦, max = 171.5◦) and for the LARGE 16h5 
AprilTags the MAE is 8.3◦ (SD = 21.2◦, min = 0.0◦, max = 179.5◦). 

5.4 User Evaluation 
After evaluating the quality and comparing the system to two base-
lines, we investigated the detection accuracy and performance in 
a real-world setting. Here, we asked participants to place fducial 
markers on our tablet that super-resolved the capacitive images 
and performed the detection. 

Apparatus. For this evaluation, we used fve SMALL and fve 
LARGE AprilTag 36h11 and 16h5 markers, for a total of 5 markers × 
2 types×2 conditions = 20 markers. We fabricated additional mark-
ers to ensure that all markers were unseen by our model. As a device, 
we used the same Samsung Galaxy Tab S2 SM-T813. 

Procedure. Upon arrival, we briefed the participants about the 
study, answered any open questions, and then asked them to sign 
an informed consent form. Next, we asked them to place a marker 
on the tablet and wait until the tablet prompted them to continue 
with the next marker. After they placed each fducial marker three 
times on the tablet, we thanked them for participating. This proce-
dure yielded 60 samples of real-world tangible interaction for each 
participant. 

Participants. We recruited 11 participants (three female, eight 
male) with an age range between 25 and 63 (� = 31.5, �� = 10.2) to 
participate in the study. Our study took approximately 10 minutes. 
All participants volunteered to take part in the study. 

Evaluation Results. Table 4 shows the results of the user evalua-
tion. All markers were detected with a high accuracy of approxi-
mately 100%. However, the detection of the AprilTag 16h5 markers 
took 806ms, while the detection of the AprilTag 36h11 markers took 
1937ms on average. Similarly, the standard deviation for the April-
Tag 36h11 was larger (3000ms). For example, the LARGE AprilTag 
36h11 marker with ID 66 took 4418ms to detect, while ID 54 took 
832ms. Also, as the number of Detection Attempts varies between 2 
and 7, the frst detection attempt failed. 

6 APPLICATIONS AND DEPLOYMENT 
In this section, we deploy the Generator on a commodity tablet for 
real-time fducial tracking. We illustrate three showcases where 
small tangibles improve the interactive experience. Two additional 
showcases highlight the potential of super-resolved fducial markers 
for security and authentication. 

Table 4: Results of the real-world user study. We show the 
Accuracy, the Time to Detection (ms), and Detection Atempts 
(frames) indicate the duration between a marker’s frst con-
tact with the tablet screen to the frst detection result. 

Time Attempts 

Acc. M SD M SD 

AprilTag 36h11 - SMALL 
AprilTag 36h11 - LARGE 

100 2,231 
100 1,642 

2,748 
3,251 

7. 8.4 
5.2 11.4 

AprilTag 16h5 - SMALL 
AprilTag 16h5 - LARGE 

98.8 
100 

869 
743 

905 
270 

2.4 
2.3 

.9 

.6 

6.1 Mobile Deployment 
We deployed the Generator on the Samsung Galaxy Tab S2 SM-T813, 
which was previously used for recording the data with the custom 
kernel. For this, we froze the Generator and converted it to the 
TensorFlow Lite (.tfite) format6, which can be used for on-device 
inference. After the conversion, the Generator shrunk from 11.6MB 
to 3.8MB. Furthermore, we used the Android implementation of 
the AprilTag detector7 and the OpenCV library8. 

As mobile devices have limited processing power, we adjusted the 
postprocessing of the SR images. Here, we upsampled the SR images 
to 200×200 pixel using Bicubic interpolation with a 4×4 kernel. We 
also omitted the Gaussian blur before Otsu’s thresholding. Across 
all AprilTag markers, the detection accuracy was only 0.80% lower 
and the rotation MAE was 0.21 larger. This small loss allows for a 
signifcant performance gain. 

We developed a benchmark to assess the duration of the individ-
ual steps from recording the capacitive image to the fnal detection 
results. We performed the benchmark on the Samsung Galaxy Tab 
S2 SM-T813, which features a Qualcomm Snapdragon 620 proces-
sor and on the Samsung Galaxy S21 5G SM-G991, which features a 
signifcantly faster Exynos 2100 processor for comparison. Since 
the Samsung Galaxy S21 5G SM-G991 does not support the custom 
kernel necessary for accessing the capacitive images, we processed 
random noise. Processing random noise instead of capacitive im-
ages allowed us to assess the performance on modern devices that 
are yet to receive a custom kernel. Table 5 show the results of the 
benchmark averaged over 1000 runs. On the Samsung Galaxy Tab 
S2 SM-T813, all steps took 322ms in total (3fps). For the showcases, 
3fps was sufcient. On the faster device, the duration sunk to 150ms. 

6.2 Conductive Tangibles 
For the showcases, we aimed at high-fdelity tangibles as opposed 
to the low-fdelity prototypes used for recording the data. We de-
signed and 3D-printed multiple tangibles with a combination of 
conductive and non-conductive materials, as proposed by prior 
work [54, 70]. We used black Protopasta Composite PLA flament 
for the conductive core with a volume resistivity of 30–115 Ω×cm. 
For the non-conductive parts, we used regular PLA flament in the 
colors gray and red. Similar to Schmitz et al. [70], we used a Prusa 

https://www.tensorflow.org/lite
https://github.com/johnjwang/apriltag-android
https://opencv.org/android/
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(a) Fabricated multi-material tangibles. (b) Editing text with pen-like tangibles. (c) Tower defense with tangible towers. 

(d) Literacy learning with tangible letters. (e) Fiducial marker to increase payment secu- (f) Scanning a fducial marker instead of a QR-
rity. code to connect smart devices. 

Figure 8: (a) Conductive tangles, the red and grey parts are non-conductive PLA flaments, and the black core is conductive PLA 
flament. (b-f) Five showcases where tangibles improve the interactive experience on capacitive touchscreens. 

MK3 3D printer with the Mosaic Palette 3 Pro multi-material exten-
sion. To improve conductivity, we increased the infll density to 50% 
(default: 15%) and the transition length to 330mm (default: 105mm). 
We assigned the materials and sliced the models with the Mosaic 
online tool Canvas3D9. Figure 8a shows the fabricated tangibles. 

6.3 Example Applications 
We created fve example applications shown in Figure 8 in which 
we used the super-resolution model to facilitate enhanced input on 
commodity capacitive screens. We implemented all applications on 
a Galaxy Tab S2 SM-T813. We now summarize the examples; see 
Video Figure. 

Text Editing. Workplace culture has shifted towards mobile work [8]; 
thus, many people now depend on mobile devices to perform 
their ofce tasks marking work cumbersome. Inspired by liter-
ature [16, 70], we prototyped a text editing showcase that reduces 
the number of inputs by mapping digital tools to familiar analog 

pens. Our showcase features three core functions frequently used 
in editing: highlight, strike, and comment. Upon touching the tablet 
with a pen, the respective tool is highlighted in the menu and can be 
used accordingly. The highlighting pen adds a transparent yellow 
overlay, and the strike pen a solid red dash when moving the tangi-
bles along a line of text. The comment pen adds a comment bubble 
at the selected position in the text. This concept generalizes to 
applications, where frequent switching between tools is necessary, 
such as digital painting, 3D modeling, and video editing [57]. 

Mobile Gaming. Tangibles bring physicality to mobile games [1, 
4, 81], enhance the players’ enjoyment [1, 6] and interest [6]. We 
created a tangible experience for the well-known tower defense 
genre. The goal is to build defenses, traditionally towers in strategic 
positions, and destroy all approaching enemies. Here, the player 
places three towers (with unique powers: fre, ice, and poison) 
as a defense on the tablet. Once all towers are placed, enemy orcs 
approach, and the towers launch damaging projectiles. We chose the 
SMALL AprilTag 16h5 markers, which leaves room for more types 

https://canvas3d.io/
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Table 5: Detection time (ms) of the individual processing steps 
averaged over 1000 runs on two Samsung Galaxy devices. For 
comparison, the duration using Lanczos-4 interpolation and 
Mayer et al.’s [56] approach are given. 

M SD Min Max 

Samsung S2 SM-T813 

Preprocessing 3 1 1 21 
Inference 124 14 108 154 
Postprocessing 92 13 79 127 
Detection 101 13 84 176 
Total 320 41 276 433 

Samsung S2 SM-T813 using Lanczos-4 baseline [45] 

Preprocessing 2 1 1 19 
Interpolation 27 10 8 43 
Postprocessing 106 13 77 140 
Detection 90 4 85 159 
Total 225 24 174 311 

Samsung S21 5G SM-G991 

Preprocessing − − − − 
Inference 31 13 15 84 
Postprocessing 3 2 2 36 
Detection 87 7 55 99 
Total 121 17 95 211 

Mayer et al. [56] using MISR 

Total 2, 500 − − − 

of defensive towers and upgrades. This concept is inapplicable to 
other genres, especially table-top-inspired games with a top-down 
view (e.g., [79, 80]). 

Literacy Learning. By enabling tangibles on today’s touchscreen, 
we further support a wide range of tangible learning, see the lit-
erature review by Li et al. [51]. Inspired by Fan et al. [18, 19], we 
created a tangible spelling playground, where children learn to 
spell words with tangible letters. The child selects and places the 
letters correctly on the tablet. The 30 diferent tags of this tag family 
support the full English alphabet and leave room for extensions, 
such as punctuation. 

Payment Security. NFC payments are ubiquitous, yet to improve 
security, researchers have proposed vibration as an additional layer 
of security [12, 46, 91]; however, these moving parts are subject to 
wear and tear. Thus, we compared a tag into the payment terminal 
to be recognized by mobile devices, allowing for secure payment. 
Additionally, due to the direct contact, the interaction is explicit in 
nature, ofering orthogonal security to wireless transactions such 
as NFC. 

Smart Home. Smart home appliances need unique identifers. 
Today, we see ugly QR codes stuck on devices. In line with Mayer et 
al. [56], we support tangibles with a high payload while also being 
invisible, hidden in the material of the device, cf. Schmitz et al. [70]. 
This allows the user to scan the conductive tag on the touchscreen 
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when connecting new smart devices while being hidden most of 
the time when the identifer is not needed. 

7 DISCUSSION 
We developed a Super-Resolution Generative Adversarial Network 
to super-resolve fducials and facilitate tangibles on capacitive 
touchscreens using of-the-shelf detection algorithms. Our approach 
builds upon prior work on super-resolving capacitive images [56, 75, 
76]. When we compare our results to Mayer et al.’s [56] approach, 
we achieve similar results in a fraction of the time. Mayer et al.’s 
[56] approach need to wait for 2466ms (37 images) plus processing 
without rotation estimation; in contrast, our approach takes 322ms 
on the same device allowing for a voting process to improve the 
accuracy further. In contrast to other deep-learning approaches 
that facilitate tangibles, we are not limited to a fxed number of 
distinguishable objects [70] and do not require data collection and 
network training for new fducial markers [70, 75]. As such, we 
argue that our approach achieves comparable results without re-
quiring training any further deep learning model. We achieve this 
by enabling of-the-shelf fducial detection algorithms to operate 
on capacitive images. Thus, we reduce the development efort for 
customs to enable tangibles to be used on touchscreens. 

The network generalizes well to unseen AprilTags, ArUco, and 
ARToolKit markers that can be tracked with of-the-shelf detection 
algorithms. We argue that it generalizes beyond this set and can 
super-resolve other square-shaped fducials, such as ChiliTag10 and 
ARTag [21] markers. The network achieved promising results for 
image quality and detection accuracy. The pixel-wise discrepancy of 
the smallest markers in our dataset (24×24mm) was only 0.8%. We 
were able to accurately detect these markers with a high accuracy of 
91.9% and a small rotation MAE of 3.85. Overall, the image quality 
and detection accuracy were considerably better than the Lanczos-4 
interpolation baseline. Moreover, our model outperformed the pre-
trained ESRGAN baseline in all but one case for accuracy; however, 
the rotation MAE provided by the baseline was better for 50% of 
the test sets, but only by ∼ 2◦. Re-training the ESRGAN model 
to better support the fducial structure could result in high even 
higher performance. 

Furthermore, we deployed the network on a commodity mobile 
device for real-time fducial tracking. We presented three show-
cases that improve the interactive experience with tangibles and 
two showcases that highlight the potential of super-resolved fdu-
cial markers for security and authentication. In this section, we 
discuss several aspects regarding fducial type and size, threshold-
ing, overftting, and mobile performance. 

7.1 Adaptive Thresholding 
We observed difculties with the adaptive thresholding of capaci-
tive images. The detection accuracy of LARGE markers (75.1%) was 
lower than the accuracy of SMALL markers (97.7%) in the train-
ing dataset. This anomaly is likely attributed to Otsu’s adaptive 
thresholding that was applied to the images before detection. Otsu’s 
method adapts the thresholding value to the images’ histograms 
instead of using a fxed value. As can be seen in Figure 9, the LARGE 
markers contain areas with low pixel values that are omitted during 

https://github.com/chili-epfl/chilitags
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Figure 9: Thresholding error of a LARGE AprilTag 36h11 
marker. Otsu’s adaptive thresholding omits border pixels 
precluding detection. Manual thresholding at pixel value 40 
yields correct results. 

thresholding. This problem occurs since large touch areas, such as 
palms or large fducials are less accentuated than small touch areas, 
such as fnger touchpoints [76]. This issue highlights the need for a 
domain-specifc thresholding method that adapts well to diferent 
touch area sizes. 

7.2 Overftting to Shape 
The discrepancy between the MAE of LARGE training (4.03) and val-
idation (5.92) markers suggested overftting to the training dataset. 
The training dataset contained AprilTag 36h11 markers only, with 
one border pixel and 6×6 data pixels. Despite this overftting, the 
accuracy of the training dataset (86.4%) was lower than the accuracy 
of the AprilTag 15h6 markers in the test dataset (95.6%). AprilTag 
15h6 markers also have one border pixel but only 4×4 data pixels. 
This suggests that the network did not overft to the number of 
data pixels. 

Alternatively, the ARToolKit 4×4 markers have 4×4 data pixels 
and two border pixels. They score the lowest detection accuracy 
(53.0%). Therefore, the network is likely overftting to the number 
of border pixels. This issue can be alleviated with more diverse 
training data in the future. Simultaneously, it does highlight the 
generalizability of the network towards variable data pixel shapes. 

7.3 Fiducial Marker Size Efect 
Intuitively, yet not statistically signifcant, small fducials are harder 
to detect than large fducials. For all test datasets, the LARGE mark-
ers (84.2%) were detected more accurately than SMALL markers 
(56.7%). This also applied to the rotation MAE of the LARGE (2.67) 
and SMALL markers (3.89). This can be attributed to the pixel size 
of the fducial markers. LARGE markers have a pixel size of 6mm, 
which is 50% larger than the SMALL markers (4mm). Taking the 
border pixels and data pixels into account, the SMALL ARToolKit 
4×4 markers, for instance, have a total size of 32×32mm and cover 
an area of 1,024mm2. The LARGE markers of the same type have 
a total size of 48×48mm and cover a considerably larger area of 
2,304mm2. Since capacitive touchscreens have a limited sensor size 
of 4mm, the pixel size heavily afects the detection accuracy. While 
SMALL AprilTag 16h5 markers achieved a high accuracy (91.9%), 
other fducials, such as ARToolKit 4×4 (20.3%) were less accurate. 
Nonetheless, the SR images created by the network signifcantly 
outperformed the baseline. This illustrates the potential of SR for 
capacitive images and leaves room for improvement in future work, 

for example, collecting HR images with higher resolution on a larger 
capacitive touchscreen. 

7.4 Fiducial Marker Type Efect 
The type of fducial also impacts the detection accuracy. Some 
fducials guarantee a minimum Hamming distance between similar 
markers. AprilTag 36h11 markers, for instance, have a Hamming 
distance � = 11, which means that the detector can detect �/2 and 
correct (�−1)/2 pixel errors [62]. ArUco original and ARToolKit 4×4 
markers do not have a minimum Hamming distance. This means 
the detector cannot detect and correct pixel errors. Therefore, the 
detection accuracy for fducials without a minimum Hamming 
distance is lower. However, these fducials encode a larger number 
of markers. AprilTag 16h5 markers encode 30 markers with 4×4 
pixel data, while ARToolKit 4×4 markers encode 50 markers. This 
results in a trade-of between detection accuracy and the number 
of markers. 

Furthermore, the baseline accuracies suggest that the detection 
algorithms do not perform equally well on capacitive images. The 
AprilTag detector achieves a baseline accuracy of 76.3% for LARGE 
AprilTag36h11 markers. The ARToolKit detector scores only 25.8% 
for LARGE ARToolKit 4×4 markers. Although the small number of 
ARToolKit 4×4 markers (50) compared to AprilTag 36h11 markers 
(587), the ARToolKit detector performs poorly on capacitive images. 
These insights highlight the need for careful fducial selection when 
designing tangible applications on capacitive touchscreens. 

7.5 Fiducial Marker Fabrication and Data 
Collection 

Additionally, the network is infuenced by the precision of the fabri-
cated fducial markers and the data collection. Despite laser-cutting, 
small errors, for instance, evaporated material, can lead to devia-
tions from the desired shape, especially for small markers. However, 
3D-printing tangibles with conductive and non-conductive materi-
als allow sub-millimeter precision [54, 70]. Since this is time and 
material-consuming, we only used 3D-printed tangibles for our 
showcases. With advancing printing technology, we aim to use 
accurate 3D-printed tangibles for data collection in the near future. 

7.6 Real-World User Evaluation 
Our user evaluation provided further insights into real-world tan-
gible interaction, for example, the time to detection. Some markers, 
such as ID 54 can be detected approximately fve times faster than 
ID 66, despite both being LARGE AprilTag 36h11 markers. This 
indicates that each marker’s pixel pattern impacts detection. Some 
patterns are better suited for a low-resolution capacitive touch-
screen than others. This highlights the need for careful fducial 
selection when designing tangible applications. We performed a 
visual inspection of the two markers. In contrast to our frst as-
sumption, we found that the marker with the lower detection time 
has more unconnected data pixels. We assumed that more uncon-
nected data pixels would be harder to detect. Additional in-depth 
investigations are needed to answer to the question if the diference 
in detection time is due to the physical build and layout of the tag 
or due to the model. 



11https://developer.qualcomm.com/qualcomm-robotics-rb5-kit/software-reference-
manual/machine-learning/tensorfow 
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Furthermore, the user interaction manifests itself in the detec-
tion times and frames until a successful tag detection. We note that 
the system took a minimum of two frames until detection. This is 
because the capacitive image generated by the frst contact with 
the capacitive screen is incomplete and, therefore, unsuitable for 
detection. This issue can be addressed in tangible applications by 
performing continuous detections or applying bounding box algo-
rithms to discard incomplete images. Moreover, when the users 
place the marker slowly, there is a higher potential for incomplete 
marker imprints on the sensor. We hypothesize that one major 
reason the 36h11 markers are slower to be recognized is that they 
take more time to place on the screen by the user properly as they 
are physically bigger. 

7.7 Mobile Performance 
The long detection times on our older Samsung Galaxy Tab S2 
SM-T813 from the user evaluation rained concerns if our model 
is suitable to support tangible interaction. Therefore, we tried to 
contextualize the detection times better by using a new device 
(Samsung S21 5G SM-G99) and measuring individual steps of the 
process. 

Today, all high-quality detection methods that use the capacitive 
image depend on a custom kernel to access the raw capacitive 
images, e.g., [11, 48, 55, 92]. This access is slow, achieving only about 
∼ 15fps, and taxing the debug interface even more, would slow 
down the Android UI update rate making interactions impossible. 
We note that the UI update rate and the pull loop for the capacitive 
sensor are not the same, 60fps screen update smartphones do not 
necessarily have 60fps touch updates. However, we argue that with 
increased demand for direct access in the research community [56, 
71, 75], manufacturers will provide fast access in the future. 

We need to take the detection time apart to understand the 
remaining cost. On our older test device, pre-processing, post-
processing, and detecting capacitive markers take a considerable 
amount of time (196ms of 322ms). However, the inference, running 
the model, takes only 124ms. Modern smartphones and tablets fa-
cilitate fast inference (31ms using the Samsung S21 5G SM-G991) 
through accelerated Tensorfow Lite networks11. Upsampling the 
SR images to 200×200 pixel can also be accelerated with faster pro-
cessors. Yet, the AprilTag detector improves only marginally on 
modern devices and still takes 87ms. This issue can be alleviated by 
performing one initial detection and using the bounding box and 
feature-matching algorithms to track the rotation in real time. 

In summary, our benchmark revealed that the bottleneck is not 
the network (inference time) but the detection algorithms and the 
processing around the model. We argue that with more engineering 
work, this can be improved in the future, but this was not the focus 
of this work. 

8 CONCLUSION 
We proposed a Super-Resolution Generative Adversarial Network to 
super-resolve fducials and facilitate tangibles on capacitive touch-
screens using of-the-shelf detection algorithms. The network super-
resolves 30×30 pixel capacitive images of fducial markers to 60×60 

pixel outperforming traditional interpolation algorithms. This en-
abled of-the-shelf fducial detection algorithms to track tangibles 
as small as 24×24mm with a high accuracy of 91.9% and a small ro-
tation MAE of 3.85. We conditioned the network on AprilTag 36h11 
markers and demonstrated that the network generalizes well to 
unseen AprilTag 16h5, ArUco original, and ARToolKit 4×4 markers. 
Furthermore, we deployed the network on a commodity tablet and 
achieved real-time fducial tracking with 124ms inference duration. 
We performed a real-world user evaluation for tangible interac-
tion showing average detection times between 832ms and 2231ms. 
We presented showcases that improve the interactive experience 
with tangibles and highlight the potential of super-resolved fducial 
markers for security and authentication. The network, data, and 
code are publicly available via https://github.com/mimuc/super-
resolution-for-fducial-tangibles. 

Despite their potential and the large body of research, commer-
cially available tangible interfaces remain scarce. In the long term, 
we wish to bridge this gap and seamlessly integrate tangibles on 
commodity capacitive touchscreens. For this, we envision a collab-
oration with manufacturers and tech companies with the joint goal 
of improving the interactive experience on capacitive touchscreens. 
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