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Abstract
Behavioural biometric systems are based on the premise that
human behaviour is hard to intentionally change and imitate.
So far, changing input behaviour has been studied with the
goal of supporting mimicry attacks. Going beyond attacks,
this paper presents the first study on understanding users’ abil-
ity to modify their typing behaviour when entering passwords
on smartphones. In a prestudy (N=114), we developed visual
text annotations to communicate modifications of typing be-
haviour (for example, gap between letters indicates how fast
to move between keys). In a lab study (N=24), participants
entered given passwords with such modification instructions
on a smartphone in two sessions a week apart. Our results
show that users successfully control and modify typing fea-
tures (flight time, hold time, touch area, touch-to-key offset),
yet certain combinations are challenging. We discuss impli-
cations for usability and security of mobile passwords, such
as informing behavioural biometrics for password entry, and
extending the password space through explicit modifications.

1 Introduction

The way we type on physical and on-screen keyboards is
remarkably individual: Many studies have shown that people
can be identified based on their typing rhythm [36], finger
placement [11], and other such features of typing and touch
behaviour [8,37,44]. This approach can be used, for example,
to block unwanted access to technical systems, accounts, and
personal mobile devices: Even if attackers gain knowledge of
a password, they also have to enter it with the same behaviour
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as the legitimate user. The underlying assumption of such
behavioural biometric authentication systems is that humans
differ implicitly in how they type.

We present the first systematic exploration of a funda-
mentally different view: We study how users explicitly mod-
ify commonly utilised biometric features of their typing be-
haviour. Our goal in this paper is not to design a new authen-
tication system but to better understand users’ fundamental
ability to control their typing behaviour. Better understanding
such an ability to intentionally modify interaction behaviour
is important in the light of a growing number of biometric
security systems, as illustrated with the following use-cases:

Extending the password space: Instead of only using differ-
ent characters to compose a password, each character could
be entered in a different manner. For instance, although both
use the same eight characters, “password” is different from
“pass[hold long]word”, where the user keeps the second “s”
pressed for longer than her usual behaviour.

Avoid leaking “natural” behaviour: As more and more sys-
tems process behaviour, it might be a viable strategy for users
to intentionally modify behaviour for some. For example, a
user might authenticate on a work laptop using a modified
typing rhythm when giving a presentation, to not reveal her
“natural” typing behaviour, which she uses in (other) biomet-
ric systems, to a potential attacker. This strategy might also
be used for authentication on the web or filling in a form in
an unsafe environment, e.g., when using an unknown device.

Recovering from a leak of behavioural data: A leak of
behavioural information implies that this biometric can no
longer be used if we assume that behaviour is unchangeable.
However, this is worth challenging. As an analogue example,
some people decide to intentionally change the way they write
their signature. Similarly, it might be possible to intentionally
change, for example, password typing behaviour features to
recover from a leak to be able to continue using this biometric.

In all these examples, users have reasons to intentionally
modify aspects of their behaviour which they do not need to
control for the underlying input method (e.g., typing rhythm
does not matter for entering an email). Prior work on inten-



tional changes of typing behaviour has exclusively studied
this ability for attackers with technical support [4, 23, 24] or
for limited features in desktop settings without changes and
learning over time [14, 21, 33]. Thus, it still remains unclear
to what extent users can control and modify fundamental
biometric features of their mobile touch typing behaviour.

We address this gap by contributing: (1) Visual text an-
notations to communicate typing behaviour modifications,
developed in a prestudy (N=114). (2) A lab study (N=24)
using this scheme to investigate intentional modifications for
different features and their combinations, for password typ-
ing on smartphones in two sessions a week apart. Based on
the results, we discuss implications for mimicry attacks, re-
search on behavioural biometrics, and usable passwords with
intentional modifications.

The paper is structured as follows: After discussing related
work (2), we develop a visualisation of typing behaviour (3),
followed by our study design (4) and results (5) on intentional
behaviour modifications. We conclude with a discussion (6).

2 Related Work

In this section, we relate our work to research on keystroke
biometrics and mimicry attacks. These areas motivate our
investigation of intentional modification of typing features
and our choice of the specific features we studied.

2.1 Keystroke Biometrics
Our work is related to keystroke biometrics (or “keystroke
dynamics”), which describe users’ individual behavioural
characteristics when entering text on a keyboard. This in-
formation can be used by the system to identify users, for
example, to protect accounts, devices, and data. A rich body
of related work examined this idea first for typing on phys-
ical desktop keyboards (for example, [29, 30]; survey [36]),
then on early mobile phones with physical keys (for exam-
ple, [7, 13, 15, 21, 22, 25, 46]). More recent work investigated
keystroke biometrics for on-screen typing on smartphones
(for example, [10, 11, 16, 44]; recent survey [37]), including
keyboards operated via gestures instead of tapping [8].

For entering passwords in particular, recognising users
based on how they enter the secret word provides an extra (im-
plicit) layer of security [11], for example, to protect against
cases in which the attacker got to know the password via
shoulder surfing [32], smudge [2, 41] or thermal attacks [1].

Due to the origin of keystroke biometrics on physical desk-
top keyboards, the most commonly used typing behaviour
features are temporal [36]: Users’ typing is characterised by
their typical hold times (i.e., time between key down and up
event), and flight times (i.e., time between key up and down
on the next key). Mobile touch devices offer further spatial
features, such as touch area and offsets between touch loca-
tions and key centres. Offsets, in particular, showed higher

(a) Touch mimicry with techni-
cal support [23].

(b) Keystroke mimicry sup-
ported with AR [24].

(c) Signature forgery without
technical support [4].

(d) Visualisation to support keystroke mimicry on a PC [38].

Figure 1: Several examples from related work for supporting
mimicry attacks on (a) touch biometrics, (b, d) keystroke
biometrics and (c) signatures. Images taken from cited papers.

biometric value, that is, they facilitated more accurate distinc-
tion of users [10, 11]. Related work motivates our choice of
features: hold time, flight time, offsets, and touch area.

In summary, related work on typing behavioural biometrics
used features as they occur “naturally” as an implicit part
of typing. Our work is fundamentally different: We examine
these typing features as explicit and actively controlled by
users, for example to increase the password space. In particu-
lar, we study how well users can indeed control these features
when entering passwords on a smartphone.

2.2 Mimicry Attacks

Attacks on keystroke biometric systems can be performed
either automated or manually. Automated attacks use gener-
ative models to synthesise forgeries from observed data and
were shown to be effective against handwritten signatures [4]
and keystroke dynamics on a PC [28,31,34]. Some work also
tested such attacks when proposing a new keystroke biometric
system. For example, Stefan et al. found their system resistant
against inputs generated from a first-level Markov model [35].

The most commonly considered attack on behavioural bio-
metric systems is the so-called mimicry attack: Here, an im-
postor tries to manually reproduce (mimic) the (known) be-
haviour of a legitimate user to gain access.



(a) ‘Bold Letter’ using bold font to indicate large touch area
and circle size for hold time. Circle location shows offset, key
gaps indicate flight time.

(b) ‘Long Key’ using circle size for touch area and key width
for hold time. Same as above: Circle location shows offset,
key gaps indicate flight time.

Figure 2: Main design candidates for visualising target fea-
ture values for studying intentional behaviour modifications.
Both were evaluated in our prestudy. Based on the results we
decided to use the ‘Long Key’ concept for our main study.

As a simple case, a zero-effort attacker model evaluates a
biometric system against natural behaviour collected of other
users who did not intend to actually bypass the system. While
this model has been commonly used to evaluate vulnerability
of behavioural biometric systems, related work found that it
underestimates attack success [4, 31]. This calls for evalua-
tions with means for more skilled and targeted attacks.

To support attackers in launching successful mimicry at-
tacks they need to know the behaviour to imitate. In the case of
handwritten text, for example, this could be a sample signature
(cf. Figure 1–c). Researchers mounted successful mimicry at-
tacks against touch input behaviour [23], keystroke dynamics
on a PC [38], and keystroke dynamics on mobile phones [24].

Key to those attacks were systems which both visualise the
target behaviour and provide the attacker with feedback on
their attempts (cf. Figure 1). For example, Khan et al. [24]
used augmented reality using a phone’s camera to show vi-
sual cues on top of its view on another phone’s keyboard.
This guided correct timing and touch behaviour. In another
approach they used audio stimuli to guide the timings.

In summary, prior work used representations and active
modifications of typing behaviour to support mimicry attacks.
In contrast, we aim to better understand the human ability to
control mobile typing behaviour per se.

3 Prestudy: Developing a Visual Representa-
tion for Typing Behaviour Modifications

3.1 Selection of Features
There are a multitude of possible features that can be used for
biometric authentication in the context of mobile touch inter-
action. An extensive list was compiled by related work [11]
and covers 24 spatial, temporal and contact features. Khan et

al. [24] found this extensive feature set hard to simultaneously
control for their mimicry attack. They thus removed highly
correlated features, resulting in a set of six: key hold time,
flight time, down pressure, down area, down x, and down y.

We combine x and y together as touch offset. Furthermore,
pressure and area were highly correlated on our test devices,
since most Android phones1 estimate pressure from area. We
thus decided to omit pressure and used area directly.

To sum up, we decided to study a set of four features,
namely touch area, flight time, hold time and touch-to-key-
offset with the latter being two-dimensional (x, y).

3.2 Visualisation Design

We developed several designs that communicate modifications
of the four features to instruct participants, for example, to per-
form a long key press for the second character in a password.
We first tried simple markup (e.g., p. – . ȧs . . sw. –ȯr . d—) but
found this representation to become cluttered quickly and to
offer very limited expressiveness.

We thus chose a pictorial approach: We showed letters with
a key metaphor to visualise behavioural changes (Figure 2).
We explored a range of possible visual features, including
offsetting the key or its label, writing bold or italic, and using
underscores and coloured dots.

We narrowed the options down to two final designs (cf.
Figure 2). Both used whitespace gaps between keys to indicate
flight time and a red dot to indicate touch offset. One variant
(‘Bold Letter’) visualised larger touch area by rendering the
key in bold, and used the size of the offset dot to represent
hold time. The other (‘Long Key’) used the size of the dot
to visualise touch area, and key width to show longer hold
time. While ‘Bold Letter’ resulted in a more compact format,
‘Long Key’ unified both temporal features on a shared axis
(time flows from left to right). We conducted an online survey
to determine our final design.

3.3 Online Survey

3.3.1 Survey Design and Procedure

To assess intuitiveness and readability of our designs, we
created an online survey which showed example passwords
with visualised modifications. Participants had to indicate
which parts of the visualisation were used to encode which
behavioural cues, without prior explanations. People did this
for both designs in counterbalanced order. Afterwards, they
were asked to rate on a 5-point Likert scale how intuitive and
readable they found the two visualisations.

The survey was distributed over a university mailing list. It
took 5 minutes to complete. Participants had a chance to win
a e10 gift voucher.

1We used LG G6 phones in our study.



3.3.2 Results

A total of 114 participants answered our survey (56 % female;
mean age 27 years, range 18 to 63 years). Both offset and
flight time were correctly interpreted by 90 % of the partic-
ipants for both designs. Area and hold time were correctly
interpreted by 81 % and 82 % in the ’Long Key’ condition,
respectively. However, these two features were only correctly
interpreted by 50 % and 51 % in the ‘Bold Letter’ condi-
tion. ‘Long Key’ was rated as more intuitive (median=agree,
median_bold=neutral) but ‘Bold Letter’ was rated to be
more readable (median=strongly agree, median_long=agree).
When asked for their preferred method, 59 % of the partici-
pants reported the ‘Long Key’ notation while 39 % voted for
the ’Bold Letter’ visualisation. The rest had no preference.

3.4 Final Visual Representation
We decided to use the ‘Long Key’ visualisation: It has the
advantage of encoding temporal features on a shared axis and
all features allow for continuous representation of values (in
contrast to the binary bold letter).

In conclusion, we used the following visual encoding
shown in Figure 2–b: Touch-to-key-offset is marked by a red
dot at the position where the key should be touched. Flight
time is represented by a whitespace gap between two key
rectangles that scales with duration. Analogously, hold time
is represented by scaling the width of the key rectangle with
duration. Finally touch area is visualised by the size of the
red dot used for offset (larger size indicates larger area).

4 Main Study

4.1 Study Design
As our study design is quite complex, the following subsec-
tions each explain one main component. The most complex
one is task, which is given both as an overview and in detail.

4.1.1 Passwords

In general, participants had to repeatedly enter given pass-
words (“football”, “princess”, “password”). While these three
are obviously not great passwords in terms of security, we
selected them since they have comparable properties and are
common passwords2. Moreover, they do not require switch-
ing keyboard mode (e.g., between characters and symbols),
which we wanted to avoid as a simplification for this first
investigation into intentional typing behaviour modification.
Similarly, we favoured simple passwords to ensure that task
difficulty was mainly determined by behaviour variations and
not affected by memorability or search time for rare symbols.

2https://www.teamsid.com/worst-passwords-2016/, last ac-
cessed 20.02.2019

4.1.2 Features

We studied intentional modification of four features: touch-to-
key-offset (on five levels: centre/left/right/top/bottom), flight
time and hold time (both on two levels: default/long), as well
as touch area (on two levels: default/large).

4.1.3 Tasks

Participants solved 37 tasks, each using one of the three pass-
words. The tasks differed in various aspects, described below.
While the design is complex, the overall goal was to cover
six aspects, namely (1) different passwords with (2) different
feature modifications at (3) different locations within each
word. We also include (4) different combinations of features
that are modified in the same password, either (5) at the same
character/keypress (we call this co-located) or (6) distributed
across several characters/keypresses within the word.

We iterated the task design several times by means of
prestudy runs with two to three people in each version. We
gradually narrowed the tasks down to an acceptable study
duration of one hour. In full detail, the tasks used in the main
study were structured and designed as follows (Figure 3):

Natural tasks (1–3): The first three tasks simply asked
people to enter each password six times without presenting
any intentional behaviour modifications.

Modifying a single feature (tasks 4–15): In each of these
tasks participants had to modify one feature (e.g., hold time).
There were three such tasks per feature, namely one per pass-
word (i.e., 4 features × 3 passwords = 12 tasks). Across the
three tasks per feature, all feature levels occurred at least once,
while covering different locations: The first task per feature
modified the 2nd character of the password, the second task
modified the 2nd and 7th characters, and the last task modified
2nd, 4th, and 7th characters. The assignment of passwords
across these tasks was counter-balanced, such that modifica-
tions overall occurred in all passwords at all locations.

Modifying two features (tasks 16–27): In each of these 12
tasks people modified two features (for example, hold time
and flight time). There were two tasks per combination of two
features: The first had one modification on the 2nd character
and the other on the 3rd (i.e., distributed). The second task
had both modifications on the 7th character (i.e., co-located).

Modifying three features (tasks 28–35): In these eight tasks,
participants had to modify three features, with two tasks per
combination of three features: The first had modifications on
the 2nd, 4th, and 7th character (distributed). The second one
had all three modifications on the 5th character (co-located).

Modifying four features (tasks 36 and 37): Finally, partici-
pants had to modify four features: The first one had modifica-
tions on the 2nd, 4th, 6th, and 8th character (distributed), the
last had all modifications on the 5th character (co-located).

The task order was not randomised, in favour of gradually
increasing the number of modified features per password,
which we suspected to have an influence on task difficulty.

https://www.teamsid.com/worst-passwords-2016/
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Figure 3: Overview over the tasks in each session. In the beginning (task 1–3) participants were asked to enter the passwords
naturally, afterwards (task 4–15) a single feature had to be modified with increasing number of occurrences (colour of the cell).
Thereafter, two (task 16–27), three (task 28–35) or four (tasks 36, 37) features had to be modified at once. All possible feature
combinations were tested and features were either distributed (~) over the password or co-located (*) on a single key.

4.1.4 Sessions

The whole procedure was repeated two times, in two ses-
sions about a week apart. In this way, we observed the typing
behaviour of each participant at two points in time.

4.1.5 Summary

For the following report of our data analyses and results, it is
useful to think of our study design as follows:

Tasks 1–3 are used to analyse natural (i.e., unmodified)
behaviour, while the other tasks are used to analyse user be-
haviour when modifying the four behaviour features.

Note that from task 16 onward (i.e., all tasks with feature
combinations), our study is a typical repeated measures design
with: number of modifications (2, 3, 4)× distributed multiple
modifications (distributed, co-located) × session (1st, 2nd).
We use this for typical ANOVAs to study in particular the
impact of modification of multiple features.

4.2 Apparatus
We developed an Android app that controlled the study pro-
cess (e.g., counterbalancing, task progression, explanations).

The values used for scaling our visualisations (e.g., default
flight time for default key gap) were informed by prestudy
experiments and related work [10] (flight time 260 ms normal,
1000 ms long; hold time 80 ms normal, 300 ms long; area 0.2
normal, 0.4 large, unitless as reported by the Android API;
offset x ±40 px, offset y ±70 px). To avoid visual clutter, we
limited the scaling with minimum and maximum threshold
values, beyond which the visualisation did not change.

We integrated a modified version of the Android open
source project LatinIME3 keyboard. This enabled us to log
all typing events and touch features. To reduce distraction,
we disabled the context menu for special characters shown
on long press. In addition, our study app logged the expected
key and behaviour modifications, as well as the current user
and task for each keystroke.

3https://android.googlesource.com/platform/packages/
inputmethods/LatinIME/, last accessed: 22.02.2019

4.3 Procedure

Upon arrival, participants were introduced to the goal of the
study and were asked to sign a consent form to permit use
of the collected data. After an initial demographics question-
naire they performed the tasks (cf. Figure 3) as described in
section 4.1.3 on our test device. We asked participants to enter
passwords with their right thumb to keep results comparable.

When first confronted with a new type of modification, par-
ticipants got a short explanation of what to do and prior to
every task they had the option to train entering the password.
Except for the tasks without modifications (natural tasks) they
were provided with real time feedback, using our visualisa-
tion, to show their behaviour next to the expected one. Every
task had to be completed successfully six times and without
feedback. The number of attempts was not limited.

Each task was followed by a short Likert questionnaire
containing the statements: (1) “I was able to adjust to the
specified behaviour.”, (2) “I was successful in completing the
task.”, and (3) “The task was difficult for me.”.

After completing all tasks, participants were asked to come
up with a modified password on their own and could take
notes to remember it. The same process was repeated in the
second session, excluding the initial demographics question-
naire. Creating a custom password was replaced with recalling
and performing the password from the previous session. After
the second session we conducted a short interview. Sessions
were scheduled one week apart.

4.4 Participants

Study invitations were distributed over a mailing list of our
local university. Requirements were right-handedness and
familiarity with typing on mobile phones. We recruited a total
of 24 participants (14 female; mean age 27 years, range 14
to 54 years). Half of participants were in their twenties. 58 %
were students, 30 % were employed, and the remaining ones
were in school. Participants were compensated with e20 for
completing the whole study.

https://android.googlesource.com/platform/packages/inputmethods/LatinIME/
https://android.googlesource.com/platform/packages/inputmethods/LatinIME/
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Figure 4: Overview of participants’ natural typing behaviour
(i.e., typing without being presented with any modifications),
as measured in the first three tasks of each session.

5 Results

Significance tests were conducted using ANOVA with
Greenhouse-Geisser correction and Bonferoni corrected post-
hoc tests (significance at alpha level p < 0.05). If not reported
otherwise, data for analyses is aggregated for both sessions.

As a first overview, we report key descriptive measures:
The grand mean task completion time across all tasks(i.e.,
completing all six successful password entries of a task) and
participants was 38.3 seconds . For typing speed, the grand
mean was 28.7 words per minute (WPM [43]). The grand
mean of the number of incorrect entries per task was 1.74.

We report on participants’ natural typing behaviour (5.1),
their ability to modify it (5.2), and their accuracy in doing so
(5.3). We analyse the effect of multiple simultaneous modifi-
cations (5.4) and the impact of modifications on individuality
of behaviour (5.5). We conclude with details on technically
detecting modifications (5.6) and participant feedback (5.7).

5.1 Natural Behaviour
We first report on “natural” behaviour – typing without any
modification instructions (tasks 1–3). Figure 4 presents the
results. They match our expectations based on related work:

Touch offsets are slightly shifted to the lower right, as typ-
ical for input with the right thumb [9]. Moreover, median
flight time (290 ms) and hold time (72 ms) are in line with
related work [10] and close to the ones we chose as defaults
for scaling key width and gaps in our visualisation (flight time
260 ms, hold time 80 ms). Thus, our chosen values indeed
matched people’s natural behaviour.

Feature Measure target session target * session

Offset absolute x .777a

absolute y .890a .015c

relative (error) .082b

Flight time absolute .785a .010c

relative (error) .332a .038b

Hold time absolute .848a

relative (error) .624a

Touch area absolute .737a

relative (error) .930a

a: p < .001, b: p < .005, c: p < .05, empty cells not significant

Table 1: ANOVA results for ability (1) to modify behaviour
(absolute, Section 5.2) and (2) to replicate target feature val-
ues (relative i.e., error, Section 5.3). The last three columns
show the effect sizes (ω2) for target value (i.e., the feature
value communicated via our text annotation), session, and
their interaction. See text for results from post-hoc tests.

Touch area significantly correlated with x location of the
target key (r=-0.252, p<.001): Due to thumb stretching, typing
keys on the left of the keyboard resulted in a flatter thumb
posture and thus larger touch area. Flight time showed a main
and secondary peak (Figure 4). The latter was caused by zero
finger travel distance for “double letters” (e.g., password).

5.2 Ability to Modify Behaviour
Figures 5 and 6 visualise the distribution of the behavioural
features for different target values, i.e., expected feature val-
ues shown by our visualisation. Next, we report on statistical
tests comparing these distributions per feature (see Table 1).
Here we report on the post-hoc tests and further details:

For all features, post-hoc tests showed that directions of
differences were as expected (e.g., offset significantly further
to the left for left, flight time significantly longer for long).

For vertical offset and flight time, the interactions of session
and target were significant (see Table 1), yet the small effect
sizes and visual inspection of descriptive plots indicated that
this was too tiny to warrant meaningful interpretation.

In summary, the significant results of these statistical tests
confirm the “big picture” visible in Figure 5 and Figure 6: For
all features, people significantly modified their behaviour in
the direction indicated by our visualisation.

5.3 Ability to Replicate Target Feature Values
The previous section investigated differences in absolute fea-
ture values. It is also interesting to analyse how accurately
people were able to replicate modifications. To this end, Fig-
ure 7 visualises the distribution of participants’ errors when
reproducing the target values indicated by our visualisation
for each feature. Table 1 summarises the ANOVA results.
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Figure 5: Overview of users’ modified touch-to-key offsets:
Provoking offset modifications resulted in clear differences
in thumb placement. The rectangle indicates key borders.

For offset, post-hoc tests revealed errors to be significantly
smaller for the target right compared to left (p=.010, d=-.773),
top (p=.008, d=-.783), bottom (p=.011, d=-.765) and default
offset (p=.027, d=-.685).

For flight time, we found errors to be significantly smaller
for the default time than the long one (p<.001, d=-1.488), as
well as for observations from the second session compared to
the first (p=.004, d=-.645). The latter matches the observation
that people typed slightly faster in the second session.

Regarding hold time, post-hoc tests showed errors to be
significantly smaller for the default time compared to the long
one (p<.001, d=-1.844). Finally, for touch area, we found
errors to be significantly smaller for the default area size
compared to the large one (p<.001, d=-4.470).

In summary, these results confirm that participants signifi-
cantly modified their behaviour, namely towards the values
indicated by our visualisation. In addition, people are more
accurate in producing the default feature values compared to
the more extreme ones, likely because the latter are further
away from “natural” typing behaviour.

5.4 Impact of Modifying Multiple Features
Here we report on users’ ability to modify multiple features
in one password. Table 2 summarises the ANOVA results.
Post-hoc tests and further details follow below.

5.4.1 Impact on Time, Speed, and Incorrect Entries

For task completion time, post-hoc tests revealed that three
modifications resulted in significantly longer times com-
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Figure 6: Overview of participants’ modified typing behaviour
across both sessions. Overall, this figure shows that presenting
modifications via our visualisation provoked clear differences
in the typing features (flight time, hold time, area; for touch
offset see Figure 5). Vertical lines indicate the target values.

Measure number
of mod. session distributed number *

distributed
session *

distributed

Offset error
Flight time error .93a .017b .109a .023c

Hold time error .166a .178a

Touch area error .039a .018a

Task compl. time .032c .015c .224a .039c

Typing speed .172a .232a .079a .002c

Incorrect entries .114b

a: p < .001, b: p < .005, c: p < .05, Empty cells not significant.

Table 2: Overview of ANOVA results for the impact of
modifying multiple features on performance measures (Sec-
tion 5.4.1) and ability to replicate target feature values (i.e.,
error, Section 5.4.2). Columns show effect sizes (ω2) for num-
ber of modifications, session, and distributed multiple feature
modification, plus interactions. See text for details.

pared to two (mean 40.70 s vs 36.36 s; p<.005, d=0.543);
descriptively, this was also true for four modifications com-
pared to two, yet not significantly so (p=.064). Moreover, dis-
tributed multiple modifications took significantly longer than
co-located ones (mean 42.33 s vs 34.33 s; p<.01, d=1.397).
People were also significantly slower in the first session than
in the second one (mean 39.76 s vs 36.90 s; p<.05, d=0.444).

For typing speed, all pairwise comparisons of number of
modifications were significant (all p<.001), with slower typing
for higher numbers (mean 2: 30.18 WPM, 3: 27.33 WPM, 4:
25.15 WPM). Moreover, distributed multiple modifications
were typed significantly slower compared to co-located ones
(mean 26.91 WPM vs 30.46 WPM; p<.001, d=-2.445).

Finally, significantly more incorrect password entries oc-
curred for distributed compared to co-located multiple feature
modifications (mean 2.44 vs 1.45; p<.005, d=0.677).

These results show that users take significantly longer to en-
ter passwords as the number of modified features increases, in
particular if behaviour is modified for multiple features across
different characters (i.e., distributed). In that case, people also
produce significantly more incorrect password entries.
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Figure 8: Participants’ ability to replicate given behaviour
depending on the number of features that had to be modified
in one password and whether those features were co-located
on a single key or distributed over the password.

5.4.2 Impact on Replicating Target Feature Values

Figure 8 shows participants’ behaviour deviation from the
given target behaviour (i.e., error), based on the number of
features that had to be controlled within a single password
and whether those features were co-located or distributed.

For offset, we found no significant effects (cf. very stable
distribution of errors in Figure 8).

For flight time, errors were significantly lower for co-
located modifications compared to distributed ones (p<.001,
d=-.965), and for the second session compared to the first one
(p=0.02, d=-.699). Regarding the number of modified features
we observed significantly lower errors for two compared to
three (p<.001, d=-1.149) and four (p<.001, d=-1.522), as well
as for three compared to four modifications (p<.001, d=-.867).

Post-hoc tests for hold time revealed significantly lower
errors for co-located features (p<.001, d=-1.004) and for two
modified features compared to both three (p<.001, -1.479)
and four (p<.001, d=-1.073) modifications.

Finally, for touch area, post-hoc tests showed significantly
lower errors for two modified features compared to both three
(p<.001, -1.565) and four (p<.001, d=-0.868) modifications.

Results are in line with the findings from the previous sec-
tion. Participants generally performed better when features
were co-located (i.e., not distributed over the password, Fig-
ure 8) and performance decreased for increasing number of
modifications. Offset error was stable regarding all factors.

5.4.3 Impact on Subjective Rating

Participants answered three Likert items after each task: (1)
“I was able to adjust to the specified behaviour.”, (2) “I was
successful in completing the task.”, and (3) “The task was dif-
ficult for me.” We compared users’ ratings on these questions
between tasks with co-located and distributed modifications:
Wilcoxon signed-rank tests revealed significant differences
for all three questions (Q1: Z=3.828, Q2: Z=4.074, Q3: Z=
-3.765, all p<.001). Thus, participants subjectively perceived
tasks with multiple feature modifications at the same charac-
ter as significantly easier (i.e., better able to adjust behaviour,
higher success, less difficult), compared to tasks with feature
modifications distributed over several characters.

5.5 Impact of Modifications on Individuality

The previous analyses have shown behaviour differences
within users, caused by modification instructions. Comple-
mentary, we now investigate how natural behaviour differ-
ences between users are influenced by modifications. This
is interesting, for example, to inform behavioural biometric
security layers. We will return to this in our discussion.

We thus compared the individuality (or “biometric
value” [10]) of typing behaviour between natural and modi-
fied behaviour. To do so, we employed a user identification
model [10, 12]. Note, that we do not intend to present this
model as a practical biometric identification system. We rather



use it as an analysis tool to quantify the impact of explicit be-
haviour modifications on individuality. Thus, we are not inter-
ested in optimising identification accuracy, but in measuring
the differences obtained on natural and modified behaviour.

5.5.1 Evaluation Scheme

We used the established Gaussian model for mobile touch
typing, with a Gaussian distribution per feature per key [3,19,
20, 45]. For touch location, for example, it defines the user’s
spread of touch points when aiming for that key. Thus, each
user u is represented by a set of Gaussians (the model mu),
fitted to the touches from the training set for that user. We
used the data from the first session to fit these models.

For each user u, we then fed the data from u’s second
session to this user’s model mu, which yields likelihoods for
u (for an ideal model, these should be high). In particular,
we computed the joint likelihood for all touches for each
task t, that is, the likelihood that u is the one who typed the
password in task t. Note that the features are per touch, not
per password. Complementary, we fed the data from all other
users v ∈U\{u} to the model mu as well (for an ideal model,
these likelihoods should be lower). We repeated this for all
pairs of users u,v ∈U , such that we obtain 24 (user models)
× 24 (user data) likelihoods per task. We repeated the whole
analysis twice, once for natural and modified typing data.

On these likelihoods, we computed the standard measures
for typing biometrics (e.g., see [10, 36]): receiver-operating-
characteric (ROC) curve, area-under-curve (AUC), and equal
error rate (EER). An EER of X% means that in X% of pass-
word entries the legitimate user would be incorrectly rejected
while also X% of attacks would pass unnoticed.

5.5.2 ROC Analysis Results

Figure 9 shows ROC, AUC and EER. Compared to random
guessing (dotted line, 0.5 AUC), both natural and modified
typing clearly yield biometric information. The values are in
line with related work using this model for password typing
on smartphones with the right thumb in the lab [11]. The
results also show that people retain aspects of their individual
behaviour when asked to perform the same modifications.

The key observation is the gap between the curves in Fig-
ure 9. It quantifies the loss in individuality: To summarise,
when measured using an established typing model, individu-
ality of participants’ typing behaviour was reduced by inten-
tional behaviour modifications such that AUC dropped by .07
(relative -8.9 %) and EER increased by .06 (relative +20.7 %).

5.6 Detecting Modifications

Finally, we analysed how well behaviour modifications can be
technically detected. This is important, for example, to build
an authentication system that allows these modifications to be
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used as part of a password. For instance, to check a password
like “pass[hold long]word”, the system needs to be able to
distinguish between normal and long hold times.

We employed Random Forest classifiers with 100 trees and
default parameters4. We used all typing features as input (hold
time, flight time, area, offset x, y) and trained one model per
modification (e.g., to classify normal vs long hold times).

We used leave-one-user-out evaluation across sessions: For
each user u, we trained the classifier on the first session’s data
of all users except for u. We tested this model on u’s data from
session two. Thus, the model could be shipped pre-trained
and would not require data collection during enrolment.

We report mean (std) classification accuracy over all users:
hold time 97.9 % (1.36 %), flight time 96.14 % (1.84 %), area
94.71 % (1.16 %), and offset 94.29 % (0.96 %). Note, that the
remaining error includes user errors (e.g., user accidentally
performed normal instead of long hold time). For these user
errors, the model has to give an incorrect classification.

These results demonstrate that modifications can be reli-
ably detected. It is thus technically feasible to implement an
authentication system that allows users to use these modifica-
tions as part of their password. We provide the model code
and trained model as part of the material for this paper (see
Section 8) to facilitate implementations and further research
on such password systems.

5.7 User Feedback
After the study we conducted short interviews: Half of the
participants (12) stated to be interested in using passwords

4https://scikit-learn.org/stable/modules/ensemble.html#
forest, last accessed 20.02.2019

https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/ensemble.html#forest


with behavioural modifications and four were strictly against
it. The other eight had concerns (e.g., security, being able to
reproduce their behaviour under different circumstances or
technical feasibility of such a system), but stated they would
be interested in using a system utilising intentional modifica-
tions if those concerns could be addressed.

Many participants said they struggled with offset modifica-
tions as they would often hit the wrong key. Some also had
difficulties distinguishing large area and long hold time.

When creating passwords, users often first observed their
natural behaviour to then emphasise it. For example, P20
stated: “When I created the password I first typed it and ob-
served what I automatically did. For example I typed a ‘g’
rather to the left, entered a ‘b’ rather [long]; That’s what
I adjusted [the password] to.”. Another common strategy
was putting modifications at salient positions, such as at the
beginning of words or syllables.

6 Discussion

6.1 Controlling Password Typing Behaviour

As a key insight, we revealed that people are able to signifi-
cantly modify temporal and spatial features of their mobile
typing behaviour in given directions. It is also possible to
train a model that distinguishes between these features levels
(e.g., default vs long press) with high accuracy (Section 5.6).

People were more accurate (i.e., deviated less from tar-
get feature values) in reproducing default values rather than
extreme ones. We thus conclude that people are better at
replicating behaviour that is close to their natural behaviour.

For flight time, accuracy was higher in the second week.
We attribute this to people getting accustomed to our device,
modifications, and tasks, indicating a learning effect.

In some cases participants performed default behaviour
when expected to show a modification (see secondary peaks
in distributions in Figure 6), likely due to the cognitive load of
actively controlling their actions, especially when modifying
multiple features. Controlling touch area is partly affected by
the usage of the right thumb, which naturally leads to larger
areas towards the left of the screen, due to stretching.

6.2 Modifying Multiple Behaviour Features

Overall, modifying an increasing number of behaviour fea-
tures in a password becomes significantly more difficult to
control. A possible explanation is the likely higher cognitive
demand for intentionally modifying several aspects of typ-
ing behaviour, as supported by participants’ comments and a
higher number of incorrect inputs.

Specifically, modifying multiple features at different char-
acters within one password (“distributed modification”) is
significantly more difficult than modifying multiple features

at the same character (“co-located modification”). This con-
clusion is supported by all quantitative measures (task com-
pletion time, typing speed, incorrect entries, error measures),
as well as participants’ subjective Likert ratings.

Control of temporal features particularly suffers when other
modifications are present, likely since focusing on those oth-
ers distracts users from keeping the timing for the temporal
modifications. Controlling spatial features is more robust.

In summary, our findings show that multiple features are
harder to control when spread over multiple different charac-
ters; in particular, if temporal modifications are involved.

6.3 Methodology

We developed a visual text annotation scheme (Figure 2) to
communicate target behaviour modifications. We chose this
approach to be able to use text entry research’s most common
and established transcription task (i.e., enter given text) with
our new concept of intentional behaviour modifications.

An alternative would have been to visualise desired feature
values directly on the keyboard (e.g., show cross-hair on the
key for offset modifications). However, this would have turned
the task into a reaction exercise (i.e., hitting such cross-hairs),
which likely leads to different behaviour. This approach also
borrows heavily from the technical support work on mimicry
attacks. Yet we were interested in users’ ability to modify be-
haviour without such scaffolding. With our task, we thus gave
clear instructions while participants were left to implement
those modifications as they saw fit.

Future work could compare the two approaches. For ex-
ample, work on systems for mimicry attacks could use our
results here as a baseline for unsupported modification ability.

6.4 Deployment

As shown in Section 5.6, it is possible to reliably detect be-
haviour modifications, which enables building authentication
systems that utilise them as part of a password. With backends
that store passwords as hashes of strings, this could be easily
integrated by inserting a special symbol depending on the pre-
ceding character’s modification (e.g., “pass$holdlong$word”
where $ stands for any character not allowed to be used di-
rectly for passwords in the system). Therefore, this technique
can potentially be used in any context that passwords are cur-
rently used in – given that client software and hardware are
capable of detecting modifications. For non-touch keyboards,
only temporal features would be available.

Moreover, our visualisation (Section 3) could give users
feedback on their typing, analogous to revealing entered char-
acters in a password field on demand.

Finally, it is not clear how different devices and keyboard
layouts influence behaviour and control, which could be in-
vestigated in future work.



6.5 Implications for Usable Passwords with
Intentional Behaviour Modifications

Intentional behaviour modifications increase the space of pos-
sible passwords. We focused on the fundamental ability of
users to control behaviour features. Our results offer plenty of
opportunities for future work, e.g., investigating observability
and memorability.We summarise practical recommendations
for usable passwords with behaviour modifications:

Flight time, hold time, and touch-to-key offset present suit-
able behaviour features for intentional modification for pass-
word typing on smartphones. Modifications of touch area for
thumb input should be avoided. Area is harder to control since
it is partly determined by stretching of the thumb.

Flight time and hold time can be controlled on two lev-
els (normal vs long). Offsets can be controlled on five levels
though they were the most difficult modification for partici-
pants. We see several options to improve this for future work.
This includes tolerance for miss-typing (i.e., accepting input
that hits a neighbouring key in the direction of the executed
modification) and using offset modifications only with larger
keys (e.g., on tablets or for PINs). Modifying offsets may also
be easier when typing with a different finger that allows for
more precision (e.g., index). Modifying behaviour for one
character in multiple ways should be favoured over distribut-
ing feature modifications across several characters. Combi-
nations of feature modifications across multiple characters in
particular for temporal modifications should be avoided.

Based on user feedback after creating own passwords, a
promising creation strategy is to observe one’s own natural
behaviour and add emphasising modifications.

6.6 Implications for Mimicry Attacks

Related work [10, 11] found that spatial features (particularly
offsets) have higher biometric value, that is, they lead to more
accurate user identification, compared to temporal features.
Our results show that it is difficult to intentionally modify
multiple temporal features, or temporal features combined
with others. In contrast, for modifying offsets, users are not
inherently under time-pressure when controlling them.

We thus revealed a novel trade-off: Spatial features have
higher biometric value than temporal ones in the literature,
yet they might be easier for informed attackers to modify. Fu-
ture work can investigate such mimicry attacks: In particular,
our results suggest 1) to compare mimicry attacks on biomet-
ric systems that use either spatial or temporal features; and
2) to compare such attacks for “victims” that do or do not
intentionally control these features as part of their passwords.

In contrast to most previous work on mimicry attacks, these
new study ideas do not focus on technical support for attack-
ers or specific protection methods, but rather on better under-
standing the fundamental human capabilities for copying and
controlling otherwise uncontrolled input behaviour details.

6.7 Implications for Biometrics Research

We showed for the first time that when multiple people follow
the same modification instructions, their mobile typing be-
haviour becomes less distinguishable (here relative +20.7 %
equal error rate for user identification across sessions).

Earlier work on typing on desktop keyboards [14, 33]
and phones with physical key pads [21] discussed “artificial
rhythms” (e.g., inserting a pause), which increased biometric
value, contradicting our results. This difference may be due
to typing on touchscreens in our work and the fact that related
work studied behaviour in one session only, ignoring changes
over time. Moreover, users received “open” instructions to
modify the rhythm as they liked and thus likely responded in
more individual ways [33]. Typing biometrics for desktops
can only utilise temporal features. In contrast, mobile touch-
screens enable rich spatial features and it can be difficult to
coordinate modifications of multiple features in one password
entry. This might have caused less consistent behaviour across
sessions, reducing accuracy of user identification.

On one hand, this suggests that authentication systems need
to be careful with applying both behavioural biometrics (e.g.,
as an extra security layer) and intentional modifications (e.g.,
for extended password space). On the other hand, suggesting
different modifications to different users could improve bio-
metric value, as we find users able to follow modifications of
the most important features in typing biometrics.

Other work examined related ideas that might be investi-
gated in our context as well: (1) nudging users towards creat-
ing more diverse lock patterns via subtle visual cues [40]; and
(2) facilitating user exploration of “original” behaviour [42].

Our results guide future work on the idea of provoking
more diverse behaviour: For example, a future study could
ask users to set up a password not only with composition
instructions (e.g., minimum length), but also suggest (random)
behaviour modifications for how to enter it. Based on our
results, we expect to achieve higher biometric value in this
way, compared to 1) suggesting no behaviour modifications,
or 2) suggesting the same modification to all users.

6.8 Security Considerations

Using intentional behaviour modifications impacts password
capture and guessing attacks [6]. Capture attacks like smudge
attacks [2] may be deflected, as temporal features leave no
marks. Video-based attacks like shoulder surfing [32] or ther-
mal attacks [1] may still be possible, though potentially harder,
as extracting exact timings may prove difficult and fingers
occlude the concrete touch points as long as no feedback is
given (compare 6.4). Phishing may only be successful if the
interface can capture and transmit modifications.

Assuming random passwords and modifications, adding
modifications makes both online and offline guessing attacks
harder (Table 3). Including one modification adds up to about



password length 8 7 6 5

no modifications 49.36 43.19 37.02 30.85
1 modification 55.14 48.77 42.38 35.94
2 modifications 59.84 53.27 46.63 39.90
3 modifications 63.90 57.10 50.20 43.16

Table 3: Entropy (bits) of random passwords with and without
(random) modifications on an alphabet of 72 characters (upper
and lower case letters, numbers and 10 special characters).

5 bits of entropy (calculations in Appendix A). Thus, modi-
fications may enable shorter passwords maintaining similar
entropy. For instance, under the given assumptions, an eight
character password can be reduced to six characters when
using exactly 3 modifications. This is promising as passwords
on mobile devices tend to be weaker and harder to enter [27].

Notice that these are upper bounds; there may be common
patterns of choosing modifications, which reduce theoretical
entropy in practice (e.g., participants reported to choose be-
ginnings of words or syllables for modifications, cf. Section
5.7). Moreover, focusing modifications on a single key instead
of spreading them out makes guessing easier. However, our
calculations assume that the attacker knows the exact num-
ber of modifications, thus (slightly) underestimating entropy.
While suggesting concrete modifications might solve some of
those drawbacks it may introduce usability issues. We suggest
practical security as an area for future work.

6.9 Limitations
We examined a limited set of typing features with a commonly
used keyboard app (modified Google open source keyboard).
We did not measure pressure or shape features from the full
capacitive image (cf. [26]). Nevertheless, we covered the
most commonly used temporal and spatial typing biometrics
features (cf. [36, 37]), found to be the most important ones
among a larger set for mobile password typing [11].

To avoid an impact of password complexity we chose a
limited set of easy passwords for our study. Our findings may
not generalise to more complex passwords.

To keep an acceptable study duration, we only observed
one-handed use with the right thumb. This is one of the most
considered postures in research [5, 17, 18, 45] and one of the
most frequently used ones in daily life [10]. All participants
were right-handed and used to this posture. Future studies
could compare our results to typing with the index finger.

During analysis of the results we noticed that the target
behaviour in task 34 contained an additional hold time modi-
fication instead of the intended flight time modification. Thus
the combination of area, hold and flight time was not tested.

Our sample is biased towards younger people and might not
represent the overall population. Finger precision and timing
might change with age (cf. [39]). Future work could compare
our results to samples with children and older adults.

7 Conclusion

Typing behaviour can be analysed to identify users based on
features such as typing rhythm [36] and finger placement [11].
So far, research had studied these features as they occur “nat-
urally” as an implicit, uncontrolled part of typing, or in the
context of supporting mimicry attacks with technical means.

This paper addresses the gap in the literature with the first
study on users’ ability to intentionally modify their behaviour
when typing passwords on smartphones: We developed a
novel visual text annotation in a prestudy (N=114), before
using it to study intentional modifications in the lab (N=24).

Overall, our results reveal that users can successfully mod-
ify the features most commonly used in typing biometrics sys-
tems for smartphones. This fundamental insight has several
implications for users, threat models, and biometrics research.
We conclude by outlining some of them here:

It is worth investigating further the idea of using intentional
modifications as a part of passwords. This could extend the
password space (e.g., “password” vs “pass[hold long]word”)
and possibly also reduce observability, as attackers would
have to guess the modification, not just the entered word.

Our results also motivate novel research directions for touch
and typing biometrics systems: These might suffer from “stan-
dardizing” typing behaviour across users with given modifi-
cations, as revealed in our study. However, nudging different
users to use different modifications in turn promises to in-
crease user identification accuracy (cf. [40]).

Related, threat models for evaluating such biometric sys-
tems need to take into account that some target behaviours are
inherently more difficult to attack: In particular, our results
strongly motivate comparing attacks that require modifying
temporal vs spatial features to mimic the victim’s behaviour.

Overall, we show the rich capabilities of users to inten-
tionally control typical input behaviour features previously
considered as an implicit “information byproduct” of inter-
action. With this work, we hope to spark new research and
discussion regarding the use of behaviour-aware security sys-
tems that go beyond the view of a passively analysed user to
take into account these human capabilities.

8 Project Resources

Material for this paper is available at: https://www.
unibw.de/usable-security-and-privacy/downloads/
datasets/intentional-behaviour-modifications
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A Calculating Entropy of Modified Pass-
words

For a random password with no modifications of length n on
the alphabet Σ we calculate entropy E as:

E0 = log2(|Σ|n)

For one modification we choose a password first and then
add a single modification at a random location. There are 7
possible modifications (assuming that one manifestation of
each feature would be the default (e.g., pressing keys in the
centre). Finally we exclude the single case where a flight time
would be applied to the first character (as it does not have a
preceding character to measure flight time from). This yields:

E1 = log2(|Σ|n · (7n−1))

Analogous, we calculate the entropy for two modifications
by choosing a password first and then either applying two
modifications on one character (15 options) or two single
modifications; again excluding cases where a flight time mod-
ification would be applied to the first character.

E2 = log2(|Σ|n · ((15n−6)︸ ︷︷ ︸
2 on one

+(
7n ·7(n−1)

2
−7(n−1))︸ ︷︷ ︸

2 single

))

We calculate entropy for three modifications analogously,
taking into account the possibility of three modifications on
one character (line 1), two modifications on one character
combined with a single modification (line 2) and three single
modifications (line 3):

E3= log2(|Σ|n · ((13n−9)
+(15n ·7(n−1)−57(n−1))

+(
7n ·7(n−1) ·7(n−2)

6
− 7(n−1) ·7(n−2)

2
))
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