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ABSTRACT
With smartphones being a prime example, touchscreens be-
came one of the most widely used interface to interact with
computing systems. Compared to other touchscreen devices,
smartphones pose additional challenges as the hand that inter-
acts with the device is commonly used to also hold the device.
Consequently, determining how fingers of the hand holding the
device can interact with the screen is a non-trivial challenge. A
body of recent work investigated the comfortable area in con-
trolled lab studies. This poses limitations as it is based on the
assumption that the grips used in the studies are representative
for normal smartphone use. In this paper, we extend previous
work by providing insights from in-the-wild studies using two
different apps that were deployed in the Android App Store.
Comparing our results with previous work we confirm that our
data fits previously proposed models. Further analyzing the
data, we highlight the sweet spot, the position that is touched
if the input can be performed on the whole screen.
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CCS Concepts
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INTRODUCTION
Touchscreens enable designing especially intuitive systems
as they combine input and output in a single interface. Over
the last decade, touchscreens became one of the most widely
used input devices for computing systems. Especially the on-
going success of current mobile devices lead to mass adoption.
Compared to other touchscreen devices, such as tabletops and
other stationary displays, mobile devices equipped with touch-
screens pose additional challenges. Users typically use the
hand that interacts with the screen to also hold the device [23].
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Recent work showed how holding a smartphone in one hand
and using the same hand to interact with the device restricts
the movement of the hand’s fingers [3, 20, 21]. Bergstrom-
Lehtovirta and Oulasvirta [3] conducted a controlled lab study
to determine what the authors call the comfortable area of the
thumb [3]. They provide a model that describes the thumbs’
movement range. Le et al. [20] confirm this work and extend
it by describing the movement range of all five fingers. Le
et al. [21] further extend their work, confirming their find-
ings also for walking scenarios using a treadmill. Bergstrom-
Lehtovirta and Oulasvirta [3], and Le et al. [20, 21], base
their findings on highly controlled studies, using a small set of
device sizes, while participants were in a calm environment.

Fundamental work by Bergstrom-Lehtovirta and Oulasvirta
[3], and Le et al. [20, 21], can inform the placement of interac-
tion controls when designing for optimal conditions. However,
mobile interaction is characterized by very diverse contexts.
Especially smartphones are used while walking, standing, and
running and they are often used while performing other tasks.
Smartphones’ form factors are more diverse than what can be
considered in a lab study. Thus, it is unclear how the proposed
models perform when the interaction context is less restricted.
In summary, lab studies yield a high internal validity but less
external validity. Thus, in-the-wild studies are used to coun-
teract this drawback [14, 17]. Examples to foster external
validity are works by Henze et al. [15, 16] which showed how
the precision of target section can be increased regardless of
device size and context. Therefore, we study finger placement
on mobile devices in two in-the-wild studies. We investigate
how the thumbs can interact with a smartphone’s touchscreen
in a context outside of lab environments.

We conducted two in-the-wild studies by publishing games
in mobile application stores. We collected 45,899,268 touch
events from 607 devices. Both millions of touch events in
potentially different setting as well as a wide range of devices
contribute to the external validity. We extend prior work which
showed that with larger mobile devices the average input is
shifted more towards the left side of the device. However, for
tablets, we observed the effect of the device getting too big
for one-handed interaction, here our players started to also
interact with the left hand. Further extending previous work,
we highlight the sweet spot, the position that is touched if the
interaction is not bound to specific areas.

http://dx.doi.org/10.1145/3343055.3359705


RELATED WORK
Using games to understand how people interact with technol-
ogy has a long history e.g. [11, 15, 26]. Thus we present
related work in the domain of in-the-wild studies with a focus
touch interaction. The second part focuses on smartphone
input modeling as this is the core contribution of the paper.

Touch interaction in-the-wild
In-the-wild studies are commonly used for observation and
ethnographic studies; however, with the availability of app
stores such as the Google Play Store and the Apple App Store
distributing apps to a large number of participants became
a new form of in-the-wild studies especially in the human-
computer interaction (HCI) domain.

The interaction with touchscreens has in particular been stud-
ied using in-the-wild deployments. Alt et al. [1], for example,
conducted an in the wild study to better understand graphical
passwords and Schneegass et al. [33] extended this work to
counteract the smudge traces left on the screen by the finger
through an in-the-wild study. Previous work also used in-the-
wild deployments to improve the interaction with touchscreens.
Poppinga et al. [31] used a mobile application to understand
touchscreen gestures. Henze et al. [15] used an in-the-wild
study to collect more then 100 million touch events to better
understand how users interact with the screen and how to im-
prove users’ accuracy. The authors also used a mobile game to
understand systematic errors when using on-screen keyboards
and how to correct them [11]. Goguey et al. [10] used an
in-the-wild study to model whole touch interfaces rather than
just a simple touch.

In-the-wild studies conducted by publicly deploying apps and
games in mobile application stores have increased our knowl-
edge about specific types of applications and the interaction
with smartphones in general. While the previous work focused
on different aspects, the approach has successfully been used
to learn and improve the interaction with touchscreens.

Modeling Smartphone Input
Studying and modeling smartphone input has a long tradition
for various reasons. On the one hand, modeling the input
can increase usability, e.g by increasing input accuracy [15],
or reducing input lag [12, 13]. On the other hand, modeling
the input can foster a better understanding and thus increase
usability in the long run. Such an understanding can include
challenges such as the fat-finger [4, 34] and the occlusion
problem [37].

In this paper, we are mainly interested in modeling the finger
and hand movements as the range of the fingers inform about
graphical user interface (GUI) design. One important aspect
when designing new GUIs is to consider possible ergonomic
constraints. Le et al. [22] investigated smartphone grips and
derived ergonomic implications for Back-of-Device (BoD) in-
teraction. Lee et al. [23] modeled the index fingers touch areas
also for BoD interaction. Eardly et al. [6, 7] studied changes
in the grip during smartphone interaction. They revealed the
effect of device size and target distance effects and proposed
use cases for adaptive user interfaces. However, finger move-
ments can also directly inspire new GUI layouts. Therefore,

understanding the main input fingers, the index finger and the
thumb, is important [27]. Park et al. [29] showed that the size
of buttons influences the thumb’s touch accuracy which is in
line with challenges predicted by the fat-finger problem [34].
Additionally, Boring et al. [4] exploited the limitation of the
thumb and proposed using it as a metric to simulate pressure.
Moreover, Xiong et al. [38] found that interacting with small
targets will cause fatigue problems.

Bergstrom-Lehtovirta and Oulasvirta [3] modeled the thumb’s
range on smartphones in one-handed interaction scenarios.
The developed model predicts the thumb’s range mainly based
on the user’s hand size and the position of the index finger. Be-
yond that, Trudeau et al. [35] modeled the motor performance
in different flexion states. Finally, Le et al. [20, 21] studied
fingers’ range and comfortable area for all fingers in a one-
handed interaction scenario both while sitting and walking on
a treadmill. They used four different smartphone sizes ranging
from 4.0′′ to 5.96′′ inches. The authors derived design guide-
lines to arrange buttons for BoD interaction based on their
findings. However, as there was no real task performed on the
front touchscreen, their design implications focus only on the
placement of additional input controls for BoD interaction.

Summary
A large corpus of work used in-the-wild deployments and stud-
ied the interaction with touchscreens. Previous work showed
that in-the-wild deployment can be used to study diverse ques-
tions. A common approach is to use playful tasks instead
of the highly controlled and often synthetic tasks used in lab
studies. Compared to lab studies, information from a diverse
set of users and a much larger set of devices can be collected.
Previous work focusing on modeling touchscreen input relied
on small sets of users and potentially even more important, had
to limit the number of devices. While previous work provided
models that describe fingers’ range and comfortable area [3,
20, 21], the insights are based on studies in calm environments
without participants performing meaningful actions beyond
the studies’ tasks themselves.

In this paper, we investigate scenarios where users touch the
screen when they are not forced by the user interface (UI) to
perform the input in a specific area of the screen. To consider
diverse types of devices, we use in-the-wild deployments of
two mobile games. Using the first game, we collect simple
touch input and using the second game we collect swipe ges-
tures. Thereby, we aim to understand where users interact with
the touchscreens when the GUI does not require the user to
touch a certain area.

GAME: FLAPPY BIRD
To understand how single tap input influences the area where
users comfortable can tap the screen, we implemented a clone
of Flappy Bird, see Figure 1. We used Flappy Bird as a study
apparatus, as the game has the unique feature that the tap can
be performed on the whole GUI. This allows the user to tap
on the screen wherever it is most comfortable.

Game Design
The game consists of two screens, a start screen, and a play
screen. The start screen contains a “Play” and a “Leaderboard”



(a) (b)
Figure 1. Two screenshots of the Flappy Bird game implementation,
showing the game at the start (a) and during the game after the first
pipe (b).

button, see Figure 1a. The “Leaderboard” button was imple-
mented in a traditional way. Only the button area triggered
the action; however “Play” can be triggered by touching not
only the button itself but also the rest of the screen excluding
the “Leaderboard” button. This was done to avoid participants
center their finger towards the “Play” button which otherwise
would have led to results with a bias towards the button. The
“Leaderboard” was implemented using the Play Games Ser-
vices1 provided by Google. In the game phase, see Figure 1b,
the bird needs to be steered tough the vertical pipes. The
bird continuously moves to the right, while gravity pulls the
bird down. To elevate the bird, players have to tap the screen,
whenever the bird touches a pipe or the ground the player loses.
The player scores one point per mastered pipe pair.

We released our version of Flappy Bird2 using the Google Play
Store to the Android eco-system. We asked for users consent
when they started the app the first time to collect users touch
events. This method to ask for consent is in line with previous
work, e.g., Henze et al. [11], and Weber at al. [36].

Data Set
In total, the game was installed and started by 665 players
who provided consent. As the game can be played without
Internet connection, we only collected data from 459 players
from which we observed at least one game. We manually

1https://developers.google.com/games/services/
2Our Flappy Bird clone called Flappy Easter is available in
the Google Play Store at https://play.google.com/store/apps/
details?id=de.makufunk.easterbunny

(a) (b)
Figure 2. Two screenshots of the 2048 game implementation, showing
the game at the start (a) and during the game after a number of swipe
gestures (b).

decoded all devices with at least 300 games per player. Ad-
ditionally, we removed all players with less than 100 touch
inputs. In the following, we analyze the remaining 6,834,309
touch events produced by 2,111,501 tap gestures in a total of
186,676 games played by 386 players. A tap gesture had on
average 2.99 touch events (SD = 4.16) with an average move-
ment length of 0.86mm (SD = 8.52, 95%CI = [0.85,0.87]).
We used all touch events for our analysis to respect all move-
ments performed while playing. Players played on various
devices with a minimum screen size of 3.6′′ up to a maxi-
mum screen size of 10.5′′, see Figure 3. The collected locales
and time zones show that there is a strong bias towards west-
ern countries among the players. In particular, the two most
common locales are English USA (47.0%) and GB (23.6%).
This is followed by Germany (7.9%), Brazil (4.9%), Canada
(3.2%), France (3.0%), and others (9.9%).

GAME: 2048
In contrast to the first study where we focused on discrete
touch interaction, the second study focuses on gesture input
by analyzing directional swipe gesture.

Game Design
The game consists of a single screen. It always shows the
play area which resembles a 4×4 grid, the game starts with
two randomly selected grid cells (tiles) showing either a 2 or
a 4, see Figure 2a. By swiping up, down, left, or right, the
tiles slide in the direction of the swipe gesture. A tile stops
sliding when it either collides with the end of the grid or with
another tile with a number. If the different numbers collide,
nothing happens. However, when two colliding numbers are

https://developers.google.com/games/services/
https://play.google.com/store/apps/details?id=de.makufunk.easterbunny
https://play.google.com/store/apps/details?id=de.makufunk.easterbunny
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Figure 3. The screen size distribution of the 2048 and Flappy Bird play-
ers on which we base our analysis on.

the same, the values are added and displayed on one tile. After
each swipe gesture (each turn of the user) a new tile appears
and will randomly get assigned a 2 or 4. The player loses
when there is no tile left without a number after the users’ turn.
The overall goal of the game is to collapse tiles until one tile
displays the number 2048. However, the player can continue
playing and therefore archive even larger numbers.

We implemented a clone of 2048, see Figure 2. We released
20483 using the Google Play Store. Again, we asked for users
consent to collect users touch events in line with previous
work (e.g., Henze et al. [11], and Weber at al. [36]).

Data Set
In total the game was installed, started, and played by 532 play-
ers who provided consent. We manually decoded all devices
sizes with at least 100 games per player. Additionally, we re-
moved all players that performed less than 100 gestures. In the
following, we analyze the remaining 39,064,959 touch events
produced by 4,921,290 swipe gestures from 221 players. The
average length of a swipe gesture was 18.02mm (SD = 10.60,
95%CI = [18.1,18.03]). Players played on various devices
with a minimum screen size of 3.5′′ up to a maximum screen
size of 10.1′′, see Figure 3. The collected locales and time
zones show that there is a strong bias towards western coun-
tries among the players. In particular, the two most common
locales are English USA (22.6%) and GB (10.4%). This is
followed by Germany (16.3%), Russia (8.1%), France (4.1%),
Vietnam (3.2%), Iran (3.2%), and others (32.1%).

RESULTS
From the two games, Flappy Bird and 2048, we collected a
total of 45,899,268 touch events from 607 devices. Moreover,
due to the design of the games, all touch events were per-
formed while the phone was in portrait mode. Our goal is to
extend the findings by Le et al. [20, 21] for the front screen us-
ing an in-the-wild setting. They studied how far users’ fingers
can reach and which finger positions are comfortable. While
32048 is available the Google Play Store: https://play.google.
com/store/apps/details?id=org.hcilab.projects.game2048

Screen Tap Swipe
Size in inch Area Area % Area %

3 < s≤ 4 41.2 16.2 39.3 23.2 56.3
4 < s≤ 5 60.7 19.5 32.1 29.3 48.2
5 < s≤ 6 83.6 23.9 28.5 33.6 40.2
6 < s≤ 7 122.7 23.9 19.5 22.4 18.2
7 < s≤ 8 164.1 23.6 14.4 36.9 22.5
8 < s≤ 9 217. 7.2 3.3 31.9 14.7
9 < s≤ 10 258.1 27.2 10.5 32.6 12.6
10 < s≤ 11 307.6 31.9 10.4 23.4 7.6

Table 1. The touched areas for the different screen size both for tap and
swipe input. Area measurements are reported in cm2 per 1′′ step.

the study provides fundamental insights, the generalizability
is limited by the use of four discrete device sizes, the lack of
an interactive task participants had to perform, and the very
specific environment in which the study has been conducted.
In contrast, our data set contains data from diverse devices
and users interacted with their devices in-the-wild with a task
focusing on front screen input. While users performed a task,
they were free in where they perform the touch input which
gives a unique setting to understand the preferred grip and
resting position of the finger used for input.

Screen Size Annotation
While Android provides app-developers with the model and
manufacturer name, as well as the width and height of the
screen in pixels, the Android OS does not provide the de-
veloper with the physical screen size. However, to compare
different smartphone models it is essential to have the physical
dimensions of the screen. Two researchers coded all devices
with the physical dimensions by looking up the model on the
website of the manufactures.

a) outside area

b) comfortable area

c) sweet area

d) sweet spot

Figure 4. Sketch of the three areas we divide the screen into, the a) area
outside of the comfortable area, the b) comfortable area, c) the sweet
area, and d) the sweet spot.

https://play.google.com/store/apps/details?id=org.hcilab.projects.game2048
https://play.google.com/store/apps/details?id=org.hcilab.projects.game2048
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Figure 5. In the top row are the Flappy Bird heat map results and in the bottom row are the results of the 2048 touch events for five different screen size
brackets ranging all the way from 3.5′′ up to 10.1′′. The blue line around the green hotspot indicates the sweet area. The red× represents the centroid of
the blue outline, thus the sweet spot. Device sizes are indicated by black dashed lines for the minimum screen size and solid black lines for the maximum
screen size.

Preprocessing
To make the results comparable to previous work, we adopted
the preprocessing pipeline form Le et al. [20, 21]. However, as
they handled motion tracking data and our data is touch data,
our filter steps are different. Original filtering was substituted
with an average and a Gaussian filter. We first transformed the
touch data retrieved from the games from pixels into metric
units (mm). From there we generated heat maps for each partic-
ipant with a raster size of 1×1mm which therefore represents
the distribution where participants performed the touch input.
We normalized the heat maps for each participant to give all
participants the same weight independent of the amount of
data they contributed. We aligned the different devices to
their lower right corner and group them by screen size. Af-
terward, we summed the normalized heat maps up to derive
the average distribution, see Figure 5. To calculate the sweet
area and sweet spot (see Figure 4), we first applied a mean
filter (< M+3SD) to reduce outliers and then a Gaussian filter
(sigma = 2 and order = 0) to reduce noise. This was followed
by the find contours algorithm [25] to determine the sweet
area as done in prior work to determine the comfortable areas.
From the sweet area we determined the center of mass which
results in the sweet spot, see Figures 5 and 6.

Sweet Area
For the sweet area obtained from the heat maps using the
find contours algorithm we calculated the area size of the
sweet spots per screen size, see Figure 5 and Table 1. We
then performed a paired t-test to compare the size of the sweet
area in the Tap and Swipe conditions. There was a significant
difference in the size of the sweet area for the two conditions
Tap (M = 23.6, SD = 6.4) and Swipe (M = 30.1, SD = 3.7);
t(5) =−2.779, p < .05.

Le et al. [20, 21] showed for four smartphones ranging from
4.0′′ to 5.96′′ inches the area which humans can comfortably
reach on front screens of the phones while sitting and walk-
ing. We show that for similar phones the actual area is always
smaller when participants are not forced to tap or swipe on a
specific UI position, see Figure 5. Moreover, we found that the
sweet areas in our observations are always within the comfort-
able areas. We performed a paired t-test to understand if the
sweet areas are significantly smaller than the comfortable ar-
eas for the screen sizes from 3.5′′ to 6′′. The t-test revealed the
sweet areas for both conditions Tap and Swipe are significantly
smaller than the corresponding comfortable area, t(4) = 5.893,
p < .001 and t(4) = 2.871, p < .028, respectively. Therefore
we argue that this is the sweet area.
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(b) 2048 (zoomed-out)
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Figure 6. The sweet area and the sweet spot in the two zoomed-out visualization are showing all phone sizes ranging from 3.5′′ to 10.1′′, while the
zoomed-in versions are only showing devices between 3.5′′ and 6.0′′ enabling comparability to findings by Le et al. [20, 21].

Sweet Spot Position
Similar to Le et al. [20, 21] we calculated the centroid of the
sweet area, see Figure 5, to estimate the most preferred input
position, the sweet spot. Finally, to understand the relation
between device size and sweet spot we perform a line regres-
sion. The regression revealed a possible trend that the sweet
spot shifts towards the upper left corner with increasing device
size, see Figure 6. For the full device range from 3.5′′ to 10.1′′
the sweet spot movement can be modeled with a line with
an average R2 of .55. Here the sweet spot shifted with 73.3◦.
Moreover, for smaller devices (from 3.5′′ to 6.0′′) the average
R2 is .65 and the angle is 64.5◦. These results are in line with
findings by Le et al. [20] who reported a R2 of .67 and an
angle of 61.1◦ and Le et al. [21] were they reported a R2 of
.77 with 59.3◦ for sitting and R2 of .88 and 61.1◦ for walking.

DISCUSSION
In contrast to previous work, we conducted in-the-wild studies
to understand how smartphone users interact with their devices.
While this allows us to understand various situations which
users might be in, we can not ensure that they covered all
possible situations. In our analysis, we combine the touch
event from 607 different users which result in a wide range
of devices. While typical user interfaces force the user to
interact with specific on-screen elements on the GUI, in our
implementation users are free to tap and swipe at any position.
This enables to understand where users want to interact with
their device when no UI element required touching a specific
point. From the raw touch events, we generated heat maps
from which we extract the commonly used areas for interaction
for each device size. Le et al. [20, 21] presented insight on the
comfortable area, which is defined as the area which can be
reached without a grip change. By combining the user specific
heat maps we get a similar representation of the touched area;
however, our results show that the area is significantly smaller
than the comfortable areas. Thus, we argue that while Le
et al. [20, 21] explored the full comfortable area, our results
represent the area where users prefer to interact in. Thus, we
call this region the sweet area.

From the sweet area, we used the centroid to calculate the
sweet spots for each screen size, in line with Le et al. [20, 21].
While our regression R2 values are low, they are in line with
related work for the shift of the comfortable area. Le et al. [21]
reported mean R2 of 60.2 across their sitting and walking
conditions. In Figure 6, we highlight how our observations
relate to the studies in controlled environments presented by Le
et al. [21]. The results of the regression indicate a slight trend
of the sweet spot possibly moving towards the devices’ upper
left corner. This, however needs to be confirmed in a separate
study. Moreover, we found that the position where the offset
vector for touch input is zero, as shown by Henze et al. [15], is
close to the sweet spots. However, as Holz and Baudisch [18]
showed, the touch input itself is multi-dimensional; thus, we
argue that the offset zero position is not the same as the sweet
spot but located in the same area.

While techniques like ThumbSpace [19] or RayForce [5], offer
a way to overcome the reachability problem, they do not solve
the underlying problem of interactive elements placed outside
of the reach. However, we provide designers and developers
with the fundamentals for the thumb sweet spots for a wide
range of devices. Thus, we provide a better understanding to
design more user-friendly GUIs in the first place.

In our setting, we controlled that players only used the games
in portrait mode as this is the dominant phone orientation
mode [32]. Moreover, this covers the most common grips [24].
We were not able to control with which hand or finger the
users interacted with the devices during playtime. However,
we argue that around 80% of the world population is right-
handed [28, 30] and our results are in line with previous work
which only had right-handed participants interacting with their
right thumb [20, 21]. This leads us to believe that either most
users use their phone one-handed and interact with the thumb
or that the interaction areas are located at the same position
for the second most common grip where the user holds the
phone with the left hand and interacts with the index finger of
the right hand.



Limitations
When choosing the games, we picked games where the num-
ber of buttons which could potentially influence the grip is low.
Moreover, during gameplay no buttons need to be pressed,
lowering the impact of the GUI to a very minimum. However,
we see the potential that the players may not be aware of this
fact and possibly change the grip anyhow. Moreover, the vi-
sual representations of the game itself could have potentially
influenced the grip. Here, we argue that the results for our
smaller devices are in line with previous work [20, 21]. More-
over, the results for our games are similar considering that the
interaction (tap vs swipe gestures) is different. Thus, the effect
of the GUI has to be minimal.

In this work, we only investigate portrait mode as the grip is
fundamentally different from the grip in landscape mode. We
choose to study only portrait mode as Sahami Shirazi et al. [32]
showed that this is the more common mode. They further show
that landscape is most used for content consumption such as
video and images. And this is true even though that 84.5%
of activities can be oriented according to the users needs [8].
Thus, landscape mode is less interesting to study as a first step.
However, to build a full understanding of possible grips and
the sweet spot this will be a next step to research.

We informed participants when they started the game that we
record the touch events. However, participants did not have
the immediate chance to ask questions. However, as an im-
plication of our large-scale study, inviting every participant
into the lab is not feasible. To still comply with the GDPR
rules, no personal informations can be recorded. Thus, the
data recorded is fully anonymized. However, this poses the
limitation that we can not draw conclusions from the demo-
graphic sample such as age and gender. Both games have been
uploaded to the Google Play Store to address a wide range
of potential users. Moreover, the games have been advertised
on Facebook which potentially skewed the user-base towards
younger people. Moreover, the potentially young user base
may also have effected the context in which they interacted
with the games. Additionally, the fact that we used games in
both studies might have eliminated certain contexts such as
office environments.

Today’s mobile devices have various body and screen sizes
as well as different aspect ratios. As a second implication of
the GDPR rules, we also can not record the handedness of
the participants. Thus, we cannot ensure that all users used
their right hand. We argue that today’s devices mostly rely
on right-handed GUI and moreover, around 80% of the world
population is right-handed [28, 30]. Thus, the presented results
are limited to right-handed usage. We hypothesize that the
mirrored results are true for left-handed interaction, e.g. the
trendline in Figure 6 is from lower left to upper right. This,
however, needs to be studied in future work in more detail.

CONCLUSION
Using observations from 45.8 million touch events from 607
users we showed that smartphone input is device size depen-
dent. This needs to be taken into account when designing
smartphone interfaces. In detail, we showed that for both tap
and swipe input, the sweet spot shifts gradually towards the

upper right corner with increasing device size. Guided by our
observations, we present a model which divides the screen
into three different areas and fundamentally extends previously
presented models and heuristics for UI element positioning.

This paper presents the first step towards understanding touch
input of many different device sizes with a huge number of
environmental influences. However, while in-the-wild studies
can support a more extensive variety, they often lack the pos-
sibility of controlled environmental influences which would
be possible in a lab study. Thus, to minimize the effect of
environmental influences, these should be taken into consid-
eration in future work. In particular, taking the activity and
grip into account using the smartphones IMU sensor data with
a grip classifier [9] or an activity recognition algorithm [2]
are the next steps. Moreover, as this will allow calculating
the sweet spot per-user and directly inform the GUI. This,
therefore, is the next step towards user-based adaptation for
more user-friendly designs.
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